
 

                                           

 

J.B. INSTITUTE OF ENGINEERING & TECHNOLOGY 

                                                         (UGC AUTONOMOUS) 

              Bhaskar Nagar, Moinabad Mandal, R.R. District 

Hyderabad 500075 

                     DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

    

                             OOPS THROUGH JAVA PROGRAMMING 

    

II  B.TECH I SEM  

          

             R20 

 

Prepared by  

       (Dr. B.Nageswara Rao) Associate Professor 

 

 

 

 

 

 



MODULE-1 

I. INTRODUCTION TO JAVA 

 

What is Java 

Java is a high Level programming language and it is also called as a platform. 

Java is a secured and robust high level object-oriented programming language. 

Platform: Any software or hardware environment  in which a program runs is 

known as a platform. Java has its own runtime environment (JRE) and API so  

java  is also called as platform. 

Java fallows the concept of Write Once, Run Anywhere. 

Application of java  

1. Desktop Applications  
2. Web Applications  

3. Mobile 

4. Enterprise Applications  

5. Smart Card 
6. Embedded System 

7. Games  

8. Robotics etc 

History of Java 

James Gosling, Patrick Naughton and Mike Sheridan initiated the Java 

language project in 1991. Team of sun engineers designed for small, embedded 

systems in electronic appliances like set-top boxes. Initially it was called 

"Greentalk" later it was called Oak . 

Java is an open source software produced by Sunmicro system under the 

terms of the GNU General Public License (GPL) .  

 

 

 



 

 

 

 

 Features of Java: 

 Object Oriented – Java implements basic concepts of Object oriented 

programming System (OOPS) ie Object, Class, Inheritance, 
Polymorphism, Abstraction, Encapsulation. In Java, everything is an 

Object. Java can be easily extended since it is based on the Object 

model. 
 Platform Independent − Unlike many other programming languages 

including C and C++, when Java is compiled, it is not compiled into 

platform specific machine, rather into platform independent byte code. 
This byte code is distributed over the web and interpreted by the Virtual 

Machine (JVM) on whichever platform it is being run on. 

 Simple – Java fallows the basic Syntax of C,C++. If you understand the 
basic concept of OOPS then it is  easy to master in java. 

 Secure − With Java's secure feature it enables to develop virus-free, 

tamper-free systems. Authentication techniques are based on public-key 
encryption. 

 Architecture-neutral − Java compiler generates an architecture-neutral 

object file format, which makes the compiled code executable on many 

processors, with the presence of Java runtime system. 
 Portable − Being architecture-neutral and having no implementation 

dependent aspects of the specification makes Java portable. Compiler in 

Java is written in ANSI C with a clean portability boundary, which is a 
POSIX subset. 

 Robust − Java makes an effort to eliminate error prone situations by 

emphasizing mainly on compile time error checking and runtime 
checking. 

 Multithreaded − With Java's multithreaded feature In java  we can write 

programs that can perform many tasks simultaneously. This design 
feature allows the developers to construct interactive applications that 

can run smoothly. 

 Interpreted − Java byte code is translated on the fly to native machine 

instructions and is not stored anywhere. The development process is 
more rapid and analytical since the linking is an incremental and light-

weight process. 

 High Performance − With the use of Just-In-Time compilers, Java 
enables high performance. 



 Distributed − Java is designed for the distributed environment of the 
internet. 

 Dynamic − Java is considered to be more dynamic than C or C++ since it 

is designed to adapt to an evolving environment. Java programs can 
carry extensive amount of run-time information that can be used to 

verify and resolve accesses to objects on run-time. 

Object Oriented Programming System(OOPS) 

Object means a real word entity such as pen, chair, table etc. Object-Oriented 
Programming is a methodology or paradigm to design a program using classes 

and objects. It simplifies the software development and maintenance by 

providing some concepts: 

 Object 
 Class 

 Inheritance 

 Polymorphism 
 Abstraction 

 Encapsulation 

If any language fallows the OOPS concepts that language we call it as object 

oriented language  

Procedure to write simple java Program  

To write a  java program First we have install  the JDK. 

To create a simple java program, you need to create a class that contains main 

method. Let's understand the requirement first.  

 install the JDK  and install it.  

 set path of the jdk 

 create the java program 

 compile and run the java program 

Setting Up the Path for Windows 

Assuming you have installed Java in c:\Program Files\java\jdk directory − 

 Right-click on 'My Computer' and select 'Properties'. 

 Click the 'Environment variables' button under the 'Advanced' tab. 



 Now, alter the 'Path' variable so that it also contains the path to the Java 
executable. Example, if the path is currently set to 

'C:\WINDOWS\SYSTEM32', then change your path to read 

'C:\WINDOWS\SYSTEM32;c:\Program Files\java\jdk\bin'. 

Setting Up the Path for Linux, UNIX, Solaris, FreeBSD 

Environment variable PATH should be set to point to where the Java binaries 

have been installed. Refer to your shell documentation, if you have trouble 
doing this. For Example if you use bash as your shell, then you would add the 

following line to the end of your '.bashrc: export PATH = /path/to/java:$PATH' 

Popular Java Editors 

 Notepad − On Windows machine, you can use any simple text editor like 
Notepad (Recommended for this tutorial), TextPad. 

 Netbeans − A Java IDE that is open-source and free which can be 

downloaded from Eclipse − A Java IDE developed by the eclipse open-

source community and can be downloaded from 

JVM (Java Virtual Machine)  

JVM (Java Virtual Machine) is an abstract machine. It is a specification that 

provides runtime environment in which java bytecode can be executed. JVMs 
are available for many hardware and software platforms (i.e. JVM is platform 

dependent). 

What is JVM 

It is: 

1. A specification where working of Java Virtual Machine is specified. But 

implementation provider is independent to choose the algorithm. Its 

implementation has been provided by Sun and other companies. 
2. An implementation Its implementation is known as JRE (Java Runtime 

Environment). 

3. Runtime Instance Whenever you write java command on the command 

prompt to run the java class, an instance of JVM is created. 

What it does 

The JVM performs following operation: 

 Loads code 

 Verifies code 



 Executes code 

 Provides runtime environment 

JVM provides definitions for the: 

 Memory area 

 Class file format 

 Register set 

 Garbage-collected heap 

 Fatal error reporting etc. 

JAVA VIRTUAL MACHINE  

 

 

Java’s Magic: The Bytecode output of a Java compiler is not executable code. 
Rather, it is bytecode. Bytecode is a highly optimized set of instructions 

designed to be executed by the Java run-time system, which is called the Java 

Virtual Machine (JVM). 

Java complier translates the java source code into byte code or intermediate 

code ,not the executable file .JVM  take the byte code and convert into 

executable code corresponding to Operating system 



Because of the above feature java is portable  

II.CLASS, OBJECT AND METHODS 

Java program is a collection of objects that communicate via invoking each 
other's methods. We now briefly look into  class, object, methods, and instance 

variables. 

Class − A class can be defined as a template/blueprint that describes the 

behavior/state that the object of its type supports. 

A class is declared by use of the class keyword. A simplified general form of a 

class definition is shown here:  

class classname  

{ 

 type instance-variable1; type instance-variable2; 

 // ... type instance-variableN;  

type methodname1(parameter-list)  

{ // body of method }  

type methodname2(parameter-list) 

 { // body of method }  

// ... type methodnameN(parameter-list) 

        { // body of method } } 

The data, or variables, defined within a class are called instance variables. The 

code is contained within methods. Collectively, the methods and variables 
defined within a class are called members of the class. In most classes, the 

instance variables are acted upon and accessed by the methods defined for 

that class 

 

 

 

 



Simple Class 

Class Sample  

{ 

  int len,   float ht 

  void get()  

 {   // body  

  }    } 

Here a class  Sample contains two variable  len  and ht  

Object  in Java 

Object is the physical as well as logical entity whereas class is the logical entity 

only. 

An object has three characteristics: 

 state: represents data (value) of an object. 

 behavior: represents the behavior (functionality) of an object such as 
deposit, withdraw etc. 

 identity: Object identity is typically implemented via a unique ID. The 

value of the ID is not visible to the external user. But, it is used 

internally by the JVM to identify each object uniquely. 

Object is an instance of a class. Class is a template or blueprint from which 

objects are created. So object is the instance(result) of a class.  

Object Definitions: 

 Object is a real world entity.     Object is a run time entity. 

 Object is an entity which has state and behavior.  
 Object is an instance of a class. 

Sample s=new Sample()    here s  is an object for the class Sample   

new operator is used  to create an object  

 



Methods − A method is basically a behavior. A class can contain many 
methods. It is in methods where the logics are written, data is manipulated and 

all the actions are executed. 

Let's create the Simple java program: 

1. class Sample{   

2.     public static void main(String args[]){   

3.      System.out.println("How are you ");   
4.     }   

5. }   

save this file as Sample.java  

To compile: javac Sample.java     

To execute: java Sample 

Java Identifiers  

All Java components require names. Names used for classes, variables, and 

methods are called identifiers. 

In Java, there are several points to remember about identifiers. They are as 

follows − 

 All identifiers should begin with a letter (A to Z or a to z), currency 
character ($) or an underscore (_). 

 After the first character, identifiers can have any combination of 

characters. 
 A key word cannot be used as an identifier. 

 Most importantly, identifiers are case sensitive. 

 Examples of legal identifiers: age, $salary, _value, __1_value. 

 Examples of illegal identifiers: 123abc, -salary. 

Java Modifiers: There are two categories of modifiers − 

 Access Modifiers − default, public , protected, private 

 Non-access Modifiers − final, abstract, strictfp 

 

 

III DATA TYPES    



There are two data types available in Java − 

 Primitive Data Types 

 Non Primitive Types 

 

Primitive Data Types 

There are eight primitive data types supported by Java. Primitive data types are 

predefined by the language and named by a keyword. Let us now look into the 

eight primitive data types in detail. 

byte 

 Byte data type is an 8-bit signed two's complement integer 

 Minimum value is -128 (-2^7) 

 Maximum value is 127 (inclusive)(2^7 -1) 
 Default value is 0 

 Byte data type is used to save space in large arrays, mainly in place of 

integers, since a byte is four times smaller than an integer. 

 Example: byte a = 100, byte b = -50 

short 



 Short data type is a 16-bit signed two's complement integer 
 Minimum value is -32,768 (-2^15) 

 Maximum value is 32,767 (inclusive) (2^15 -1) 

 Short data type can also be used to save memory as byte data type. A 
short is 2 times smaller than an integer 

 Default value is 0. 

 Example: short s = 10000, short r = -20000 

int 

 Int data type is a 32-bit signed two's complement integer. 

 Minimum value is - 2,147,483,648 (-2^31) 
 Maximum value is 2,147,483,647(inclusive) (2^31 -1) 

 Integer is generally used as the default data type for integral values 

unless there is a concern about memory. 
 The default value is 0 

 Example: int a = 100000, int b = -200000 

long 

 Long data type is a 64-bit signed two's complement integer 

 Minimum value is -9,223,372,036,854,775,808(-2^63) 
 Maximum value is 9,223,372,036,854,775,807 (inclusive)(2^63 -1) 

 This type is used when a wider range than int is needed 

 Default value is 0L 

 Example: long a = 100000L, long b = -200000L 

float 

 Float data type is a single-precision 32-bit IEEE 754 floating point 
 Float is mainly used to save memory in large arrays of floating point 

numbers 

 Default value is 0.0f 
 Float data type is never used for precise values such as currency 

 Example: float f1 = 234.5f 

double 

 double data type is a double-precision 64-bit IEEE 754 floating point 

 This data type is generally used as the default data type for decimal 
values, generally the default choice 

 Double data type should never be used for precise values such as 

currency 

 Default value is 0.0d 

 Example: double d1 = 123.4 



boolean 

 boolean data type represents one bit of information 
 There are only two possible values: true and false 

 This data type is used for simple flags that track true/false conditions 

 Default value is false 

 Example: boolean one = true 

char 

 char data type is a single 16-bit Unicode character 
 Minimum value is '\u0000' (or 0) 

 Maximum value is '\uffff' (or 65,535 inclusive) 

 Char data type is used to store any character 

 Example: char letterA = 'A' 

Java Literals 

A literal is a source code representation of a fixed value. Literals can be 

assigned to any primitive type variable.  

byte a =68;        char a ='A' 

byte, int, long, and short can be expressed in decimal(base 10), 

hexadecimal(base 16) or octal(base 8) number systems as well. 

Prefix 0 is used to indicate octal, and prefix 0x indicates hexadecimal when 

using these number systems for literals. For example − 

intdecimal=100;   int octal =0144;     int hexa =0x64; 

String literals in Java are specified like they are in most other languages by 

enclosing a sequence of characters between a pair of double quotes. Examples 

of string literals are − 

Example 
"Hello World"        "two\nlines"        "\"This is in quotes\"" 

String and char types of literals can contain any Unicode characters. For 

example −     char a ='\u0001';              String a ="\u0001"; 

Java language supports few special escape sequences for String and char  

Notation Character represented 



\n Newline (0x0a) 

\r Carriage return (0x0d) 

\f Formfeed (0x0c) 

\b Backspace (0x08) 

\s Space (0x20) 

\t Tab 

\"  Double quote 

\' Single quote 

\\ Backslash 

\ddd Octal character (ddd) 

\uxxxx Hexadecimal UNICODE character (xxxx) 

Java Variable Example: Add Two Numbers 

1. class Sample{   

2. public static void main(String[] args){   
3. int i=50;   

4. int j=60;   

5. int k=a+b;   

6. System.out.println(k);   

7. }  }   

Java Variable Example: Widening 

1. class Sample{   

2. public static void main(String[] args){   

3. int j=10;   
4. float k=a;   

5. System.out.println(i);   

6. System.out.println(j);   

7. }}   



Unicode System 

Unicode is a universal international standard character encoding that is 

capable of representing most of the world's written languages. 

Before Unicode, there were many language standards: 

 ASCII (American Standard Code for Information Interchange) for the 

United States. 

 ISO 8859-1 for Western European Language. 
 KOI-8 for Russian. 

 GB18030 and BIG-5 for chinese, and so on. 

Java Tokens 

Java Tokens are the smallest individual building block or smallest unit of a 

Java program, it is used by the Java compiler for constructing expressions and 

statements. Java program is collection different types of tokens, comments, 

and white spaces. 

Java Supports Five Types of Tokens: 

 Reserved Keywords          Identifiers          Literals 

 Operators         Separators 

Java Keywords can not be used as a variable name.  

Abstract      Assert boolean break 

Byte Case catch char 

Class Const continue default 

Do Double else enum 

extends Final finally float 

For Goto if implements 

Import Instanceof int interface 

Long Native new package 

private Protected public return 

Short Static strictfp super 

Switch synchronized this throw 

throws Transient try void 

volatile While  true  false 

Null 
   

https://www.w3schools.in/java-tutorial/keywords/
https://www.w3schools.in/java-tutorial/operators/


Variable 

Variable is name of reserved area allocated in memory. In other words, it is a 

name of memory location. It is a combination of "vary + able" that means its 

value can be changed. 

There are three types of variables in java: 

 local variable 

 instance variable 

 static variable 

 
 

1) Local Variable 

A variable which is declared inside the method is called local variable. 

2) Instance Variable 

A variable which is declared inside the class but outside the method, is called 

instance variable . It is not declared as static. 

3) Static variable 

A variable that is declared as static is called static variable. It cannot be local. 

We will have detailed learning of these variables in next chapters. 



IV OPERATORS & IF, Switch, loop Statements  

Operators in java 

Operator in java is a symbol that is used to perform operations. For example: 

+, -, *, / etc. 

