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LECTURE NOTES 

Unit 1 
 

What is Machine learning? 

Machine learning is an application of artificial intelligence (AI) that provides 

systems the ability to automatically learn and improve from experience without 

being explicitly programmed. Machine learning focuses on the development of 

computer programs that can access data and use it learn for themselves. 

The process of learning begins with observations or data, such as examples, direct  

experience, or instruction, in order to look for patterns in data and make better 

decisions in the future based on the examples that we provide. The primary  aim 

is to allow the computers learn automatically without human intervention or 

assistance and adjust actions accordingly. 

Some machine learning methods 

Machine learning algorithms are often categorized as supervised or unsupervised. 

 Supervised machine learning algorithms can apply what has been learned 

in the past to new data using labeled examples to predict future events.  

Starting from the analysis of a known training dataset, the learning 

algorithm produces an inferred function to make predictions about the 

output values. The system is able to provide targets for any new input after 

sufficient training. The learning algorithm can also compare its output with 

the correct, intended output and find errors in order to modify the model 

accordingly. 

 In contrast, unsupervised machine learning algorithms are used when the 

information used to train is neither classified nor labeled. Unsupervised 

learning studies how systems can infer a function to describe a hidden 

structure from unlabeled data. The system doesn’t figure out the right 

output, but it explores the data and can draw inferences from datasets to 

describe hidden structures from unlabeled data. 
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 Semi-supervised machine learning algorithms fall somewhere in between 

supervised and unsupervised learning, since they use both labeled and 

unlabeled data for training – typically a small amount of labeled data and a 

large amount of unlabeled data. The systems that use this method are able 

to considerably improve learning accuracy. Usually, semi-supervised 

learning is chosen when the acquired labeled data requires skilled and 

relevant resources in order to train it / learn from it. Otherwise, acquiring 

unlabeled data generally doesn’t require additional resources. 

 Reinforcement machine learning algorithms is a learning method that 

interacts with its environment by producing actions and discovers errors or  

rewards. Trial and error search and delayed reward are the most relevant 

characteristics of reinforcement learning. This method allows machines and 

software agents to automatically determine the ideal behavior within a 

specific context in order to maximize its performance. Simple reward 

feedback is required for the agent to learn which action is best;  this  is 

known as the reinforcement signal. 

Machine learning enables analysis of massive quantities of data. While it 

generally delivers faster, more accurate results in order to identify profitable 

opportunities or  dangerous  risks,  it  may  also  require  additional  time  and 

resources to train it properly. Combining machine learning with AI and cognitive 

technologies can make it even more effective in processing large volumes of 

information. 

 
Well-Posed Learning Problems: 

 

A computer program is said to learn from experience E with respect to some class 

of tasks T and performance measure P,  if  its  performance  at  tasks  in  T,  as 

measured by P, improves with experience E. Some of the examples for well-posed 

learning problem are given below: 

1. Learning to classify chemical compounds 
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2. Learning to drive an autonomous vehicle 

3. Learning to play bridge 

4. Learning to parse natural language sentences 

Driverless car 
 

 
Can we phrase this as a well-posed learning problem? 

 
T = driving a car on a busy interstate highway given image data from a forward- 

looking camera 

P = number of errors made, as judged by a human observer 

 
E = image and control information recorded from driving sessions with a human 

driving the same vehicle 
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Designing a Learning System: 

 
In designing a learning system, we have to deal with (at least) the following issues: 

1. Training experience 

2. Target function 

3. Learned function 

4. Learning algorithm 

Example: Consider the  task  T  of  parsing  Swedish  sentences,  using  the 

performance measure P of labeled precision and recall in a given test corpus (gold 

standard). 

Training Experience 

Issues concerning the training experience: 

1. Direct or indirect evidence (supervised or unsupervised). 

2. Controlled or uncontrolled sequence of training examples. 

3. Representativity of training data in relation to test data. 

Training data for a syntactic parser: 

1. Treebank versus raw text corpus. 

2. Constructed test suite versus random sample. 

3. Training and test data from the same/similar/different sources with the 

same/similar/different annotations. 