There are many types of operators in java which are given below: 

 Unary Operator,  
 Arithmetic Operator,  

 shift Operator,  

 Relational Operator,  

 Bitwise Operator,  
 Logical Operator,  

 Ternary Operator and  

 Assignment Operator. 

Java If-else Statement 

The Java if statement is used to test the condition. It checks boolean condition: 

true or false. There are various types of if statement in java. 

 if statement                 if-else statement 

 if-else-if ladder            nested if statement 

Java IF Statement 

The Java if statement tests the condition. It executes the if block if condition is 

true.  The following is the syntax  

1. if(condition){   

2. //code to be executed   

3. } 

1. public class Example {   
2. public static void main(String[] args) {   

3.     int  k=35;   

4.     if(k>18){       System.out.print("Hello");   

5.     }   }  }   

 IF-else Statement 



The if-else statement in java tests the condition. It executes the if block if 

condition is true otherwise else block is executed. 

Syntax: 

1. if(condition){   
2. //code if condition is true   

3. }else{   

4. //code if condition is false   

5. }  

  public class Sample {   

  public static void main(String[] args) {   

      int n=23;   
      if(number%2==0){   

          System.out.println("even ");   

      }else{   
          System.out.println("odd ");   

      }    }    

 }  

 

IF-else-if ladder Statement 

The if-else-if ladder statement executes one condition from multiple 

statements. 

Syntax: 

1. if(condition1){   
2. //code to be executed if condition1 is true   

3. }else if(condition2){   

4. //code to be executed if condition2 is true   
5. }   

6. else if(condition3){   

7. //code to be executed if condition3 is true   

8. }   
9. ...   

10. else{   

11. //code to be executed if all the conditions are false   

12. } 

  

1. public class Simple {   



2. public static void main(String[] args) {   
3.     int marks=70;   

4.        

5.     if(marks<40){   
6.         System.out.println("FAIL");   

7.     }   

8.     else if(marks>=40 && marks<50){   

9.         System.out.println("D grade");   
10.     }   

11.     else if(marks>=50 && marks<60){   

12.         System.out.println("C grade");   
13.     }   

14.     else if(marks>=60 && marks<70){   

15.         System.out.println("B grade");   
16.     }   

17.     else if(marks>=70 && marks<80){   

18.         System.out.println("A grade");   
19.     }else if(marks>=80 && marks<100){   

20.         System.out.println("A+ grade");   

21.     }else{   

22.         System.out.println("Invalid!");   
23.     }   

24. }   

25. }   

 Switch Statement 

The switch statement in java executes one statement from multiple conditions. 

It is like if-else-if ladder statement. 

Syntax: 

1. switch(expression){     

2. case value1:     
3.  //code to be executed;     

4.  break;  //optional   

5. case value2:     
6.  //code to be executed;     

7.  break;  //optional   

8. ......     
9.      

10. default:      

11.  code to be executed if all cases are not matched;     

12. }     



Example: 

1. public class Sample {   
2. public static void main(String[] args) {   

3.     int k=20;   

4.     switch(k){   
5.     case 10: System.out.println("10");break;   

6.     case 20: System.out.println("20");break;   

7.     case 30: System.out.println("30");break;   

8.     default:System.out.println("Not in 10, 20 or 30");   
9.     }   }   

10. }   

Java For Loop 

The Java for loop is used to iterate a part of the program several times. If the 

number of iteration is fixed, it is recommended to use for loop. 

There are three types of for loop in java. 

 Simple For Loop 

 For-each or Enhanced For Loop 

 Labeled For Loop 

Java Simple For Loop 

The simple for loop is same as C/C++. We can initialize variable, check 

condition and increment/decrement value. 

Syntax: 

1. for(initialization;condition;incr/decr){   

2. //code to be executed   

3. }   

Example: 

1. public class Sample {   
2. public static void main(String[] args) {   

3.     for(int i=1;i<=20;i++){   

4.         System.out.println(i);   
5.     }   

6. }   

7. } 



Java While Loop 

The Java while loop is used to iterate a part of the program several times. If the 

number of iteration is not fixed, it is recommended to use while loop. 

Syntax: 

1. while(condition){   

2. //code to be executed   

3. }  

1. public class Sample {   
2. public static void main(String[] args) {   

3.     int j=1;   

4.     while(j<=10){   
5.         System.out.println(j);   

6.     j++;   

7.     }   

8. }  }   

Java do-while Loop 

The Java do-while loop is used to iterate a part of the program several times. If 

the number of iteration is not fixed and you must have to execute the loop at 

least once, it is recommended to use do-while loop.The Java do-while loop is 

executed at least once because condition is checked after loop body. 

Syntax:  do{  /code to be executed  

                 }while(condition); 

 

public class Example {   

public static void main(String[] args) {   

    int j=1;  

    do{         System.out.println(j);   

            j++;   

         }while(j<=10);   

            }  }   



Java Break Statement 

The Java break is used to break loop or switch statement. It breaks the current 

flow of the program at specified condition. In case of inner loop, it breaks only 

inner loop. 

Example: 

1. public class Simple {   

2. public static void main(String[] args) {   
3.     for(int i=1;i<=10;i++){   

4.         if(i==5){   

5.             break;   
6.         }   

7.         System.out.println(i);   

8.     }   

9. }   

10. }   

Java Continue Statement 

The Java continue statement is used to continue loop. It continues the current 
flow of the program and skips the remaining code at specified condition. In 

case of inner loop, it continues only inner loop. 

Example: 

1. public class Sample {   

2. public static void main(String[] args) {   

3.     for(int k=1;k<=10;k++){   
4.         if(k==5){   

5.             continue;   

6.         }   
7.         System.out.println(k);   

8.     }   

9. }   

10. }   



 

V ARRAYS & COMMENTS in JAVA 

Array in java 

Array is group of elements of similar types occupying contiguous memory 

locations   

Advantage of Java Array 

 Code Optimization     Random access 

Disadvantage of Java Array is it has fixed size it cannot grow  

There are two types of array in java . 

 Single Dimensional Array 

 Multidimensional Array 

Single Dimensional Array in java 

Syntax to Declare an Array in java 

1. datatype[] arrayname (or)   
2. datatype []arrayname; (or)   

3. datatype arrayname[];   

 Array initialization in java 

1. arrayname=new datatype[size];   

Example  

Let's see the simple example of java array, where we are going to declare, 

instantiate, initialize and traverse an array. 

1. class Testarray{   

2. public static void main(String args[]){   
3. int a[]=new int[5];//declaration and instantiation   

4. a[0]=10;      a[1]=20;    a[2]=70;    a[3]=40;  a[4]=50;   

5.   for(int i=0;i<a.length;i++)//length is the property of array   
6. System.out.println(a[i]);   

7.   }}   



Declaration, Instantiation and Initialization of Java Array 

We can declare, instantiate and initialize the java array together by: 

1. int a[]={33,3,4,5};//declaration, instantiation and initialization   

Let's see the simple example to print this array. 

1. class Testarray1{   
2. public static void main(String args[]){   

3.    

4. int a[]={33,3,4,5};//declaration, instantiation and initialization   

5.    
6. //printing array   

7. for(int i=0;i<a.length;i++)//length is the property of array   

8. System.out.println(a[i]);   
9.    

10. }}   

Multidimensional array in java 

In such case, data is stored in row and column based index (also known as 

matrix form). 

Syntax to Declare Multidimensional Array in java 

1. dataType[][] arrayRefVar; (or)  dataType [][]arrayRefVar; (or)   

2. dataType arrayRefVar[][]; (or)   dataType []arrayRefVar[];    

Example to instantiate Multidimensional Array in java 

1. int[][] arr=new int[3][3];//3 row and 3 column   

Example to initialize Multidimensional Array in java 

1. arr[0][0]=1;   
2. arr[0][1]=2;   

3. arr[0][2]=3;   

4. arr[1][0]=4;   
5. arr[1][1]=5;   

6. arr[1][2]=6;   

7. arr[2][0]=7;   
8. arr[2][1]=8;   

9. arr[2][2]=9;   

Example of Multidimensional java array 



Let's see the simple example to declare, instantiate, initialize and print the 

2Dimensional array. 

1. class Ex{   

2. public static void main(String args[]){   

3.    
4. //declaring and initializing 2D array   

5. int arr[][]={{1,2,3},{2,4,5},{4,4,5}};   

6.    

7. //printing 2D array   
8. for(int i=0;i<3;i++){   

9.  for(int j=0;j<3;j++){   

10.    System.out.print(arr[i][j]+" ");   
11.  }   

12.  System.out.println();   

13. }   

14.   }   }   

Java Comments 

The java comments are statements that are not executed by the compiler and 

interpreter. The comments can be used to provide information or explanation 
about the variable, method, class or any statement. It can also be used to hide 

program code for specific time. 

Types of Java Comments 

There are 3 types of comments in java. 

1. Single Line Comment 

2. Multi Line Comment 

3. Documentation Comment 

1) Java Single Line Comment 

The single line comment is used to comment only one line. 

Syntax: 

1. //This is single line comment   

 

Example: 



1. public class Sample{   
2. public static void main(String[] args) {   

3.     int j=10;//Here, i is a variable   

4.     System.out.println(j);   
5. }   

6. }   

2) Java Multi Line Comment 

The multi line comment is used to comment multiple lines of code. 

Syntax: 

1. /*  

2. This   

3. is   
4. multi line   

5. comment  

6. */   

 

Example: 

1. public class CommentExample2 {   
2. public static void main(String[] args) {   

3. /* Let's declare and  

4.  print variable in java. */   

5.     int j=10;   
6.     System.out.println(j);   

7. }   

8. }   

3) Java Documentation Comment 

The documentation comment is used to create documentation API. To create 

documentation API, you need to use javadoc tool. 

Syntax: 

1. /**  

2. This   

3. is   
4. documentation   

5. comment  

6. */   



VI CONSTRUCTORS  

Constructor is special member function ,it has the same name as class name. 

It is called when an instance of object is created and memory is allocated for 

the object.  

It is a special type of method which is used to initialize the object 

Rules for creating java constructor 

There are basically two rules defined for the constructor. 

1. Constructor name must be same as its class name 

2. Constructor must have no explicit return type 

Types of java constructors 

There are two types of constructors in java: 

1. Default constructor (no-arg constructor) 

2. Parameterized constructor 

 

A constructor is called "Default Constructor" when it doesn't have any 

parameter. 

  class Sample{   
  Sample() 

   { 

     System.out.println("Sample is created"); 
     }   

   public static void main(String args[]) 

     {   
        Sample b=new Sample();   

      }    }  

A constructor which has a specific number of parameters is called 

parameterized constructor. 



1. class Student4{   
2.     int id;   

3.     String name;   

4.     Student4(int i,String n){   
5.     id = i;   

6.     name = n;   

7.     }   

8.     void display(){System.out.println(id+" "+name);}   
9.     

10.     public static void main(String args[]){   

11.     Student4 s1 = new Student4(111,"Karan");   
12.     Student4 s2 = new Student4(222,"Aryan");   

13.     s1.display();   

14.     s2.display();   
15.    }   

16. }   

 Difference between constructor and method in java 

There are many differences between constructors and methods. They are given 

below. 

Java Constructor Java Method 

Constructor is used to initialize the state of an  

object. 

  Method is used to expose    

  behaviour of an object. 

Constructor must not have return type.  Method must have return type. 

Constructor is invoked implicitly.  Method is invoked explicitly. 

The java compiler provides a default 
constructor if you don't have any constructor. 

 Method is not provided by    
  compiler in any case. 

Constructor name must be same as the class 
name. 

  Method name may or may not  
be same as class name. 

Java static keyword 

The static keyword in java is used for memory management mainly. We can 

apply java static keyword with variables, methods, blocks and nested class. 

The static keyword belongs to the class than instance of the class. 

 

The static can be: 

1. variable (also known as class variable) 



2. method (also known as class method) 
3. block 

4. nested class 

1) Java static variable 

If you declare any variable as static, it is known static variable. 

 The static variable can be used to refer the common property of all 

objects (that is not unique for each object) e.g. company name of 
employees,college name of students etc. 

 The static variable gets memory only once in class area at the time of 

class loading. 

Advantage of static variable: It makes your program memory 
efficient (i.e it saves memory). 

    class Stud{   

     int rollno;   

     String name;   
     static String college ="ITS";        

     Stud(int r,String n){   

     rollno = r;   
     name = n;   

     }   

   void display (){System.out.println(rollno+" "+name+" "+college);}   
     

   public static void main(String args[]){   

   Stud s1 = new Stud(11,"Krishna");   
   Stud s2 = new Stud(22,"Rama");   

    s1.display();   

   s2.display();   
   }     }   

 

 

2) Java static method 

If you apply static keyword with any method, it is known as static method. 

 A static method belongs to the class rather than object of a class. 

 A static method can be invoked without the need for creating an instance 
of a class. 

 static method can access static data member and can change the value 

of it. 



Example of static method 

1. //Program of changing the common property of all objects(static field).   
2.    

3. class Stud{   

4.      int rollno;   
5.      String name;   

6.      static String college = "BEC"; 

7.        

8.      static void change(){   
9.      college = "JBIEIT";   

10.      }     

11.      Stud(int r, String n){   
12.      rollno = r;   

13.      name = n;   

14.      }   
15.    

16.      void display (){System.out.println(rollno+" "+name+" "+college);}   

17.       public static void main(String args[]){   
18.     Stud.change();   

19.       Stud s1 = new Stud (11,"Kiran");   

20.     Stud s2 = new Stud (22,"Arjun");   

21.     Stud s3 = new Stud (33,"srinu");   
22.       s1.display();   

23.     s2.display();   

24.     s3.display();   
25.     }   

26. }   

this keyword in java 

There can be a lot of usage of java this keyword. In java, this is a reference 

variable that refers to the current object. 

Usage of java this keyword 

Here is given the 6 usage of java this keyword. 

1. this can be used to refer current class instance variable. 

2. this can be used to invoke current class method (implicitly) 
3. this() can be used to invoke current class constructor. 

4. this can be passed as an argument in the method call. 

5. this can be passed as argument in the constructor call. 

6. this can be used to return the current class instance from the method. 



 

1) this: to refer current class instance variable 

The this keyword can be used to refer current class instance variable. If there 
is ambiguity between the instance variables and parameters, this keyword 

resolves the problem of ambiguity.  

  class Student{   

  int rollno;   

  String name;   
  float fee;   

  Student(int rollno,String name,float fee){   

  this.rollno=rollno;   
  this.name=name;   

  this.fee=fee;   

  }   
  void display(){System.out.println(rollno+" "+name+" "+fee);}   

  }   

  class TestThis2{   
  public static void main(String args[]){   

  Student s1=new Student(111,"ankit",5000f);   

  Student s2=new Student(112,"sumit",6000f);   

  s1.display();   
  s2.display();   }}  

2) this: to invoke current class method 

You may invoke the method of the current class by using the this keyword. If 

you don't use the this keyword, compiler automatically adds this keyword while 

invoking the method 

1. class B{   

2. void m(){System.out.println("hello m");}   

3. void n(){   
4. System.out.println("hello n");   

5. //m();//same as this.m()   

6. this.m();   
7. }   

8. }   

9. class TestThis4{   

10. public static void main(String args[]){   
11. B b=new B();   

12. b.n();   

13. }}   

 



3) this() : to invoke current class constructor 

The this() constructor call can be used to invoke the current class constructor. 
It is used to reuse the constructor. In other words, it is used for constructor 

chaining. 

Calling default constructor from parameterized constructor: 

1. class B{   

2. B(){System.out.println("hello ");}   

3. B(int x){   
4. this();   

5. System.out.println(x);   

6. }   
7. }   

8. class Sample{   

9. public static void main(String args[]){   
10. B a=new B(10);   

11. }}   

1. class Student{   

2. int rollno;   
3. String name,course;   

4. float fee;   

5. Student(int rollno,String name,String course){   

6. this.rollno=rollno;   
7. this.name=name;   

8. this.course=course;   

9. }   
10. Student(int rollno,String name,String course,float fee){   

11. this(rollno,name,course);//reusing constructor   

12. this.fee=fee;   
13. }   

14. void display(){System.out.println(rollno+" "+name+" "+course+" "+fe

e);}   
15. }   

16. class SamplTest{   

17. public static void main(String args[]){   

18. Student s1=new Student(111,"ankit","java");   
19. Student s2=new Student(112,"sumit","java",6000f);   

20. s1.display();   

21. s2.display();   

22. }}   

4) this: to pass as an argument in the method 



The this keyword can also be passed as an argument in the method. It is 

mainly used in the event handling. Let's see the example: 

1. class S2{   

2.   void m(S2 obj){   

3.   System.out.println("method is invoked");   
4.   }   

5.   void p(){   

6.   m(this);   

7.   }   
8.   public static void main(String args[]){   

9.   S2 s1 = new S2();   

10.   s1.p();   
11.   }   

12. }   

5) this: to pass as argument in the constructor call 

We can pass the this keyword in the constructor also. It is useful if we have to 

use one object in multiple classes. Let's see the example: 

1. class B{   
2.   A4 obj;   

3.   B(A4 obj){   

4.     this.obj=obj;   

5.   }   
6.   void display(){   

7.     System.out.println(obj.data);//using data member of A4 class   

8.   }   
9. }   

10.    

11. class A4{   
12.   int data=10;   

13.   A4(){   

14.    B b=new B(this);   
15.    b.display();   

16.   }   

17.   public static void main(String args[]){   

18.    A4 a=new A4();   
19.   }   

20. }   

 

6) this keyword can be used to return current class instance 



We can return this keyword as an statement from the method. In such case, 
return type of the method must be the class type (non-primitive). Let's see the 

example: 

Syntax of this that can be returned as a statement 

1. return_type method_name(){   

2. return this;   

3. }   

 
 

 

 
 

 

 
 

 

 
Example of this keyword that you return as a statement from 

the method 

1. class A{   

2. A getA(){   

3. return this;   
4. }   

5. void msg(){System.out.println("Hello java");}   

6. }   
7. class Test1{   

8. public static void main(String args[]){   

9. new A().getA().msg();   
10. }   

11. }   

 

 

 

 

 

 



 

 

 

Moudle  -II 

VII. Inheritance 

Inheritance can be defined as the procedure or mechanism of acquiring all the 

properties and behavior of one class to another, i.e. acquiring the properties 
and behavior of child class from the parent class. This concept was built in 

order to achieve the advantage of creating a new class that gets built upon an 

already existing class(es). It is mainly used for code reusability within a Java 
program. The class that gets inherited taking the properties of another class is 

the subclass or derived class or child class. Again, the class whose properties 

get inherited is the superclass or base class or parent class. The keyword 
extends is used to inherit the properties of the base class to derived class. The 

structure of using this keyword looks something like this:  

classbase 

{ 

..... 

..... 

} 

class derive extendsbase 
{ 

..... 

..... 
} 



 

classPerson{ 

void teach(){ 

System.out.println("Teaching subjects"); 
}  } 

 

classPersonextendsTeacher{ 
void listen(){ 

System.out.println("Listening to teacher"); 

}  } 
 

classCheckForInheritance{ 

publicstaticvoid main(String args[]){ 

Person s1 =newStudents(); 
  s1.teach(); 

  s1.listen(); 

} 
} 

In this type of inheritance, a derived class gets created from another derived 

class and can have any number of levels.  

classTeacher{ 

void teach(){ 
System.out.println("Teaching subject"); 

} 



} 
classStudentextendsTeacher{ 

void listen(){ 

System.out.println("Listening"); 
} 

} 

class homeTution extendsStudent{ 

void explains(){ 
System.out.println("Does homework"); 

} 

} 
classCheckForInheritance{ 

publicstaticvoid main(String argu[]){ 

  homeTution h =new himeTution(); 
  h.explains(); 

  d.teach(); 

  d.listen(); 
} 

} 

In this type of inheritance, there are more than 1 derived classes which get 

created from one single base class.  

classTeacher{ 

void teach(){ 
System.out.println("Teaching subject"); 

} 

} 
classStudentextendsTeacher{ 

void listen(){ 

System.out.println("Listening"); 
} 

} 

classPrincipalextendsTeacher{ 
void evaluate(){ 

System.out.println("Evaluating"); 

} 

} 
classCheckForInheritance{ 

publicstaticvoid main(String argu[]){ 

Principal p =newPrincipal(); 
  p.evaluate(); 

  p.teach(); 

// p.listen(); will produce an error 
} 

} 



Let us imagine a situation where there are three classes: A, B and C. The C 
class inherits A and B classes. In case, class A and class B have a method with 

same name and type and as a programmer, you have to call that method from 

child class's (C) object, there-there will be ambiguity as which method will be 

called either of A or of B class.  

So Java reduces this hectic situation by the use of interfaces which implements 

this concept and reduce this problem; as compile-time errors are tolerable than 

runtime faults in the program.  

VIII Polymorphism 

The word polymorphism means having multiple forms. The term Polymorphism 

gets derived from the Greek word where poly + morphos where poly means 

many and morphos means forms. 

Polymorphism is another special feature of object-oriented programming 

(OOPs). The approach which lies beneath this concept is "single interface with 

multiple implementations." This offers a single interface for controlling access 

to a general class of actions.  

Polymorphism can be achieved in two of the following ways: 

 Method Overloading(Compile time Polymorphism) 

 Method Overriding(Run time Polymorphism) 

 Static Polymorphism is in other words termed as compile-time binding or 

early binding. 

 Static binding occurs at compile time. Method overloading is a case of 
static binding and in this case binding of method call to its definition 

happens at the time of compilation. 

 To call an overloaded method in Java, it is must use the type and/or the 

number of arguments to determine which version of the overloaded 
method to actually call. 

 The overloaded methods may have varied return types and the return 

type single-handedly is insufficient to make out two versions of a 

method. 
 As and when Java compiler encounters a call to an overloaded method, it 

simply executes the version of the method whose parameters match the 

arguments used in the call. 
 It permits the user to obtain compile time polymorphism with name 

method name. 

 An overloaded method is able to throw different kinds of exceptions. 

 A method which is overloaded can contain different access modifiers. 

http://www.w3schools.in/java-tutorial/object-oriented-programming-oops/
http://www.w3schools.in/java-tutorial/object-oriented-programming-oops/


Overloading method's argument lists might differ in: 

 Number of parameters passed 
 Data type of actual parameters 

 Sequence of data type of actual parameters 

 

 

classMltply{ 
void mul(int a,int b){ 

System.out.println("Sum of two="+(a * b)); 

} 
 

void mul(int a,int b,int c){ 

System.out.println("Sum of three="+(a * b * c)); 
} 

} 

classPolymorphism{ 
publicstaticvoid main(String args[]){ 

Mltply m =newMltply(); 

  m.mul(6,10); 
  m.mul(10,6,5); 

}  } 

 

Rules to method overriding 

 Argument list: The argument list at the time of overriding method need 
to be same as that of the method of the parent class. The data types of 

the arguments along with their sequence must have to be preserved as it 

is in the overriding method. 
 Access Modifier: The Access Modifier present in the overriding method 

(method of subclass) cannot be more restrictive than that of an 

overridden method of the parent class. 
 The private, static and final methods can't be overridden as they are local 

to the class. 

 Any method which is overriding is able to throw any unchecked 

exceptions, in spite of whether the overridden method usually method of 

parent class might throw an exception or not. 

//method overriding 

class parent { 

publicvoid work(){ 
System.out.println("Parent is under retirement from work."); 

} 

} 
class child extends parent { 



publicvoid work(){ 
System.out.println("Child has a job"); 

System.out.println(" He is doing it well"); 

} 
publicstaticvoid main(String argu[]){ 

  child c1 =new child(); 

  c1.work(); 

}  } 

Advantage of method overriding 

One major advantage of method overriding is that a class can give its own 
specific execution to an inherited method without having the modification in 

the parent class (base class). 

super keyword in java 

The super keyword in java is a reference variable which is used to refer 

immediate parent class object. 

Whenever you create the instance of subclass, an instance of parent class is 

created implicitly which is referred by super reference variable. 

Usage of java super Keyword 

1. super can be used to refer immediate parent class instance variable. 
2. super can be used to invoke immediate parent class method. 

3. super() can be used to invoke immediate parent class constructor. 

1) super is used to refer immediate parent class instance variable. 

We can use super keyword to access the data member or field of parent class. 

It is used if parent class and child class have same fields. 

1. class Animal{   

2. String color="white";   
3. }   

4. class Dog extends Animal{   

5. String color="black";   
6. void printColor(){   

7. System.out.println(color);//prints color of Dog class   

8. System.out.println(super.color);//prints color of Animal class   
9. }   

10. }   

11. class TestSuper1{   



12. public static void main(String args[]){   
13. Dog d=new Dog();   

14. d.printColor();   

15. }}   

 

 

2) super can be used to invoke parent class method 

The super keyword can also be used to invoke parent class method. It should 

be used if subclass contains the same method as parent class. In other words, 

it is used if method is overridden. 

1. class Animal{   

2. void eat(){System.out.println("eating...");}   

3. }   
4. class Dog extends Animal{   

5. void eat(){System.out.println("eating bread...");}   

6. void bark(){System.out.println("barking...");}   
7. void work(){   

8. super.eat();   

9. bark();   
10. }   

11. }   

12. class TestSuper2{   

13. public static void main(String args[]){   
14. Dog d=new Dog();   

15. d.work();   

16. }} 

 

3) super is used to invoke parent class constructor. 

The super keyword can also be used to invoke the parent class constructor. 

Let's see a simple example: 

1. class Animal{   

2. Animal(){System.out.println("animal is created");}   

3. }   

4. class Dog extends Animal{   
5. Dog(){   

6. super();   

7. System.out.println("dog is created");   



8. }   
9. }   

10. class TestSuper3{   

11. public static void main(String args[]){   
12. Dog d=new Dog();   

13. }}   

 

1. class Person{   

2. int id;   

3. String name;   
4. Person(int id,String name){   

5. this.id=id;   

6. this.name=name;   
7. }   

8. }   

9. class Emp extends Person{   
10. float salary;   

11. Emp(int id,String name,float salary){   

12. super(id,name);//reusing parent constructor   
13. this.salary=salary;   

14. }   

15. void display(){System.out.println(id+" "+name+" "+salary);}   

16. }   
17. class TestSuper5{   

18. public static void main(String[] args){   

19. Emp e1=new Emp(1,"ankit",45000f);   
20. e1.display();   

21. }}   

Method Overloading in Java 

If a class has multiple methods having same name but different in parameters, 

it is known as Method Overloading.  

Advantage of method overloading 

Method overloading increases the readability of the program. 

Different ways to overload the method 

There are two ways to overload the method in java 

1. By changing number of arguments 



2. By changing the data type 

 

1) Method Overloading: changing no. of arguments 

In this example, we have created two methods, first add() method performs 
addition of two numbers and second add method performs addition of three 

numbers. 

In this example, we are creating static methods so that we don't need to create 

instance for calling methods. 

1. class Adder{   

2. static int add(int a,int b){return a+b;}   
3. static int add(int a,int b,int c){return a+b+c;}   

4. }   

5. class TestOverloading1{   
6. public static void main(String[] args){   

7. System.out.println(Adder.add(11,11));   

8. System.out.println(Adder.add(11,11,11));   

9. }}  

 

2) Method Overloading: changing data type of arguments 

In this example, we have created two methods that differs in data type. The 

first add method receives two integer arguments and second add method 

receives two double arguments. 

1. class Adder{   

2. static int add(int a, int b){return a+b;}   
3. static double add(double a, double b){return a+b;}   

4. }   

5. class TestOverloading2{   
6. public static void main(String[] args){   

7. System.out.println(Adder.add(11,11));   

8. System.out.println(Adder.add(12.3,12.6));   

9. }}   

 

 



Method Overriding in Java 

If subclass (child class) has the same method as declared in the parent class, it 

is known as method overriding in java.  

In other words, If subclass provides the specific implementation of the method 

that has been provided by one of its parent class, it is known as method 

overriding. 

Usage of Java Method Overriding 

 Method overriding is used to provide specific implementation of a method 
that is already provided by its super class. 

 Method overriding is used for runtime polymorphism 

Rules for Java Method Overriding 

1. method must have same name as in the parent class 

2. method must have same parameter as in the parent class. 

3. must be IS-A relationship (inheritance). 

 

1. class Vehicle{   

2. void run(){System.out.println("Vehicle is running");}   

3. }   
4. class Bike2 extends Vehicle{   

5. void run(){System.out.println("Bike is running safely");}   

6.    
7. public static void main(String args[]){   

8. Bike2 obj = new Bike2();   

9. obj.run();   

10. }   

IX  ABSTRACTION 
 

 

 
Abstraction in Java 

Abstraction is a process of hiding the implementation details and showing only 

functionality to the user. 



Another way, it shows only important things to the user and hides the internal 
details for example sending sms, you just type the text and send the message. 

You don't know the internal processing about the message delivery. 

Abstraction lets you focus on what the object does instead of how it does it.  

Ways to achieve Abstraction 

There are two ways to achieve abstraction in java 

1. Abstract class (0 to 100%) 

2. Interface (100%) 

Abstract class in Java 

A class that is declared as abstract is known as abstract class. It needs to be 

extended and its method implemented. It cannot be instantiated.  

Example abstract class 

1. abstract class A{ }   

 

abstract method 

A method that is declared as abstract and does not have implementation is 

known as abstract method.  

Example abstract method 

1. abstract void printStatus();//no body and abstract   

Example of abstract class that has abstract method 

In this example, Bike the abstract class that contains only one abstract method 

run. It implementation is provided by the Honda class. 

1. abstract class Bike{   

2.   abstract void run();   
3. }   

4. class Honda4 extends Bike{   

5. void run(){System.out.println("running safely..");}   

6. public static void main(String args[]){   
7.  Bike obj = new Honda4();   

8.  obj.run();   

9. }   



10. }   

 

1. abstract class Shape{   
2. abstract void draw();   

3. }   

4. //In real scenario, implementation is provided by others i.e. unknown by

 end user   
5. class Rectangle extends Shape{   

6. void draw(){System.out.println("drawing rectangle");}   

7. }   
8. class Circle1 extends Shape{   

9. void draw(){System.out.println("drawing circle");}   

10. }   
11. //In real scenario, method is called by programmer or user   

12. class TestAbstraction1{   

13. public static void main(String args[]){   
14. Shape s=new Circle1();//In real scenario, object is provided throug

h method e.g. getShape() method   

15. s.draw();   
16. }   

17. }   

 

Interface in Java 

An interface in java is a blueprint of a class. It has static constants and 

abstract methods. 

The interface in java is a mechanism to achieve abstraction. There can be 

only abstract methods in the java interface not method body. It is used to 

achieve abstraction and multiple inheritance in Java.  

Java Interface also represents IS-A relationship. 

It cannot be instantiated just like abstract class. 

Why use Java interface? 

There are mainly three reasons to use interface. They are given below. 

 It is used to achieve abstraction. 
 By interface, we can support the functionality of multiple inheritance. 



 It can be used to achieve loose coupling 

Java Interface Example 

In this example, Printable interface has only one method, its implementation is 

provided in the A class. 

1. interface printable{   

2. void print();   

3. }   

4. class A6 implements printable{   
5. public void print(){System.out.println("Hello");}   

6.    