Target Function and Learned Function: 

The problem of improving performance can often be reduced to the problem of 

learning some particular target function. 

A shift-reduce parser can be trained by learning a transition function f : C -> C, 

where C is the set of possible parser configurations. 

In many cases, we can only hope to acquire some approximation to  the  ideal 

target function. 

The transition function f can be approximated by a function  ˆf  :  Σ->Action  from 

stack (top) symbols to parse actions. 

Learning Algorithm: 



6 
 

In order to learn the (approximated) target function we require: 

1. A set of training examples (input arguments) 

2. A rule for estimating the value corresponding to each training 

example (if this is not directly available) 

3. An algorithm for choosing the function that best fits the training data 

* Given a treebank on which we can simulate the shift-reduce parser, we 

may decide to choose the function that maps each stack symbol σ to the action 

that occurs most frequently 

when σ is on top of the stack. 

Designing of a Learning System: 
 
 

Fig: Designing of a Learning system (First View) 
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Design Cycle of a Learning System: 
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Issues in Machine Learning: 

 
 What algorithms exist for learning general target functions from  specific 

training examples? In  what  settings  will  particular  algorithms  converge  to 

the desired function,  given  sufficient  training  data?  Which  algorithms 

perform best for which types of problems and representations? 

 How much training data is sufficient? What general bounds can be found to 

relate the confidence in learned hypotheses to the amount of training 

experience and the character of the learner's hypothesis space? 

 When and how can prior knowledge held by the learner guide the process of 

generalizing from examples? Can prior knowledge be helpful even when it is 

only approximately correct? 

 What is the best strategy for choosing a useful next training experience, and 

how does the choice of this strategy alter the complexity of the learning 

problem? 

 What is the best way to reduce the learning task to one or more function 

approximation problems? Put  another  way,  what  specific  functions  should 

the system attempt to learn? Can this process itself be automated? 

 How can the learner automatically alter its representation  to  improve  its 

ability to represent and learn the target function? 

Perspectives of Machine Learning: 

 
 One useful perspective on machine learning is that it involves searching a 

very large space of possible hypotheses to determine one that best fits the 

observed data and any prior knowledge held by the learner. 

 The learner's task is to search through a vast space to locate the 

hypothesis that is most consistent with the available training 

examples.The LMS algorithm for fitting weights achieves this goal by 

iteratively tuning the weights, adding a correction to each weight each 

time the hypothesized evaluation function predicts a value that differs 

from the training value. This algorithm works well when the hypothesis 
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representation considered by the learner defines a continuously 

parameterized space of potential hypotheses. 

 To be precise, it’s better to follow this perspective of learning as a search 

problem in order to characterize learning methods  by  their  search 

strategies and by the underlying structure of  the  search  spaces  they 

explore. This viewpoint is useful in formally analyzing the relationship 

between the size of the hypothesis space to be searched, the number of 

training examples available, and the confidence we can have that a 

hypothesis consistent with the training data will correctly generalize to 

unseen examples. 

 
Concept Learning: 

Concept learning: Inferring a boolean-valued function from training examples of 

its input and output. 

Terminology and notation: 

1. The set of items over which the concept is defined is called the set of instances 

and denoted by X. 

2. The concept or function to be learned is called the target concept and denoted 

by 

c : X -> {0, 1}. 

3. Training examples consist of an instance x ∈X along with its  target  concept 

value c(x). (An instance x is positive if c(x) = 1 and negative if c(x) = 0.) 

Hypothesis Spaces and Inductive Learning 

Given a set of training examples of the target concept c, the problem faced by the 

learner is to hypothesize, or estimate, c. 

 The set of all possible hypotheses that the learner may consider is denoted H. 