7. public static void main(String args[]){   
8. A6 obj = new A6();   

9. obj.print();   

10.  }   

11. }   

Differences between abstract class and interface that are given below. 

Abstract class Interface 

1) Abstract class can have abstract 

and non-abstract methods. 

Interface can have only abstract methods. 

Since Java 8, it can have default and static 
methods also. 

2) Abstract class doesn't support 
multiple inheritance. 

Interface supports multiple inheritance. 

3) Abstract class can have final, 

non-final, static and non-static 

variables. 

Interface has only static and final variables. 

4) Abstract class can provide the 

implementation of interface. 

Interface can't provide the implementation 

of abstract class. 

5) The abstract keyword is used to 

declare abstract class. 

The interface keyword is used to declare 

interface. 

6)Example: 
public abstract class Shape{ 

public abstract void draw(); 

} 

Example: 
public interface Drawable{ 

void draw(); 

} 

1. interface A{   

2. void a();void b();   

3. void c();  void d();   
4. }   

5.  abstract class B implements A{   



6. public void c(){System.out.println("I am c");}   
7. }   

8. class M extends B{   

9. public void a(){System.out.println("I am a");}   
10. public void b(){System.out.println("I am b");}   

11. public void d(){System.out.println("I am d");}   

12. }   

13. class Test5{   
14. public static void main(String args[]){   

15. A a=new M();   

16. a.a();   
17. a.b();   

18. a.c();   

19. a.d();   

20. }}   

X PACKAGE 

A java package is a group of similar types of classes, interfaces and sub-

packages.  

Package in java can be categorized in two form, built-in package and user-

defined package.  

There are many built-in packages such as java, lang, awt, javax, swing, net, io, 

util, sql etc. 

Here, we will have the detailed learning of creating and using user-defined 

packages.  

Advantage of Java Package 

1) Java package is used to categorize the classes and interfaces so that they 

can be easily maintained. 

2) Java package provides access protection. 

3) Java package removes naming collision. 

Simple example of java package 

The package keyword is used to create a package in java. 

1. //save as Simple.java   

2. package mypack;   



3. public class Simple{   
4.  public static void main(String args[]){   

5.     System.out.println("Welcome to package");   

6.    }   

7. }   

How to compile java package 

If you are not using any IDE, you need to follow the syntax given below: 

1. javac -d directory javafilename   

For example 

1. javac -d . Simple.java   

The -d switch specifies the destination where to put the generated class file. 
You can use any directory name like /home (in case of Linux), d:/abc (in case 

of windows) etc. If you want to keep the package within the same directory, you 

can use . (dot).  

How to access package from another package? 

There are three ways to access the package from outside the package. 

1. import package.*; 
2. import package.classname; 

3. fully qualified name. 

1) Using packagename.* 

If you use package.* then all the classes and interfaces of this package will be 

accessible but not subpackages.  

The import keyword is used to make the classes and interface of another 

package accessible to the current package. 

Example of package that import the packagename.* 

1. //save by A.java   

2. package pack;   
3. public class A{   

4.   public void msg(){System.out.println("Hello");}   

5. }   



1. //save by B.java   
2. package mypack;   

3. import pack.*;   

4.    
5. class B{   

6.   public static void main(String args[]){   

7.    A obj = new A();   

8.    obj.msg();   
9.   }   

10. }   

 

2) Using packagename.classname 

If you import package.classname then only declared class of this package will 

be accessible. 

Example of package by import package.classname 

1. //save by A.java   

2.    

3. package pack;   

4. public class A{   
5.   public void msg(){System.out.println("Hello");}   

6. }   

1. //save by B.java   

2. package mypack;   
3. import pack.A;   

4.    

5. class B{   
6.   public static void main(String args[]){   

7.    A obj = new A();   

8.    obj.msg();   
9.   }   

10. }   

3) Using fully qualified name 

If you use fully qualified name then only declared class of this package will be 

accessible. Now there is no need to import. But you need to use fully qualified 

name every time when you are accessing the class or interface. 



It is generally used when two packages have same class name e.g. java.util and 

java.sql packages contain Date class. 

Example of package by import fully qualified name 

1. //save by A.java   

2. package pack;   

3. public class A{   
4.   public void msg(){System.out.println("Hello");}   

5. } 

6.    

1. //save by B.java   
2. package mypack;   

3. class B{   

4.   public static void main(String args[]){   
5.    pack.A obj = new pack.A();//using fully qualified name   

6.    obj.msg();   

7.   }   

8. }   

Access Modifiers in java 

There are two types of modifiers in java: access modifiers and non-access 

modifiers.  

The access modifiers in java specifies accessibility (scope) of a data member, 

method, constructor or class.  

There are 4 types of java access modifiers: 

1. private 
2. default 

3. protected 

4. public 

 

 

 

 

Understanding all java access modifiers 



 

Access 

Modifier 

within 

class 

within 

package 

outside package by 

subclass only 

outside 

package 

Private Y N N N 

Default Y Y N N 

Protected Y Y Y N 

Public Y Y Y Y 

XI. STRING HANDLING in JAVA 

A string is a sequence of character in Java, widely used as an object. 

In java, string is basically an object that represents sequence of char values. 

An array of characters works same as java string. For example: 

1. char[] ch={'j','a','v','a','t','p','o','i','n','t'};   

2. String s=new String(ch);   

is same as: 

1. String s="javatpoint";   

Java String class provides a lot of methods to perform operations on string 

such as compare(), concat(), equals(), split(), length(), replace(), compareTo(), 

intern(), substring() etc. 

What is String in java 

Generally, string is a sequence of characters. But in java, string is an object 
that represents a sequence of characters. The java.lang.String class is used to 

create string object. 

How to create String object? 

There are two ways to create String object:  

1. By string literal 

2. By new keyword 



1) String Literal 

Java String literal is created by using double quotes. For Example: 

1. String s="welcome";   

Each time you create a string literal, the JVM checks the string constant pool 
first. If the string already exists in the pool, a reference to the pooled instance 

is returned. If string doesn't exist in the pool, a new string instance is created 

and placed in the pool. For example:  

1. String s1="Welcome";   

2. String s2="Welcome";//will not create new instance  

2) By new keyword 

1. String s=new String("Welcome");//creates two objects and one reference v

ariable   

1. public class StringExample{   

2. public static void main(String args[]){   

3. String s1="java";//creating string by java string literal   
4. char ch[]={'s','t','r','i','n','g','s'};   

5. String s2=new String(ch);//converting char array to string   

6. String s3=new String("example");//creating java string by new keyword   
7. System.out.println(s1);   

8. System.out.println(s2);   

9. System.out.println(s3);   

10. }}   

 

Java String class methods 

The java.lang.String class provides many useful methods to perform operations 

on sequence of char values. 

No. Method Description 

1 char charAt(int index) 

returns char value for the 

particular index 

2 int length() returns string length 

https://www.javatpoint.com/java-string-charat
https://www.javatpoint.com/java-string-length


3 
static String format(String format, Object... 

args) 

returns formatted string 

4 
static String format(Locale l, String format, 

Object... args) 

returns formatted string with 

given locale 

5 String substring(int beginIndex)  

returns substring for given 

begin index 

6 
String substring(int beginIndex, int 

endIndex)  

returns substring for given 

begin index and end index 

7 boolean contains(CharSequence s)  

returns true or false after 

matching the sequence of 

char value 

8 
static String join(CharSequence delimiter, 

CharSequence... elements)  

returns a joined string 

9 
static String join(CharSequence delimiter, 

Iterable<? extends CharSequence> elements)  

returns a joined string 

10 boolean equals(Object another)  

checks the equality of string 

with object 

11 boolean isEmpty()  checks if string is empty 

12 String concat(String str)  concatinates specified string 

13 String replace(char old, char new)  

replaces all occurrences of 

specified char value 

14 
String replace(CharSequence old, 

CharSequence new) 

replaces all occurrences of 

specified CharSequence 

15 
static String equalsIgnoreCase(String 

another) 

compares another string. It 

doesn't check case. 

16 String[] split(String regex)  

returns splitted string 

matching regex 

https://www.javatpoint.com/java-string-format
https://www.javatpoint.com/java-string-format
https://www.javatpoint.com/java-string-format
https://www.javatpoint.com/java-string-format
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-contains
https://www.javatpoint.com/java-string-join
https://www.javatpoint.com/java-string-join
https://www.javatpoint.com/java-string-join
https://www.javatpoint.com/java-string-join
https://www.javatpoint.com/java-string-equals
https://www.javatpoint.com/java-string-isempty
https://www.javatpoint.com/java-string-concat
https://www.javatpoint.com/java-string-replace
https://www.javatpoint.com/java-string-replace
https://www.javatpoint.com/java-string-replace
https://www.javatpoint.com/java-string-equalsignorecase
https://www.javatpoint.com/java-string-equalsignorecase
https://www.javatpoint.com/java-string-split


17 String[] split(String regex, int limit)  

returns splitted string 

matching regex and limit 

18 String intern() returns interned string 

19 int indexOf(int ch) 

returns specified char value 

index 

20 int indexOf(int ch, int fromIndex)  

returns specified char value 

index starting with given 

index 

21 int indexOf(String substring)  

returns specified substring 

index 

22 int indexOf(String substring, int fromIndex) 

returns specified substring 

index starting with given 

index 

23 String toLowerCase() returns string in lowercase. 

24 String toLowerCase(Locale l)  

returns string in lowercase 

using specified locale. 

25 String toUpperCase() returns string in uppercase. 

26 String toUpperCase(Locale l)  

returns string in uppercase 

using specified locale. 

27 String trim() 

removes beginning and 

ending spaces of this string. 

28 static String valueOf(int value)  

converts given type into 

string. It is overloaded. 

publicclassSample{ 

 

publicstaticvoid main(String args[]){ 
char[] nameArray ={'A','l','e','x'}; 

String name =newString(nameArray); 

System.out.println(name); 
}  } 

https://www.javatpoint.com/java-string-split
https://www.javatpoint.com/java-string-intern
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-tolowercase
https://www.javatpoint.com/java-string-tolowercase
https://www.javatpoint.com/java-string-touppercase
https://www.javatpoint.com/java-string-touppercase
https://www.javatpoint.com/java-string-trim
https://www.javatpoint.com/java-string-valueof


concat() method can be used to attach strings.  

publicclassSample{ 
 

publicstaticvoid main(String args[]){ 

String str1 ="Hello ", str2 ="World!"; 
System.out.println(str1.concat(str2)); 

} 

} 

+ operator is more commonly used to attach strings.  

"Hello,"+" world"+"!" 

Java toUpperCase()andtoLowerCase() method is used to change string case.  

publicclassSample{ 

 
publicstaticvoid main(String args[]){ 

String str1 ="Hello"; 

System.out.println(str1.toUpperCase()); 
System.out.println(str1.toLowerCase()); 

} 

} 

Java trim() method is used to eliminates white spaces before and after a string.  

publicclassSample{ 

 
publicstaticvoid main(String args[]){ 

String str =" Hello "; 

System.out.println(str.trim()); 
} 

} 

Java length() method is used to get the length of the string.  

publicclassSample{ 

 
publicstaticvoid main(String args[]){ 

String str ="Cloud"; 

System.out.println(str.length()); 

} 
} 



Java String compare 

We can compare string in java on the basis of content and reference. 

It is used in authentication (by equals() method), sorting (by compareTo() 

method), reference matching (by == operator) etc. 

There are three ways to compare string in java: 

1. By equals() method 

2. By = = operator 

3. By compareTo() method 

 

1) String compare by equals() method 

The String equals() method compares the original content of the string. It 

compares values of string for equality. String class provides two methods:  

 public boolean equals(Object another) compares this string to the 

specified object. 

 public boolean equalsIgnoreCase(String another) compares this String 

to another string, ignoring case. 

1. class Teststringcomparison1{   
2.  public static void main(String args[]){   

3.    String s1="Sachin";   

4.    String s2="Sachin";   
5.    String s3=new String("Sachin");   

6.    String s4="Saurav";   

7.    System.out.println(s1.equals(s2));//true   
8.    System.out.println(s1.equals(s3));//true   

9.    System.out.println(s1.equals(s4));//false   

10.  }   

11. }  

 

 

  

2) String compare by == operator 



The = = operator compares references not values. 

1. class Teststringcomparison3{   
2.  public static void main(String args[]){   

3.    String s1="Sachin";   

4.    String s2="Sachin";   
5.    String s3=new String("Sachin");   

6.    System.out.println(s1==s2);//true (because both refer to same instanc

e)   

7.    System.out.println(s1==s3);//false(because s3 refers to instance create
d in nonpool)   

8.  }   

9. }   

 

3) String compare by compareTo() method 

The String compareTo() method compares values lexicographically and returns 
an integer value that describes if first string is less than, equal to or greater 

than second string. 

Suppose s1 and s2 are two string variables. If: 

 s1 == s2 :0 

 s1 > s2   :positive value 

 s1 < s2   :negative value 

1. class Teststringcomparison4{   
2.  public static void main(String args[]){   

3.    String s1="Sachin";   

4.    String s2="Sachin";   
5.    String s3="Ratan";   

6.    System.out.println(s1.compareTo(s2));//0   

7.    System.out.println(s1.compareTo(s3));//1(because s1>s3)   
8.    System.out.println(s3.compareTo(s1));//-1(because s3 < s1 )   

9.  }   

10. }   

String Concatenation in Java 

In java, string concatenation forms a new string that is the combination of 

multiple strings. There are two ways to concat string in java: 

1. By + (string concatenation) operator 



2. By concat() method 

1) String Concatenation by + (string concatenation) operator 

Java string concatenation operator (+) is used to add strings. For Example: 

1. class TestStringConcatenation1{   
2.  public static void main(String args[]){   

3.    String s="Sachin"+" Tendulkar";   

4.    System.out.println(s);//Sachin Tendulkar   
5.  }   

6. }   

2) String Concatenation by concat() method 

The String concat() method concatenates the specified string to the end of 

current string. Syntax:  

1. public String concat(String another)   

Let's see the example of String concat() method. 

1. class TestStringConcatenation3{   

2.  public static void main(String args[]){   
3.    String s1="Sachin ";   

4.    String s2="Tendulkar";   

5.    String s3=s1.concat(s2);   
6.    System.out.println(s3);//Sachin Tendulkar   

7.   }  }   

Substring in Java 

A part of string is called substring. In other words, substring is a subset of 

another string. In case of substring startIndex is inclusive and endIndex is 

exclusive.    Note: Index starts from 0. 

You can get substring from the given string object by one of the two methods: 

1. public String substring(int startIndex): This method returns new 

String object containing the substring of the given string from specified 
startIndex (inclusive). 

2. public String substring(int startIndex, int endIndex): This method 

returns new String object containing the substring of the given string 

from specified startIndex to endIndex. 



In case of string: 

 startIndex: inclusive      endIndex: exclusive  

Let's understand the startIndex and endIndex by the code given below. 

1. String s="hello";   

2. System.out.println(s.substring(0,2));//he   

In the above substring, 0 points to h but 2 points to e (because end index is 

exclusive).  

 

 

Example of java substring 

1. public class TestSubstring{   

2.  public static void main(String args[]){   

3.    String s="SachinTendulkar";   
4.    System.out.println(s.substring(6));//Tendulkar   

5.    System.out.println(s.substring(0,6));//Sachin   

6.  }   

7. }  

StringTokenizer in Java 

The java.util.StringTokenizer class allows you to break a string into tokens. It 

is simple way to break string. 

It doesn't provide the facility to differentiate numbers, quoted strings, 
identifiers etc. like StreamTokenizer class. We will discuss about the 

StreamTokenizer class in I/O chapter. 