 The goal of the learner is to find a hypothesis h ∈ H such that h(x) = c(x) for all x 

∈ X. 
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 The inductive learning hypothesis: Any hypothesis found to approximate the target 

function well over a sufficiently large set of training examples will also approximate 

the target function well over other unobserved examples. 

Hypothesis  Representation 

 The hypothesis space is usually determined by the human designer’s 

choice of hypothesis representation. 

 We assume: 

1. An instance is represented as a tuple of attributes 

<a1 = v1, . . . , an = vn> 

2. A hypothesis is represented as a conjunction of constraints on instance 

attributes. 

3. Possible constraints are ai = v (specifying a single value),? (any value is 

acceptable), and ; ∅ (no value is acceptable). 

 
A Simple Concept Learning Task 

Target concept: Proper name. 

Instances: Words (in text). 

Instance attributes: 

1. Capitalized: Yes, No. 

2. Sentence-initial: Yes, No. 

3. Contains hyphen: Yes, No. 

 

Training examples: 
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UNIT-2 
Artificial Neural Networks 

Artificial neural networks (ANNs) provide a general, practical method for 

learning real-valued, discrete-valued, and vector-valued functions from examples. 

Algorithms such as BACKPROPAGATION use gradient descent to tune network 

parameters to best fit a training set of input-output pairs. ANN learning is robust 

to errors in the training data and has  been successfully applied to problems such 

as interpreting visual scenes, speech recognition, and learning robot control 

strategies. 
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 NEURAL NETWORK REPRESENTATIONS 
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These are called "hidden" units because their output is available only within 

the network and is not available as part of the global network output. 

The network structure of ALYINN is typical of many ANNs. Here the 

individual units are interconnected in layers that form a directed acyclic 

graph(DAG). In general, ANNs can be graphs with many types of structures-acyclic 

or cyclic, directed or undirected. This chapter will focus on the most common and 

practical ANN approaches, which are based on the BACKPROPAGATION algorithm. 

The BACK- PROPAGATION algorithm assumes the network is a fixed structure 

that corresponds to a directed graph, possibly containing cycles. Learning 

corresponds to choosing a weight value for each edge in the graph. Although 

certain types of cycles are allowed, the vast majority of practical applications 

involve acyclic feed-forward networks, similar to the network structure used by 

ALVINN. 

APPROPRIATE PROBLEMS FOR NEURAL NETWORK LEARNING It is 

appropriate for problems with the following characteristics: 

Instances are represented by many attribute-value pairs. 

The target function output may be discrete-valued, real-valued, or a vector 

of several real- or discrete-valued attributes. 

The training examples may contain errors. 

Long training times are acceptable. 

Fast evaluation of the learned target function may be required. Although 

ANN learning times are relatively long, evaluating the learned network, in order to 

apply it to a subsequent instance, is typically very fast. For example, ALVINN 

applies its neural network several times per second to continually update its 

steering command as the vehicle drives forward. 

The ability of humans to understand the learned target function is not 

important. 

 PERCEPTRON - the most simple ANN system 
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 Representational Power of Perceptron 

In fact, AND and OR can be viewed as special cases of m-of-n functions: that 

is, functions where at least m of the n inputs to the perceptron must be true. The 

OR function corresponds to rn = 1 and the AND function to m = n. Any m-of-n 

function is easily represented using a perceptron by setting all input weights to the 

same value (e.g., 0.5) and then setting the threshold wo accordingly. 

In fact, every boolean function can be represented by some network of 

perceptrons only two levels deep, in which the inputs are fed  to  multiple units, and 

the outputs of these units are then input to a second, final stage. 

 

 The Perceptron Training Rule 
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Let us begin by understanding how to learn the weights for a single 

perceptron. Here the precise learning problem is to determine a weight vector that 

causes the perceptron to produce the correct f 1 output for each of the given 

training examples. Several algorithms are known to solve this learning problem. 

Here we consider two: the perceptron rule and the delta rule (a variant of the LMS 

rule used in Chapter 1 for learning evaluation functions). 