Constructors of StringTokenizer class 

There are 3 constructors defined in the StringTokenizer class 

There are 3 constructors defined in the StringTokenizer class. 

Constructor Description 



StringTokenizer(String str) creates StringTokenizer with specified string. 

StringTokenizer(String str, 

String delim) 

creates StringTokenizer with specified string and 

delimeter. 

StringTokenizer(String str, 

String delim, boolean 

returnValue) 

creates StringTokenizer with specified string, 

delimeter and returnValue. If return value is 

true, delimiter characters are considered to be 

tokens. If it is false, delimiter characters serve to 

separate tokens. 

 

 

Methods of StringTokenizer class 

The 6 useful methods of StringTokenizer class are as follows: 

Public method Description 

boolean hasMoreTokens() checks if there is more tokens available. 

String nextToken() 
returns the next token from the StringTokenizer 

object. 

String nextToken(String 

delim) 
returns the next token based on the delimeter. 

boolean hasMoreElements() same as hasMoreTokens() method. 

Object nextElement() same as nextToken() but its return type is Object. 

int countTokens() returns the total number of tokens. 

1. import java.util.StringTokenizer;   
2. public class Simple{   

3.  public static void main(String args[]){   

4.    StringTokenizer st = new StringTokenizer("my name is khan"," ");   
5.      while (st.hasMoreTokens()) {   

6.          System.out.println(st.nextToken());   

7.      }   
8.    }   



9. }   

Example of nextToken(String delim) method of 
StringTokenizer class 

1. import java.util.*;   

2.    

3. public class Test {   

4.    public static void main(String[] args) {   
5.        StringTokenizer st = new StringTokenizer("my,name,is,khan");   

6.          

7.       // printing next token   
8.       System.out.println("Next token is : " + st.nextToken(","));   

9.    }       

10. }   

 XII JAVA I/O TUTORIAL  

Java I/O (Input and Output) is used to process the input and produce the 
output. 

Java uses the concept of stream to make I/O operation fast. The java.io 

package contains all the classes required for input and output operations. 

We can perform file handling in java by Java I/O API. 

Stream 

A stream is a sequence of data.In Java a stream is composed of bytes. It's 

called a stream because it is like a stream of water that continues to flow. 

In java, 3 streams are created for us automatically. All these streams are 

attached with console. 

1) System.out: standard output stream 

2) System.in: standard input stream 

3) System.err: standard error stream 

  Byte Based Character Based 

  Input Output Input Output 

Basic InputStream OutputStream 

Reader Writer 

InputStreamReader OutputStreamWriter 



Arrays ByteArrayInputStream ByteArrayOutputStream CharArrayReader CharArrayWriter 

Files 

FileInputStream FileOutputStream 

FileReader FileWriter RandomAccessFile RandomAccessFile 

Pipes PipedInputStream PipedOutputStream PipedReader PipedWriter 

Buffering BufferedInputStream BufferedOutputStream BufferedReader BufferedWriter 

Filtering FilterInputStream FilterOutputStream FilterReader FilterWriter 

Parsing 

PushbackInputStream 

  

PushbackReader 

  StreamTokenizer LineNumberReader 

Strings     StringReader StringWriter 

Data DataInputStream DataOutputStream     

Data – 
Formatted   PrintStream   PrintWriter 

Objects ObjectInputStream ObjectOutputStream     

Utilities SequenceInputStream       

Byte Streams Java byte streams are used to perform input and output of 8-bit 
bytes. Though there are many classes related to byte streams but the most 

frequently used classes are, FileInputStream and FileOutputStream. Following 

is an example which makes use of these two classes to copy an input file into 

an output file:  

import java.io.*;   

public class CopyFile {  

   public static void main(String args[]) throws IOException  

   {  

      FileInputStream in = null;  

      FileOutputStream out = null;   

      try {  

         in = new FileInputStream("input.txt"); 

 out = new FileOutputStream("output.txt");  

        int c;  

         while ((c = in.read()) != -1) {  

            out.write(c);  



         }  

      }finally {  

         if (in != null) {  

            in.close();  

         }  

         if (out != null) {  

            out.close();  

         }  

      }     }  

} 

Character Streams Java Byte streams are used to perform input and output of 

8-bit bytes, whereas Java Character streams are used to perform input and 
output for 16-bit unicode. Though there are many classes related to character 

streams but the most frequently used classes are, FileReader and FileWriter. 

Though internally FileReader uses FileInputStream and FileWriter uses 
FileOutputStream but here the major difference is that FileReader reads two 

bytes at a time and FileWriter writes two bytes at a time. 

import java.io.*;   

public class CopyFile {  

   public static void main(String args[]) throws IOException  

   {  

      FileReader in = null;  

      FileWriter out = null;   

      try {  

         in = new FileReader("input.txt");  

         out = new FileWriter("output.txt");  

        int c;  



         while ((c = in.read()) != -1) {  

            out.write(c);  

         }  

      }finally {  

         if (in != null) {  

            in.close();  

         }  

         if (out != null) {  

            out.close();       }     }    }   } 

 

import java.io.*;   

public class ReadConsole {  

   public static void main(String args[]) throws IOException  

   {  

      InputStreamReader cin = null;   

      try {  

         cin = new InputStreamReader(System.in);  

         System.out.println("Enter characters, 'q' to quit.");  

         char c;  

         do {  

            c = (char) cin.read();  

            System.out.print(c);  

         } while(c != 'q');  



      }finally {  

         if (cin != null) {  

            cin.close();  

         }  

      }  

   }  

 

 

Java BufferedInputStream Class 

Java BufferedInputStream class is used to read information from stream. It 

internally uses buffer mechanism to make the performance fast. 

   

1. import java.io.*;   

2. public class BufferedInputStreamExample{     
3.  public static void main(String args[]){     

4.   try{     

5.     FileInputStream fin=new FileInputStream("D:\\testout.txt");     

6.     BufferedInputStream bin=new BufferedInputStream(fin);     
7.     int i;     

8.     while((i=bin.read())!=-1){     

9.      System.out.print((char)i);     
10.     }     

11.     bin.close();     

12.     fin.close();     
13.   }catch(Exception e){System.out.println(e);}     

14.  }     

15. }   

 

 

 



 

 

 

Moudule - III 

 

XIII EXCEPTION HANDLING IN JAVA 

The exception handling in java is one of the powerful mechanism to handle 
the runtime errors so that normal flow of the application can be maintained. 
Exception is an abnormal condition. Exception Handling is a mechanism to 

handle runtime errors  



Hierarchy of Java Exception classes 

 

 
 

 

 
 

 

 
 

 

 



Types of Exception 

There are mainly two types of exceptions: checked and unchecked where error 
is considered as unchecked exception. The sun microsystem says there are 

three types of exceptions:  

1. Checked Exception 

2. Unchecked Exception 

3. Error 

Difference between checked and unchecked exceptions 

1) Checked Exception 

The classes that extend Throwable class except RuntimeException and Error 

are known as checked exceptions e.g.IOException, SQLException etc. Checked 

exceptions are checked at compile-time.  

2) Unchecked Exception 

The classes that extend RuntimeException are known as unchecked exceptions 

e.g. ArithmeticException, NullPointerException, 

ArrayIndexOutOfBoundsException etc. Unchecked exceptions are not checked 

at compile-time rather they are checked at runtime.  

3) Error 

Error is irrecoverable e.g. OutOfMemoryError, VirtualMachineError, 

AssertionError etc. 

Java Exception Handling Keywords 

There are 5 keywords used in java exception handling. 

1. Try    catch    finally   throw  throws 

Java try-catch 

Java try block 

Java try block is used to enclose the code that might throw an exception. It 

must be used within the method. 

Java try block must be followed by either catch or finally block. 

Syntax of java try-catch 



1. try{   

2. //code that may throw exception   

3. }catch(Exception_class_Name ref){}   

1. public class Testtrycatch2{   

2.   public static void main(String args[]){   
3.    try{   

4.       int data=50/0;   

5.    }catch(ArithmeticException e){System.out.println(e);}   

6.    System.out.println("rest of the code...");   
7. }   

8. }   

 

Java Multi catch block 

If you have to perform different tasks at the occurrence of different Exceptions, 

use java multi catch block. 

Let's see a simple example of java multi-catch block. 

1. public class TestMultipleCatchBlock{   

2.   public static void main(String args[]){   
3.    try{   

4.     int a[]=new int[5];   

5.     a[5]=30/0;   

6.    }   
7.    catch(ArithmeticException e){System.out.println("task1 is completed");} 

  

8.    catch(ArrayIndexOutOfBoundsException e){System.out.println("task 2 
completed");}   

9.    catch(Exception e){System.out.println("common task completed");}   

10.    
11.    System.out.println("rest of the code...");   

12.  }   

13. }   

 

 



Java finally block 

Java finally block is a block that is used to execute important code such as 

closing connection, stream etc. 

Java finally block is always executed whether exception is handled or not. 

Java finally block follows try or catch block. 

Why use java finally 

 Finally block in java can be used to put "cleanup" code such as closing a 

file, closing connection etc. 

 

 
 

 

Case 1 

Let's see the java finally example where exception doesn't occur. 

1. class TestFinallyBlock{   

2.   public static void main(String args[]){   
3.   try{   

4.    int data=25/5;   

5.    System.out.println(data);   
6.   }   

7.   catch(NullPointerException e){System.out.println(e);}   

8.   finally{System.out.println("finally block is always executed");}   
9.   System.out.println("rest of the code...");   

10.   }   

11. }   

 

Case 3 

Let's see the java finally example where exception occurs and handled. 

1. public class TestFinallyBlock2{   

2.   public static void main(String args[]){   

3.   try{   
4.    int data=25/0;   

5.    System.out.println(data);   

6.   }   



7.   catch(ArithmeticException e){System.out.println(e);}   
8.   finally{System.out.println("finally block is always executed");}   

9.   System.out.println("rest of the code...");   

10.   }   

11. }   

Java throw keyword 

The Java throw keyword is used to explicitly throw an exception. 

We can throw either checked or uncheked exception in java by throw keyword. 
The throw keyword is mainly used to throw custom exception. We will see 

custom exceptions later. 

The syntax of java throw keyword is given below. 

1. throw exception;   

1. public class TestThrow1{   

2.    static void validate(int age){   
3.      if(age<18)   

4.       throw new ArithmeticException("not valid");   

5.      else   
6.       System.out.println("welcome to vote");   

7.    }   

8.    public static void main(String args[]){   

9.       validate(13);   
10.       System.out.println("rest of the code...");   

11.   }   

12. }   

Java throws keyword 

The Java throws keyword is used to declare an exception. It gives an 

information to the programmer that there may occur an exception so it is better 
for the programmer to provide the exception handling code so that normal flow 

can be maintained. 

Exception Handling is mainly used to handle the checked exceptions. If there 

occurs any unchecked exception such as NullPointerException, it is 

programmers fault that he is not performing check up before the code being 

used. 

Syntax of java throws 



1. return_type method_name() throws exception_class_name{   
2. //method code   

3. }   

 

 import java.io.*;   

  class M{   

   void method()throws IOException{   

    throw new IOException("device error");   
   }   }   

  public class Testthrows2{   

     public static void main(String args[]){   
      try{   

       M m=new M();   

       m.method();   
      }catch(Exception e){System.out.println("exception handled");}      

      System.out.println("normal flow...");   

    }   }  

Java Custom Exception 

If you are creating your own Exception that is known as custom exception or 

user-defined exception. Java custom exceptions are used to customize the 

exception according to user need. 

Let's see a simple example of java custom exception. 

1. class InvalidAgeException extends Exception{   
2.  InvalidAgeException(String s){   

3.   super(s);   

4.  }   

5. }   

1. class TestCustomException1{   

2.    

3.    static void validate(int age)throws InvalidAgeException{   

4.      if(age<18)   
5.       throw new InvalidAgeException("not valid");   

6.      else   

7.       System.out.println("welcome to vote");   
8.    }   

9.       

10.    public static void main(String args[]){   
11.       try{   



12.       validate(13);   
13.       }catch(Exception m){System.out.println("Exception occured: "+

m);}   

14.    

15.       System.out.println("rest of the code...");  }}   

 

 

XIV MULTI THREADING IN JAVA 

Multithreading in java is a process of executing multiple threads 

simultaneously. Thread is basically a lightweight sub-process, a smallest unit 
of processing. Multiprocessing and multithreading, both are used to achieve 

multitasking. 

Advantages of Java Multithreading 

1) It doesn't block the user because threads are independent and you can 

perform multiple operations at same time. 

2) You can perform many operations together so it saves time. 

3) Threads are independent so it doesn't affect other threads if exception occur 

in a single thread. 

What is Thread in java 

A thread is a lightweight sub process, a smallest unit of processing. It is a 

separate path of execution. 

Threads are independent, if there occurs exception in one thread, it doesn't 

affect other threads. It shares a common memory area.  

Life cycle of a Thread (Thread States) 

1. New 

2. Runnable 

3. Running 

4. Non-Runnable (Blocked) 

5. Terminated 

https://www.javatpoint.com/life-cycle-of-a-thread#threadstatenew
https://www.javatpoint.com/life-cycle-of-a-thread#threadstaterunnable
https://www.javatpoint.com/life-cycle-of-a-thread#threadstaterunning
https://www.javatpoint.com/life-cycle-of-a-thread#threadstateblocked
https://www.javatpoint.com/life-cycle-of-a-thread#threadstateterminated


A thread can be in one of the five states. According to sun, there is only 4 
states in thread life cycle in java new, runnable, non-runnable and 

terminated. There is no running state.  

But for better understanding the threads, we are explaining it in the 5 states. 

The life cycle of the thread in java is controlled by JVM.  

 

 

The java thread states are as follows:  

1. New 

2. Runnable 

3. Running 

4. Non-Runnable (Blocked) 

5. Terminated 

 



1) New 

The thread is in new state if you create an instance of Thread class but before 

the invocation of start() method.  

2) Runnable 

The thread is in runnable state after invocation of start() method, but the 

thread scheduler has not selected it to be the running thread.  

3) Running 

The thread is in running state if the thread scheduler has selected it.  

4) Non-Runnable (Blocked) 

This is the state when the thread is still alive, but is currently not eligible to 

run.  

5) Terminated 

A thread is in terminated or dead state when its run() method exits.  

How to create thread 

There are two ways to create a thread: 

1. By extending Thread class 

2. By implementing Runnable interface. 

Thread class: 

Thread class provide constructors and methods to create and perform 

operations on a thread. Thread class extends Object class and implements 

Runnable interface.  

Commonly used Constructors of Thread class: 

 Thread() 

 Thread(String name) 

 Thread(Runnable r) 

 Thread(Runnable r,String name) 

Commonly used methods of Thread class: 

public void run(): is used to perform action for a thread. 



public void start(): starts the execution of the thread.JVM calls the run() 

method on the thread. 

public void sleep(long miliseconds): Causes the currently executing 
thread to sleep (temporarily cease execution) for the specified number of 

milliseconds. 

public void join(): waits for a thread to die. 

public void join(long miliseconds): waits for a thread to die for the 

specified miliseconds. 

public int getPriority(): returns the priority of the thread. 

public int setPriority(int priority): changes the priority of the thread. 

public String getName(): returns the name of the thread. 

public void setName(String name): changes the name of the thread. 

         public Thread currentThread(): returns the current  thread. 

public int getId(): returns the id of the thread. 

public Thread.State getState(): returns the state of the thread. 

public boolean isAlive(): tests if the thread is alive. 

public void yield(): causes the currently executing thread object to 

temporarily pause and allow other threads to execute. 

public void suspend(): is used to suspend the thread(depricated). 

public void resume(): is used to resume the suspended 

thread(depricated). 

public void stop(): is used to stop the thread(depricated). 

public boolean isDaemon(): tests if the thread is a daemon thread. 

public void setDaemon(boolean b): marks the thread as daemon or 

user thread. 

public void interrupt(): interrupts the thread. 



public boolean isInterrupted(): tests if the thread has been interrupted. 

public static boolean interrupted(): tests if the current thread has been 

interrupted. 

Runnable interface: 

The Runnable interface should be implemented by any class whose instances 

are intended to be executed by a thread. Runnable interface have only one 

method named run().  

1. public void run(): is used to perform action for a thread. 

Starting a thread: 

start() method of Thread class is used to start a newly created thread. It 

performs following tasks:  

 A new thread starts(with new callstack). 

 The thread moves from New state to the Runnable state. 

 When the thread gets a chance to execute, its target run() method will 

run. 

 

 
 

 

1) Java Thread Example by extending Thread class 

1. class Multi extends Thread{   

2. public void run(){   
3. System.out.println("thread is running...");   

4. }   

5. public static void main(String args[]){   
6. Multi t1=new Multi();   

7. t1.start();   

8.  }   

9. } 

 

   

2) Java Thread Example by implementing Runnable interface 

1. class Sample  implements Runnable{   

2. public void run(){   



3. System.out.println("Thread is running...");   
4. }   

5.    

6. public static void main(String args[]){   
7. Sample  s=new Sample();   

8. Thread t1 =new Thread(s);   

9. t1.start();   

10.  }   

11. }   

Sleep method in java 

The sleep() method of Thread class is used to sleep a thread for the specified 

amount of time. 

Syntax of sleep() method in java 

The Thread class provides two methods for sleeping a thread: 

 public static void sleep(long miliseconds)throws InterruptedException 

 public static void sleep(long miliseconds, int nanos)throws 

InterruptedException 

Example of sleep method in java 

1. class Ex  extends Thread{   
2.  public void run(){   

3.   for(int j=1;j<5;j++){   

4.     try{Thread.sleep(500);}catch(InterruptedException e){System.out.printl
n(e);}   

5.     System.out.println(j);   

6.   }   
7.  }   

8.  public static void main(String args[]){   

9.   Ex  t1=new Ex();   
10.   Ex t2=new Ex();   

11.     

12.   t1.start();   

13.   t2.start();   
14.  }   

15. }   



The join() method 

The join() method waits for a thread to die. In other words, it causes the 

currently running threads to stop executing until the thread it joins with 

completes its task. 

Syntax: 

public void join()throws InterruptedException 

public void join(long milliseconds)throws InterruptedException 

 

Example of join() method 

1. class Sample extends Thread{   

2.  public void run(){   

3.   for(int i=1;i<=5;i++){   
4.    try{   

5.     Thread.sleep(500);   

6.    }catch(Exception e){System.out.println(e);}   
7.   System.out.println(i);   

8.   }    }   

9. public static void main(String args[]){   
10.  Sample t1=new Sample ();   

11.  Sample t2=new Sample ();   

12.  Sample t3=new Sample ();   
13.  t1.start();   

14.  try{   

15.   t1.join();   

16.  }catch(Exception e){System.out.println(e);}   
17.  t2.start();   

18.  t3.start();   

19.  }   }   

getName(),setName(String) and getId() method: 

public String getName() 

public void setName(String name) 

public long getId()  

 



 

1. class Sample1  extends Thread{   

2.   public void run(){   
3.    System.out.println("running...");   

4.   }   

5.  public static void main(String args[]){   
6.  Sample1t1=new Sample1 ();   

7.   Sample1 t2=new Sample1 ();   

8.   System.out.println("Name of t1:"+t1.getName());   
9.   System.out.println("Name of t2:"+t2.getName());   

10.   System.out.println("id of t1:"+t1.getId());   

11.   t1.start();   
12.   t2.start();   

13.   t1.setName("Sonoo Jaiswal");   

14.   System.out.println("After changing name of t1:"+t1.getName());   

15.  } }   

Priority of a Thread (Thread Priority): 

Each thread have a priority. Priorities are represented by a number between 1 

and 10. In most cases, thread schedular schedules the threads according to 

their priority (known as preemptive scheduling). But it is not guaranteed 

because it depends on JVM specification that which scheduling it chooses. 

3 constants defined in Thread class: 

1. public static int MIN_PRIORITY  
2. public static int NORM_PRIORITY 

3. public static int MAX_PRIORITY 

Default priority of a thread is 5 (NORM_PRIORITY). The value of MIN_PRIORITY 

is 1 and the value of MAX_PRIORITY is 10. 

 
 

 

Example of priority of a Thread: 

1. class TestMultiPriority1 extends Thread{   

2.  public void run(){   

3.    System.out.println("running thread name is:"+Thread.currentThread().
getName());   



4.    System.out.println("running thread priority is:"+Thread.currentThread(
).getPriority());   

5.    

6.   }   
7.  public static void main(String args[]){   

8.   TestMultiPriority1 m1=new TestMultiPriority1();   

9.   TestMultiPriority1 m2=new TestMultiPriority1();   

10.   m1.setPriority(Thread.MIN_PRIORITY);   
11.   m2.setPriority(Thread.MAX_PRIORITY);   

12.   m1.start();   

13.   m2.start();   
14.     

15.  }   

16. }      

ThreadGroup in Java 

Java provides a convenient way to group multiple threads in a single object. In 

such way, we can suspend, resume or interrupt group of threads by a single 

method call. 

 

Constructors of ThreadGroup class 

There are only two constructors of ThreadGroup class. 

No. Constructor Description 

1) ThreadGroup(String name) 
creates a thread group with given 

name. 

2) 
ThreadGroup(ThreadGroup parent, 

String name) 

creates a thread group with given 

parent group and name. 

ThreadGroup Example 

File: ThreadGroupDemo.java 

1. public class ThreadGroupDemo implements Runnable{   

2.     public void run()  

3.     {   
4.           System.out.println(Thread.currentThread().getName());   

5.     }   

6.    public static void main(String[] args) 
7.      {   



8.       ThreadGroupDemo runnable = new ThreadGroupDemo();   
9.           ThreadGroup tg1 = new ThreadGroup("Parent ThreadGroup");   

10.         

11.           Thread t1 = new Thread(tg1, runnable,"one");   
12.           t1.start();   

13.           Thread t2 = new Thread(tg1, runnable,"two");   

14.           t2.start();   

15.           Thread t3 = new Thread(tg1, runnable,"three");   
16.           t3.start();   

17.               

18.           System.out.println("Thread Group Name: "+tg1.getName());   
19.          tg1.list();   

20.    

21.     }   
22.    }   

23.  

1. class TestMultitasking1 extends Thread{   

2.  public void run(){   
3.    System.out.println("task one");   

4.  }   

5.  public static void main(String args[]){   

6.   TestMultitasking1 t1=new TestMultitasking1();   
7.   TestMultitasking1 t2=new TestMultitasking1();   

8.   TestMultitasking1 t3=new TestMultitasking1();   

9.    
10.   t1.start();   

11.   t2.start();   

12.   t3.start();   
13.  }   

14. }   

Synchronization in Java 

Synchronization in java is the capability to control the access of multiple threads 
to any shared resource. 

Java Synchronization is better option where we want to allow only one thread 

to access the shared resource. 

Why use Synchronization 

The synchronization is mainly used to 

1. To prevent thread interference. 



2. To prevent consistency problem. 

Types of Synchronization 

There are two types of synchronization 

1. Process Synchronization 

2. Thread Synchronization 

 

Thread Synchronization 

There are two types of thread synchronization mutual exclusive and inter-

thread communication.  

1. Mutual Exclusive  

1. Synchronized method. 
2. Synchronized block. 

3. static synchronization. 

2. Cooperation (Inter-thread communication in java) 

 
 

 

Mutual Exclusive 

Mutual Exclusive helps keep threads from interfering with one another while 

sharing data. This can be done by three ways in java: 

1. by synchronized method 
2. by synchronized block 

3. by static synchronization 

Concept of Lock in Java 

Synchronization is built around an internal entity known as the lock or 

monitor. Every object has an lock associated with it. By convention, a thread 
that needs consistent access to an object's fields has to acquire the object's 

lock before accessing them, and then release the lock when it's done with 

them.  

From Java 5 the package java.util.concurrent.locks contains several lock 

implementations. 

1. //example of java synchronized method   

2. class Table{   



3.  synchronized void printTable(int n){//synchronized method   
4.    for(int i=1;i<=5;i++){   

5.      System.out.println(n*i);   

6.      try{   
7.       Thread.sleep(400);   

8.      }catch(Exception e){System.out.println(e);}   

9.    }   

10.    
11.  }   

12. }   

13.    
14. class MyThread1 extends Thread{   

15. Table t;   

16. MyThread1(Table t){   
17. this.t=t;   

18. }   

19. public void run(){   
20. t.printTable(5);   

21. }   

22.    

23. }   
24. class MyThread2 extends Thread{   

25. Table t;   

26. MyThread2(Table t){   
27. this.t=t;   

28. }   

29. public void run(){   
30. t.printTable(100);   

31. }   

32. }   
33.    

34. public class TestSynchronization2{   

35. public static void main(String args[]){   

36. Table obj = new Table();//only one object   
37. MyThread1 t1=new MyThread1(obj);   

38. MyThread2 t2=new MyThread2(obj);   

39. t1.start();   
40. t2.start();   

41. }   

42. }   



Inter-thread communication in Java:Inter-thread communication or 

Co-operation is all about allowing synchronized threads to 

communicate with each other. 

Cooperation (Inter-thread communication) is a mechanism in which a thread is 

paused running in its critical section and another thread is allowed to enter (or 

lock) in the same critical section to be executed.It is implemented by following 

methods of Object class: 

 wait() 

 notify() 

 notifyAll() 

1) wait() method 

Causes current thread to release the lock and wait until either another thread 
invokes the notify() method or the notifyAll() method for this object, or a 

specified amount of time has elapsed. 

The current thread must own this object's monitor, so it must be called from 

the synchronized method only otherwise it will throw exception. 

Method Description 

public final void wait()throws 

InterruptedException 
waits until object is notified. 

public final void wait(long timeout)throws 

InterruptedException 

waits for the specified 

amount of time. 

2) notify() method 

Wakes up a single thread that is waiting on this object's monitor. If any threads 

are waiting on this object, one of them is chosen to be awakened. The choice is 

arbitrary and occurs at the discretion of the implementation. Syntax:  

public final void notify() 

3) notifyAll() method 

Wakes up all threads that are waiting on this object's monitor. Syntax:  

public final void notifyAll() 



Module- IV 

Java Applet 

Applet is a special type of program that is embedded in the webpage to 

generate the dynamic content. It runs inside the browser and works at client 

side. 

Advantage of Applet 

There are many advantages of applet. They are as follows: 

 It works at client side so less response time. 

 Secured 

 It can be executed by browsers running under many plateforms, 

including Linux, Windows, Mac Os etc. 

Drawback of Applet 

 Plugin is required at client browser to execute applet. 

 

 

Do You Know  

 Who is responsible to manage the life cycle of an applet ? 

 How to perform animation in applet ? 

 How to paint like paint brush in applet ? 

 How to display digital clock in applet ? 
 How to display analog clock in applet ? 

 How to communicate two applets ? 

 

Hierarchy of Applet 



 

Displaying Graphics in Applet 

java.awt.Graphics class provides many methods for graphics programming. 

Commonly used methods of Graphics class: 

1. public abstract void drawString(String str, int x, int y): is used to 

draw the specified string. 
2. public void drawRect(int x, int y, int width, int height): draws a 

rectangle with the specified width and height. 

3. public abstract void fillRect(int x, int y, int width, int height): is 
used to fill rectangle with the default color and specified width and 

height. 

4. public abstract void drawOval(int x, int y, int width, int height): is 
used to draw oval with the specified width and height. 

5. public abstract void fillOval(int x, int y, int width, int height): is 

used to fill oval with the default color and specified width and height. 
6. public abstract void drawLine(int x1, int y1, int x2, int y2): is used to 

draw line between the points(x1, y1) and (x2, y2). 

7. public abstract boolean drawImage(Image img, int x, int y, 

ImageObserver observer): is used draw the specified image. 
8. public abstract void drawArc(int x, int y, int width, int height, int 

startAngle, int arcAngle): is used draw a circular or elliptical arc. 

9. public abstract void fillArc(int x, int y, int width, int height, int 
startAngle, int arcAngle): is used to fill a circular or elliptical arc. 



10. public abstract void setColor(Color c): is used to set the graphics 
current color to the specified color. 

11. public abstract void setFont(Font font): is used to set the 

graphics current font to the specified font. 

Example of Graphics in applet: 

 

1. import java.applet.Applet;   

2. import java.awt.*;   
3.    

4. public class GraphicsDemo extends Applet{   

5.    

6. public void paint(Graphics g){   
7. g.setColor(Color.red);   

8. g.drawString("Welcome",50, 50);   

9. g.drawLine(20,30,20,300);   
10. g.drawRect(70,100,30,30);   

11. g.fillRect(170,100,30,30);   

12. g.drawOval(70,200,30,30);   
13.    

14. g.setColor(Color.pink);   

15. g.fillOval(170,200,30,30);   
16. g.drawArc(90,150,30,30,30,270);   

17. g.fillArc(270,150,30,30,0,180);   

18.    

19. }   

20. }   

 

EventHandling in Applet 

As we perform event handling in AWT or Swing, we can perform it in applet 

also. Let's see the simple example of event handling in applet that prints a 

message by click on the button. 

Example of EventHandling in applet: 

 

1. import java.applet.*;   

2. import java.awt.*;   

3. import java.awt.event.*;   
4. public class EventApplet extends Applet implements ActionListener{   



5. Button b;   
6. TextField tf;   

7.    

8. public void init(){   
9. tf=new TextField();   

10. tf.setBounds(30,40,150,20);   

11.    

12. b=new Button("Click");   
13. b.setBounds(80,150,60,50);   

14.    

15. add(b);add(tf);   
16. b.addActionListener(this);   

17.    

18. setLayout(null);   
19. }   

20.    

21.  public void actionPerformed(ActionEvent e){   
22.   tf.setText("Welcome");   

23.  }    

24. }   

In the above example, we have created all the controls in init() method because 

it is invoked only once. 

myapplet.html 

1. <html>   

2. <body>   

3. <applet code="EventApplet.class" width="300" height="300">   
4. </applet>   

5. </body>   

6. </html>   

 

 

Java AWT Tutorial 

Java AWT (Abstract Window Toolkit) is an API to develop GUI or window-based 
applications in java. 



Java AWT components are platform-dependent i.e. components are displayed 
according to the view of operating system. AWT is heavyweight i.e. its 

components are using the resources of OS. 

The java.awt package provides classes for AWT api such as TextField, Label, 

TextArea, RadioButton, CheckBox, Choice, List etc. 

 

Java AWT Hierarchy 

The hierarchy of Java AWT classes are given below. 

 

 

 

https://www.javatpoint.com/package
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/java-awt-textfield
https://www.javatpoint.com/java-awt-label
https://www.javatpoint.com/java-awt-textarea
https://www.javatpoint.com/java-awt-checkbox
https://www.javatpoint.com/java-awt-choice
https://www.javatpoint.com/java-awt-list


Java AWT Button  

The button class is used to create a labeled button that has platform 

independent implementation. The application result in some action when the 

button is pushed. 