One way to learn an acceptable weight vector is to begin with random 

weights, then iteratively apply the perceptron to each training example, modifying 

the perceptron weights whenever it misclassifies an example. This process is 

repeated, iterating through the training examples as many times as needed until 

the perceptron classifies all training examples correctly. Weights are modified at 

each step according to the perceptron training rule, which revises the weight wi  

associated with input xi according to the rule wi <- wi + △wi, where △wi = q(t - 

o)xi. Here t is the target output for the current training example, o is the output 

generated by the perceptron, and q is a positive constant called the learning rate. 

The role of the learning rate is to moderate the degree to which weights are 

changed at each step. It is usually set to some small value (e.g., 0.1) and is 

sometimes made to decay as the number of weight-tuning iterations increases. 

Why should this update rule converge toward successful weight values? In 

this case, (t - o) is zero, making △wi zero, so that no weights are updated. Suppose 

the perceptron outputs a -1, when the target output is + 1.... 

In fact, the above learning procedure can be proven to converge within a 

finite number of applications of the perceptron training rule to a weight vector that 

correctly classifies all training examples, provided the training examples are 

linearly separable and provided a sufficiently small 7 is used (see Minsky and 

Papert 1969). If the data are not linearly separable, convergence is not assured. 

 Gradient Descent and the Delta Rule 

If the training examples are not linearly separable, the delta rule converges 

toward a best-fit approximation to the target concept. 
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The key idea behind the delta rule is to use gradient descent to search the 

hypothesis space of possible weight vectors to find the weights that best fit the 

training examples. This rule is important because gradient descent provides the 

basis for the BACKPROPAGATION algorithm, which can learn networks with many 

interconnected units. It is also important because gradient descent can serve as 

the basis for learning algorithms that must search through hypothesis spaces 

containing many different types of continuously parameterized hypotheses. 

In order to derive a weight learning rule for linear units, let us begin by 

specifying a measure for the training error of a hypothesis (weight vector), relative 

to the training examples. Although there are many ways to define this error, one 

common measure that will turn out to be especially convenient is 

 

where D is the set of training examples, td is the target output for training 

example d, and od is the output of the linear unit for training example d. 

 
 
 
 
 
 
 

 VISUALIZING THE HYPOTHESIS SPACE 
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 DERIVATION OF THE GRADIENT DESCENT RULE 
 

To summarize, the gradient descent algorithm for training linear units is as 

follows: Pick an initial random weight vector. Apply the linear unit to all training 

examples, then compute Awi for each weight according to Equation (4.7). Update 

each weight wi by adding Awi, then repeat this process. This algorithm is given in  

Table 4.1. 
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Because the error surface contains only a single  global  minimum,  this 

algorithm will converge to a weight vector with minimum error,  regardless  of 

whether the training examples are linearly separable, given a sufficiently small 

learning rate q is used. If r) is too large, the gradient descent search runs the risk 

of overstepping the minimum in the error surface rather than settling into it. For 

this reason, one common modification  to the algorithm is  to gradually reduce the 

value of r) as the number of gradient descent steps grows. 

 STOCHASTIC APPROXIMATION TO GRADIENT DESCENT 

Gradient descent is an important general paradigm  for  learning.  It  is  a 

strategy for searching through a large or infinite hypothesis  space  that  can  be 

applied whenever (1) the hypothesis space contains continuously parameterized 

hypotheses (e.g., the weights in a linear  unit),  and  (2)  the  error  can  be 

differentiated with respect to these hypothesis parameters. The key practical 

difficulties in applying gradient descent are (1) converging to a local minimum can 

sometimes be quite slow (i.e., it can require many thousands of gradient  descent 

steps), and (2) if there are multiple local minima in the error surface, then there is 

no guarantee that the procedure will find the global minimum. 
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One common variation on gradient descent intended to alleviate these 

difficulties is called incremental gradient descent, or alternatively stochastic 

gradient descent. Whereas the gradient descent training rule presented  in 

Equation (4.7) computes weight updates after summing over all the training 

examples in D, the idea behind stochastic gradient descent is to approximate this 

gradient descent search by updating weights incrementally, following the 

calculation of the error for each individual example. The modified training rule is 

like the training rule given by Equation (4.7) except that as we iterate through 

each training example we update the weight according to △wi = q(t - o)xi, where t, 

o, and xi are the target value, unit output, and ith input for the training example 

in question. 