AWT Button Class declaration 

1. public class Button extends Component implements Accessible   

Java AWT Button Example 

1. import java.awt.*;   
2. public class ButtonExample {   

3. public static void main(String[] args) {   

4.     Frame f=new Frame("Button Example");   
5.     Button b=new Button("Click Here");   

6.     b.setBounds(50,100,80,30);   

7.     f.add(b);   
8.     f.setSize(400,400);   

9.     f.setLayout(null);   

10.     f.setVisible(true);    

11. }   

12. }   

Output: 

 

 

 



 

 

 

Java ActionListener Interface 

The Java ActionListener is notified whenever you click on the button or menu 

item. It is notified against ActionEvent. The ActionListener interface is found in 

java.awt.event package. It has only one method: actionPerformed(). 

actionPerformed() method 

The actionPerformed() method is invoked automatically whenever you click on 

the registered component. 

1. public abstract void actionPerformed(ActionEvent e);   

Java ActionListener Example: On Button click 

1. import java.awt.*;   

2. import java.awt.event.*;   

3. public class ActionListenerExample {   
4. public static void main(String[] args) {   

5.     Frame f=new Frame("ActionListener Example");   

6.     final TextField tf=new TextField();   
7.     tf.setBounds(50,50, 150,20);   

8.     Button b=new Button("Click Here");   

9.     b.setBounds(50,100,60,30);   
10.    

11.     b.addActionListener(new ActionListener(){   

12.     public void actionPerformed(ActionEvent e){   
13.             tf.setText("Welcome to Javatpoint.");   

14.     }   

15.     });   

16.     f.add(b);f.add(tf);   
17.     f.setSize(400,400);   

18.     f.setLayout(null);   

19.     f.setVisible(true);    
20. }   

21. }   

Output: 

https://www.javatpoint.com/package


 

 

 

 

 

Module- V 

Java LayoutManagers 

The LayoutManagers are used to arrange components in a particular manner. 

LayoutManager is an interface that is implemented by all the classes of layout 

managers. There are following classes that represents the layout managers:  

1. java.awt.BorderLayout 

2. java.awt.FlowLayout 
3. java.awt.GridLayout 

4. java.awt.CardLayout 

5. java.awt.GridBagLayout 
6. javax.swing.BoxLayout 

7. javax.swing.GroupLayout 

8. javax.swing.ScrollPaneLayout 

9. javax.swing.SpringLayout etc. 

 
Java BorderLayout 

The BorderLayout is used to arrange the components in five regions: north, 

south, east, west and center. Each region (area) may contain one component 
only. It is the default layout of frame or window. The BorderLayout provides five 

constants for each region: 



1. public static final int NORTH 
2. public static final int SOUTH 

3. public static final int EAST 

4. public static final int WEST 

5. public static final int CENTER  

Constructors of BorderLayout class: 

 BorderLayout(): creates a border layout but with no gaps between the 

components. 

 JBorderLayout(int hgap, int vgap): creates a border layout with the 

given horizontal and vertical gaps between the components. 

 

 

 

 

Java GridBagLayout 

The Java GridBagLayout class is used to align components vertically, 

horizontally or along their baseline. 



The components may not be of same size. Each GridBagLayout object 
maintains a dynamic, rectangular grid of cells. Each component occupies one 

or more cells known as its display area. Each component associates an 

instance of GridBagConstraints. With the help of constraints object we arrange 
component's display area on the grid. The GridBagLayout manages each 

component's minimum and preferred sizes in order to determine component's 

size. 

Fields 

Modifier and Type Field Description 

double[] columnWeights 

It is used to 

hold the 

overrides to 

the column 

weights. 

int[] columnWidths 

It is used to 

hold the 

overrides to 

the column 

minimum 

width. 

protected 

Hashtable<Component,GridBagConstraints> 
comptable 

It is used to 

maintains the 

association 

between a 

component 

and its gridbag 

constraints. 

protected GridBagConstraints defaultConstraints 

It is used to 

hold a gridbag 

constraints 

instance 

containing the 

default values. 

protected GridBagLayoutInfo layoutInfo It is used to 

hold the 



layout 

information for 

the gridbag. 

protected static int MAXGRIDSIZE 

No longer in 

use just for 

backward 

compatibility  

protected static int MINSIZE 

It is smallest 

grid that can 

be laid out by 

the grid bag 

layout. 

protected static int PREFERREDSIZE 

It is preferred 

grid size that 

can be laid out 

by the grid bag 

layout. 

int[] rowHeights 

It is used to 

hold the 

overrides to 

the row 

minimum 

heights. 

double[] rowWeights 

It is used to 

hold the 

overrides to 

the row 

weights. 

Useful Methods 

Modifier and Type Method Description 

void 
addLayoutComponent(Component 

comp, Object constraints) 

It adds specified 

component to the 

layout, using the 

specified 



constraints object. 

void 
addLayoutComponent(String name, 

Component comp) 

It has no effect, 

since this layout 

manager does not 

use a per-

component string. 

protected void 
adjustForGravity(GridBagConstraints 

constraints, Rectangle r) 

It adjusts the x, y, 

width, and height 

fields to the correct 

values depending 

on the constraint 

geometry and 

pads. 

protected void 
AdjustForGravity(GridBagConstraints 

constraints, Rectangle r) 

This method is for 

backwards 

compatibility only 

protected void  arrangeGrid(Container parent) Lays out the grid. 

protected void ArrangeGrid(Container parent) 

This method is 

obsolete and 

supplied for 

backwards 

compatibility 

GridBagConstraints getConstraints(Component comp) 

It is for getting the 

constraints for the 

specified 

component. 

float 
getLayoutAlignmentX(Container 

parent) 

It returns the 

alignment along 

the x axis. 

float 
getLayoutAlignmentY(Container 

parent) 

It returns the 

alignment along 

the y axis. 



int[][]  getLayoutDimensions() 

It determines 

column widths and 

row heights for the 

layout grid. 

protected 

GridBagLayoutInfo 

getLayoutInfo(Container parent, int 

sizeflag) 

This method is 

obsolete and 

supplied for 

backwards 

compatibility. 

protected 

GridBagLayoutInfo 

GetLayoutInfo(Container parent, int 

sizeflag) 

This method is 

obsolete and 

supplied for 

backwards 

compatibility. 

Point getLayoutOrigin() 

It determines the 

origin of the layout 

area, in the 

graphics 

coordinate space of 

the target 

container. 

double[][]  getLayoutWeights() 

It determines the 

weights of the 

layout grid's 

columns and rows. 

protected 

Dimension 

getMinSize(Container parent, 

GridBagLayoutInfo info) 

It figures out the 

minimum size of 

the master based 

on the information 

from 

getLayoutInfo. 

protected 

Dimension 

GetMinSize(Container parent, 

GridBagLayoutInfo info) 

This method is 

obsolete and 

supplied for 



backwards 

compatibility only 

Example 

1. import java.awt.Button;   

2. import java.awt.GridBagConstraints;   
3. import java.awt.GridBagLayout;   

4.    

5. import javax.swing.*;   
6. public class GridBagLayoutExample extends JFrame{   

7.     public static void main(String[] args) {   

8.             GridBagLayoutExample a = new GridBagLayoutExample();   

9.         }   
10.         public GridBagLayoutExample() {   

11.     GridBagLayoutgrid = new GridBagLayout();   

12.             GridBagConstraints gbc = new GridBagConstraints();   
13.             setLayout(grid);   

14.             setTitle("GridBag Layout Example");   

15.             GridBagLayout layout = new GridBagLayout();   
16.     this.setLayout(layout);   

17.     gbc.fill = GridBagConstraints.HORIZONTAL;   

18.     gbc.gridx = 0;   
19.     gbc.gridy = 0;   

20.     this.add(new Button("Button One"), gbc);   

21.     gbc.gridx = 1;   

22.     gbc.gridy = 0;   
23.     this.add(new Button("Button two"), gbc);   

24.     gbc.fill = GridBagConstraints.HORIZONTAL;   

25.     gbc.ipady = 20;   
26.     gbc.gridx = 0;   

27.     gbc.gridy = 1;   

28.     this.add(new Button("Button Three"), gbc);   
29.     gbc.gridx = 1;   

30.     gbc.gridy = 1;   

31.     this.add(new Button("Button Four"), gbc);   
32.     gbc.gridx = 0;   

33.     gbc.gridy = 2;   

34.     gbc.fill = GridBagConstraints.HORIZONTAL;   

35.     gbc.gridwidth = 2;   
36.     this.add(new Button("Button Five"), gbc);   

37.             setSize(300, 300);   

38.             setPreferredSize(getSize());   
39.             setVisible(true);   

40.             setDefaultCloseOperation(EXIT_ON_CLOSE);   



41.        
42.         }   

43.        

44. }   

Output: 

 

 

 

 

Java Swing Tutorial 

Java Swing tutorial is a part of Java Foundation Classes (JFC) that is used to 
create window-based applications. It is built on the top of AWT (Abstract 

Windowing Toolkit) API and entirely written in java. 

Unlike AWT, Java Swing provides platform-independent and lightweight 

components. 

The javax.swing package provides classes for java swing API such as JButton, 

JTextField, JTextArea, JRadioButton, JCheckbox, JMenu, JColorChooser etc. 

 



Difference between AWT and Swing 

There are many differences between java awt and swing that are given below. 

No. Java AWT Java Swing 

1) 
AWT components are platform-

dependent. 

Java swing components are 

platform-independent. 

2) AWT components are heavyweight. 
Swing components are 

lightweight. 

3) 
AWT doesn't support pluggable look and 

feel. 

Swing supports pluggable 

look and feel. 

4) 
AWT provides less components than 

Swing. 

Swing provides more powerful 

components such as tables, 

lists, scrollpanes, colorchooser, 

tabbedpane etc.  

5) 

AWT doesn't follows MVC(Model View 

Controller) where model represents data, 

view represents presentation and 

controller acts as an interface between 

model and view. 

 

 

Java JButton 

The JButton class is used to create a labeled button that has platform 

independent implementation. The application result in some action when the 

button is pushed. It inherits AbstractButton class. 

JButton class declaration 

Let's see the declaration for javax.swing.JButton class. 

1. public class JButton extends AbstractButton implements Accessible   

Commonly used Constructors: 



Constructor Description 

JButton() It creates a button with no text and icon. 

JButton(String s) It creates a button with the specified text. 

JButton(Icon i) It creates a button with the specified icon object. 

 

Commonly used Methods of AbstractButton class: 

Methods Description 

void setText(String s) It is used to set specified text on button 

String getText() 
It is used to return the text of the 

button. 

void setEnabled(boolean b) 
It is used to enable or disable the 

button. 

void setIcon(Icon b) 
It is used to set the specified Icon on the 

button. 

Icon getIcon() It is used to get the Icon of the button. 

void setMnemonic(int a) 
It is used to set the mnemonic on the 

button. 

void addActionListener(ActionListener 

a) 

It is used to add the action listener to 

this object. 

 

Java JRadioButton 

The JRadioButton class is used to create a radio button. It is used to choose 

one option from multiple options. It is widely used in exam systems or quiz. 

It should be added in ButtonGroup to select one radio button only. 

https://www.javatpoint.com/java-actionlistener


JRadioButton class declaration 

Let's see the declaration for javax.swing.JRadioButton class. 

1. public class JRadioButton extends JToggleButton implements Accessible

   

Commonly used Constructors: 

Constructor Description 

JRadioButton() 
Creates an unselected radio button with no 

text. 

JRadioButton(String s) 
Creates an unselected radio button with 

specified text. 

JRadioButton(String s, boolean 

selected) 

Creates a radio button with the specified text 

and selected status. 

 

Commonly used Methods: 

Methods Description 

void setText(String s) It is used to set specified text on button. 

String getText() 
It is used to return the text of the 

button. 

void setEnabled(boolean b) 
It is used to enable or disable the 

button. 

void setIcon(Icon b) 
It is used to set the specified Icon on the 

button. 

Icon getIcon() It is used to get the Icon of the button. 

void setMnemonic(int a) 
It is used to set the mnemonic on the 

button. 

void addActionListener(ActionListener 

a) 

It is used to add the action listener to 

this object. 



Java JRadioButton Example 

1. import javax.swing.*;     

2. public class RadioButtonExample {     

3. JFrame f;     

4. RadioButtonExample(){     
5. f=new JFrame();      

6. JRadioButton r1=new JRadioButton("A) Male");     

7. JRadioButton r2=new JRadioButton("B) Female");     
8. r1.setBounds(75,50,100,30);     

9. r2.setBounds(75,100,100,30);     

10. ButtonGroup bg=new ButtonGroup();     
11. bg.add(r1);bg.add(r2);     

12. f.add(r1);f.add(r2);       

13. f.setSize(300,300);     

14. f.setLayout(null);     
15. f.setVisible(true);     

16. }     

17. public static void main(String[] args) {     
18.     new RadioButtonExample();     

19. }     

20. }     

 

 

 



Java GridBagLayout 

The Java GridBagLayout class is used to align components vertically, 

horizontally or along their baseline. 

The components may not be of same size. Each GridBagLayout object 

maintains a dynamic, rectangular grid of cells. Each component occupies one 

or more cells known as its display area. Each component associates an 
instance of GridBagConstraints. With the help of constraints object we arrange 

component's display area on the grid. The GridBagLayout manages each 

component's minimum and preferred sizes in order to determine component's 

size. 

Fields 

Modifier and Type Field Description 

double[] columnWeights 

It is used to 

hold the 

overrides to 

the column 

weights. 

int[] columnWidths 

It is used to 

hold the 

overrides to 

the column 

minimum 

width. 

protected 

Hashtable<Component,GridBagConstraints> 
comptable 

It is used to 

maintains the 

association 

between a 

component 

and its gridbag 

constraints. 

protected GridBagConstraints defaultConstraints 

It is used to 

hold a gridbag 

constraints 

instance 

containing the 



default values. 

protected GridBagLayoutInfo layoutInfo 

It is used to 

hold the 

layout 

information for 

the gridbag. 

protected static int MAXGRIDSIZE 

No longer in 

use just for 

backward 

compatibility  

protected static int MINSIZE 

It is smallest 

grid that can 

be laid out by 

the grid bag 

layout. 

protected static int PREFERREDSIZE 

It is preferred 

grid size that 

can be laid out 

by the grid bag 

layout. 

int[] rowHeights 

It is used to 

hold the 

overrides to 

the row 

minimum 

heights. 

double[] rowWeights 

It is used to 

hold the 

overrides to 

the row 

weights. 

Useful Methods 

Modifier and Type Method Description 



void 
addLayoutComponent(Component 

comp, Object constraints) 

It adds specified 

component to the 

layout, using the 

specified 

constraints object. 

void 
addLayoutComponent(String name, 

Component comp) 

It has no effect, 

since this layout 

manager does not 

use a per-

component string. 

protected void 
adjustForGravity(GridBagConstraints 

constraints, Rectangle r) 

It adjusts the x, y, 

width, and height 

fields to the correct 

values depending 

on the constraint 

geometry and 

pads. 

protected void 
AdjustForGravity(GridBagConstraints 

constraints, Rectangle r) 

This method is for 

backwards 

compatibility only 

protected void  arrangeGrid(Container parent) Lays out the grid. 

protected void ArrangeGrid(Container parent) 

This method is 

obsolete and 

supplied for 

backwards 

compatibility 

GridBagConstraints getConstraints(Component comp) 

It is for getting the 

constraints for the 

specified 

component. 

float 
getLayoutAlignmentX(Container 

parent) 

It returns the 

alignment along 

the x axis. 



float 
getLayoutAlignmentY(Container 

parent) 

It returns the 

alignment along 

the y axis. 

int[][]  getLayoutDimensions() 

It determines 

column widths and 

row heights for the 

layout grid. 

protected 

GridBagLayoutInfo 

getLayoutInfo(Container parent, int 

sizeflag) 

This method is 

obsolete and 

supplied for 

backwards 

compatibility. 

protected 

GridBagLayoutInfo 

GetLayoutInfo(Container parent, int 

sizeflag) 

This method is 

obsolete and 

supplied for 

backwards 

compatibility. 

Point getLayoutOrigin() 

It determines the 

origin of the layout 

area, in the 

graphics 

coordinate space of 

the target 

container. 

double[][]  getLayoutWeights() 

It determines the 

weights of the 

layout grid's 

columns and rows. 

protected 

Dimension 

getMinSize(Container parent, 

GridBagLayoutInfo info) 

It figures out the 

minimum size of 

the master based 

on the information 

from 

getLayoutInfo. 



protected 

Dimension 

GetMinSize(Container parent, 

GridBagLayoutInfo info) 

This method is 

obsolete and 

supplied for 

backwards 

compatibility only 

Example 

1. import java.awt.Button;   

2. import java.awt.GridBagConstraints;   

3. import java.awt.GridBagLayout;   

4.    
5. import javax.swing.*;   

6. public class GridBagLayoutExample extends JFrame{   

7.     public static void main(String[] args) {   
8.             GridBagLayoutExample a = new GridBagLayoutExample();   

9.         }   

10.         public GridBagLayoutExample() {   
11.     GridBagLayoutgrid = new GridBagLayout();   

12.             GridBagConstraints gbc = new GridBagConstraints();   

13.             setLayout(grid);   
14.             setTitle("GridBag Layout Example");   

15.             GridBagLayout layout = new GridBagLayout();   

16.     this.setLayout(layout);   

17.     gbc.fill = GridBagConstraints.HORIZONTAL;   
18.     gbc.gridx = 0;   

19.     gbc.gridy = 0;   

20.     this.add(new Button("Button One"), gbc);   
21.     gbc.gridx = 1;   

22.     gbc.gridy = 0;   

23.     this.add(new Button("Button two"), gbc);   
24.     gbc.fill = GridBagConstraints.HORIZONTAL;   

25.     gbc.ipady = 20;   

26.     gbc.gridx = 0;   
27.     gbc.gridy = 1;   

28.     this.add(new Button("Button Three"), gbc);   

29.     gbc.gridx = 1;   

30.     gbc.gridy = 1;   
31.     this.add(new Button("Button Four"), gbc);   

32.     gbc.gridx = 0;   

33.     gbc.gridy = 2;   
34.     gbc.fill = GridBagConstraints.HORIZONTAL;   

35.     gbc.gridwidth = 2;   

36.     this.add(new Button("Button Five"), gbc);   
37.             setSize(300, 300);   



38.             setPreferredSize(getSize());   
39.             setVisible(true);   

40.             setDefaultCloseOperation(EXIT_ON_CLOSE);   

41.        
42.         }   

43.        

44. }   

Output: 

 

 
 

Java JTree 

The JTree class is used to display the tree structured data or hierarchical data. 
JTree is a complex component. It has a 'root node' at the top most which is a 

parent for all nodes in the tree. It inherits JComponent class. 

JTree class declaration 

Let's see the declaration for javax.swing.JTree class. 

1. public class JTree extends JComponent implements Scrollable, Accessibl

e   

Commonly used Constructors: 



Constructor Description 

JTree() Creates a JTree with a sample model. 

JTree(Object[] 

value) 

Creates a JTree with every element of the specified array as 

the child of a new root node. 

JTree(TreeNode 

root) 

Creates a JTree with the specified TreeNode as its root, 

which displays the root node. 

 

Java JTree Example 

1. import javax.swing.*;   
2. import javax.swing.tree.DefaultMutableTreeNode;   

3. public class TreeExample {   

4. JFrame f;   
5. TreeExample(){   

6.     f=new JFrame();    

7.     DefaultMutableTreeNode style=new DefaultMutableTreeNode("Style");   
8.     DefaultMutableTreeNode color=new DefaultMutableTreeNode("color");   

9.     DefaultMutableTreeNode font=new DefaultMutableTreeNode("font");   

10.     style.add(color);   
11.     style.add(font);   

12.     DefaultMutableTreeNode red=new DefaultMutableTreeNode("red"

);   

13.     DefaultMutableTreeNode blue=new DefaultMutableTreeNode("bl
ue");   

14.     DefaultMutableTreeNode black=new DefaultMutableTreeNode("bl

ack");   
15.     DefaultMutableTreeNode green=new DefaultMutableTreeNode("g

reen");   

16.     color.add(red); color.add(blue); color.add(black); color.add(green)
;       

17.     JTree jt=new JTree(style);   

18.     f.add(jt);   
19.     f.setSize(200,200);   

20.     f.setVisible(true);   

21. }   

22. public static void main(String[] args) {   
23.     new TreeExample();   

24. }}   

Output: 



 
 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1. TUTORIAL SHEETS  

Tutorial Sheet-1:     

1.Explain  about OOPS concepts  
 
2.What are the different opewrators in java  
 
3.Explain about Different types of contructors & Implermentation  
 
4.Write a program to cover all String Handling concepts fnctions 
 

Tutorial Sheet-2:     

 
1.  Explain Polymorphism with an example  

2. Explain in detail about this, super, final keywords  

3. Define package? Explain with an example how packages can be accessed 

from another package  

 

 

Tutorial Sheet-3:     

1.Explain about Exception handling 

2.Write a program for  thread communication  

3.Write a program to take the input using applets   

Tutorial Sheet-4:     

1.Explain about Event handling  

2.Explain about Layout managers  

3.write about  applet life cycle with example program? 

Tutorial Sheet-5: 

1.Write the difference between Swings and awt? 

2. Write a program to develop radio buttons and check boxes 

3. Write about Jbutton, Jframe, JLabel with syntaxes? 

 



 

13.UNIT WISE QUESTION BANK 

Unit-1 

sno Questions CO Blooms 
Taxonomy 

1 Define inheritance. Describe different 
forms of nheritance 

CO1 Remember 

2 Describe the various forms of 
implementing interface with an example 

CO1 Understand 

3 What is a constructor? What are its special 
properties? 
 

CO1 Remember 

4  Illustrate  Polymorphism with an example  
 

CO1 Understand 

5  Explain the data types available in Java. 
Explain type casting with example. 
 

CO1 Understand 

Unit-2 

Sno 
 

Questions CO Bloom’s 
Taxonomy 

1  Explain Inheritance with an example. 
 

CO2 Understand 

2 What is a constructor? What are its 
special properties? 
 

CO2 Remember 

3  Explain Polymorphism with an example  
 

CO2 Understand 

4 Write a program to count the tokens by 
using string tokenizes. 
 

CO2 Apply 

5 . Explain in detail about this, super, 
final keywords  
 

CO2 Understand 

6 Define package? Explain with an example 
how packages can be accessed  
from another package  
 

CO2 Remember 

 

Unit-3 

Sno Questions CO 
 

Bloom’s 
Taxonomy 

1 .write about checked and 
unchecked exception with an 
example. 
 

CO3 Apply 

2 Compare  Applet and 
application 

CO3  
Analyze 



3 .Illustrate  life cycle of a thread 
 

CO3 Understand 

4 Write about inter thread 
communication   
 

CO3 Apply  

5 Explain about inter thread 
communication   
 

CO3 Understand 

 

 

 

Unit-4 

Sno Questions CO Blooms 
Toxanomy  

1 Describe the user interface components   
       (a) Labels  (b) Buttons  (c) Canvas  
(d) Scrollbar  (e) checkbox 
 

CO4 Understand 

2 Write a java Program for the Following 
Screen .user enters two different 
numbers in two different text fields  and 
when we click on  OK button   it should 
display Multiplication of two numbers 
in the 3rd Text field   
      Num1   
    Num2                     Result  
 

CO4 create 

3 Explain about various keywords used in 
Exception. Handling 
 

CO4 Understand 

4 Discuss passing parameters to an 
applet? 
 

CO4 Understand 

5 . Write short notes on the Event 
Delegation model of AWT. 
 

CO4 Understand 

 
 

 

 

 

 

 

ok

K 



Unit -5  

SNO QUESTIONS CO 
 

Blooms 
Taxonomy 

1 Explain Different Layout 
Managers in Java 
 

CO5 Understand 

2 Write a program on create 
radio buttons and check 
boxes with swings? 

CO5 Understand 

3 Write the difference between 
swings and Awt? 

CO5 Understand 

    
 

 

 

 

 

 

 

 


	J.B. INSTITUTE OF ENGINEERING & TECHNOLOGY
	(UGC AUTONOMOUS)
	I. INTRODUCTION TO JAVA
	What is Java
	Java fallows the concept of Write Once, Run Anywhere.
	Application of java
	History of Java
	Procedure to write simple java Program
	Setting Up the Path for Windows
	Setting Up the Path for Linux, UNIX, Solaris, FreeBSD
	Popular Java Editors

	JVM (Java Virtual Machine)
	What is JVM
	What it does

	Object  in Java
	Java Identifiers
	All Java components require names. Names used for classes, variables, and methods are called identifiers.
	Java Modifiers: There are two categories of modifiers −
	Primitive Data Types
	byte
	short
	int
	long
	float
	double
	boolean
	char

	Java Literals
	Example
	Java Variable Example: Add Two Numbers
	Java Variable Example: Widening


	Unicode System
	Java Tokens
	Java Tokens are the smallest individual building block or smallest unit of a Java program, it is used by the Java compiler for constructing expressions and statements. Java program is collection different types of tokens, comments, and white spaces.
	Variable
	1) Local Variable
	2) Instance Variable
	3) Static variable


	IV OPERATORS & IF, Switch, loop Statements
	Operators in java
	Java If-else Statement
	Java IF Statement
	IF-else Statement
	IF-else-if ladder Statement

	Switch Statement
	Java For Loop
	Java Simple For Loop

	Java While Loop
	Java do-while Loop
	Java Break Statement
	Java Continue Statement
	V ARRAYS & COMMENTS in JAVA
	Array in java
	Advantage of Java Array
	Disadvantage of Java Array is it has fixed size it cannot grow
	Single Dimensional Array in java
	Syntax to Declare an Array in java
	Array initialization in java
	Example
	Declaration, Instantiation and Initialization of Java Array
	Multidimensional array in java
	Syntax to Declare Multidimensional Array in java
	Example to instantiate Multidimensional Array in java
	Example to initialize Multidimensional Array in java
	Example of Multidimensional java array


	Java Comments
	Types of Java Comments
	1) Java Single Line Comment
	2) Java Multi Line Comment
	3) Java Documentation Comment

	VI CONSTRUCTORS
	Rules for creating java constructor
	Types of java constructors
	Difference between constructor and method in java

	Java static keyword
	1) Java static variable
	Advantage of static variable: It makes your program memory efficient (i.e it saves memory).

	2) Java static method
	Example of static method


	this keyword in java
	Usage of java this keyword
	1) this: to refer current class instance variable
	2) this: to invoke current class method
	3) this() : to invoke current class constructor
	4) this: to pass as an argument in the method
	5) this: to pass as argument in the constructor call
	6) this keyword can be used to return current class instance
	Syntax of this that can be returned as a statement
	Example of this keyword that you return as a statement from the method


	super keyword in java
	Usage of java super Keyword
	1) super is used to refer immediate parent class instance variable.
	2) super can be used to invoke parent class method
	3) super is used to invoke parent class constructor.

	Method Overloading in Java
	Advantage of method overloading
	Different ways to overload the method
	1) Method Overloading: changing no. of arguments
	2) Method Overloading: changing data type of arguments


	Method Overriding in Java
	Usage of Java Method Overriding
	Rules for Java Method Overriding

	IX  ABSTRACTION
	Abstraction in Java
	Ways to achieve Abstraction
	Abstract class in Java
	Example abstract class
	abstract method
	Example abstract method
	Example of abstract class that has abstract method

	Interface in Java
	Why use Java interface?
	Java Interface Example

	X PACKAGE
	Advantage of Java Package
	Simple example of java package
	How to compile java package
	How to access package from another package?
	1) Using packagename.*

	Example of package that import the packagename.*
	2) Using packagename.classname

	Example of package by import package.classname
	3) Using fully qualified name

	Example of package by import fully qualified name

	Access Modifiers in java
	Understanding all java access modifiers

	XI. STRING HANDLING in JAVA
	What is String in java
	How to create String object?
	1) String Literal
	2) By new keyword
	Java String class methods

	Java String compare
	1) String compare by equals() method
	2) String compare by == operator
	3) String compare by compareTo() method

	String Concatenation in Java
	1) String Concatenation by + (string concatenation) operator
	2) String Concatenation by concat() method


	Substring in Java
	Example of java substring

	StringTokenizer in Java
	Constructors of StringTokenizer class
	Methods of StringTokenizer class
	Example of nextToken(String delim) method of StringTokenizer class

	XII JAVA I/O TUTORIAL
	Stream

	Java BufferedInputStream Class
	XIII EXCEPTION HANDLING IN JAVA
	Hierarchy of Java Exception classes
	Types of Exception

	Difference between checked and unchecked exceptions
	1) Checked Exception
	2) Unchecked Exception
	3) Error

	Java Exception Handling Keywords

	Java try-catch
	Java try block
	Syntax of java try-catch

	Java Multi catch block

	Java finally block
	Why use java finally
	Case 1
	Case 3

	Java throw keyword

	Java throws keyword
	Syntax of java throws

	Java Custom Exception
	XIV MULTI THREADING IN JAVA
	Advantages of Java Multithreading
	What is Thread in java

	Life cycle of a Thread (Thread States)
	2) Runnable
	3) Running
	4) Non-Runnable (Blocked)
	5) Terminated

	How to create thread
	Thread class:
	Commonly used Constructors of Thread class:
	Commonly used methods of Thread class:
	Runnable interface:
	Starting a thread:
	1) Java Thread Example by extending Thread class
	2) Java Thread Example by implementing Runnable interface

	Sleep method in java
	Syntax of sleep() method in java
	Example of sleep method in java

	The join() method
	Syntax:
	getName(),setName(String) and getId() method:

	Priority of a Thread (Thread Priority):
	3 constants defined in Thread class:
	Example of priority of a Thread:


	ThreadGroup in Java
	Constructors of ThreadGroup class
	ThreadGroup Example

	Synchronization in Java
	Why use Synchronization
	Types of Synchronization
	Thread Synchronization
	Mutual Exclusive
	Concept of Lock in Java

	Inter-thread communication in Java:Inter-thread communication or Co-operation is all about allowing synchronized threads to communicate with each other.
	1) wait() method
	2) notify() method
	3) notifyAll() method

	Java Applet
	Advantage of Applet
	Drawback of Applet
	Hierarchy of Applet

	Displaying Graphics in Applet
	Commonly used methods of Graphics class:
	Example of Graphics in applet:

	EventHandling in Applet
	Example of EventHandling in applet:
	myapplet.html


	Java AWT Tutorial
	Java AWT Hierarchy

	Java AWT Button
	AWT Button Class declaration
	Java AWT Button Example

	Java ActionListener Interface
	actionPerformed() method
	Java ActionListener Example: On Button click
	Java LayoutManagers
	Java BorderLayout
	Constructors of BorderLayout class:


	Java GridBagLayout
	Fields
	Useful Methods
	Example

	Java Swing Tutorial
	Difference between AWT and Swing

	Java JButton
	JButton class declaration
	Commonly used Constructors:
	Commonly used Methods of AbstractButton class:


	Java JRadioButton
	JRadioButton class declaration
	Commonly used Constructors:
	Commonly used Methods:

	Java JRadioButton Example

	Java GridBagLayout (1)
	Fields
	Useful Methods
	Example

	Java JTree
	JTree class declaration
	Commonly used Constructors:

	Java JTree Example