One way to view this stochastic gradient descent is to consider a distinct 

error function defined for each individual training example d as follows 

where t, and od are the target value and the unit output value for training 

example d. 

The key differences between standard  gradient  descent  and  stochastic 

gradient descent are: 

In standard gradient descent, the error is summed over all examples before 

updating weights, whereas in stochastic gradient descent weights are updated 

upon examining each training example. 

Summing over multiple examples in standard gradient descent requires 

more computation per weight update step. On the other hand, because it uses the 

true gradient, standard gradient descent is often used with a larger step size per  

weight update than stochastic gradient descent. 

In cases where there are multiple local minima with respect to E(->w), 

stochastic gradient descent can sometimes avoid falling into these local minima 

because it uses the various △Ed(->w) rather than △E(->w) to guide its search. 
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Both stochastic and standard gradient descent methods are commonly used 

in practice. 

Notice the delta rule in Equation (4.10) is similar to the perceptron training 

rule in Equation (4.4.2). In fact, the  two  expressions  appear  to  be  identical. 

However, the rules are different because in the delta rule o refers to the linear unit 

output o(->x) = ->w * ->x, whereas for the perceptron  rule  o  refers  to  the 

thresholded output o(->x) = sgn(->w * ->x). 

 MULTILAYER NETWORKS AND THE BACKPROPAGATION ALGORITHM 

 A Differentiable Threshold Unit 

What type of unit shall we use as the basis for constructing  multilayer 

networks? At first we might be tempted to choose the linear units discussed in the 

previous section, for which we have already  derived  a  gradient  descent  learning 

rule. However, multiple layers of cascaded linear units still produce only linear 

functions, and we prefer networks capable of  representing  highly  nonlinear 

functions. The perceptron unit is another possible choice, but its discontinuous 

threshold makes it undifferentiable  and  hence  unsuitable  for  gradient  descent. 

What we need is a unit whose output is a nonlinear function of its inputs, but whose 

output is also a differentiable function  of  its  inputs.  One  solution  is  the  sigmoid unit-

a unit very much like a perceptron, but based on a smoothed, differentiable threshold 

function. 

 
The sigmoid function has the useful property that its derivative is easily 

expressed in terms of  its  output,  as  we  shall  see,  the  gradient  descent  learning 

rule makes use of this derivative. 
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 The BACKPROPAGATION Algorithm 
 

One major difference in the case of multilayer networks is that the error 

surface can have multiple local minima, in contrast to the single-minimum 

parabolic error surface shown in Figure 4.4. Unfortunately, this means that 

gradient descent is guaranteed only to converge toward some local minimum, and 

not necessarily the global minimum error. Despite this obstacle, in practice 

BACKPROPAGATION has been found to produce excellent results in many real- 

world applications. 
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The BACKPROPAGATION algorithm is presented in Table 4.2. The notation 

used here is the same as that used in earlier sections, with the  following 

extensions: 
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 ADDING MOMENTUM 
 

To see the effect of this momentum term, consider that the gradient descent 

search trajectory is analogous to that of a (momentumless) ball  rolling  down  the 

error surface. The effect of a! is to  add  momentum  that  tends  to  keep  the  ball 

rolling in the same direction from one iteration  to  the  next.  This  can  sometimes 

have the effect of keeping the ball rolling through small local minima in the error 

surface, or along flat regions in the surface where the ball would stop if there were 

no momentum. It also has the effect of gradually increasing  the  step  size  of  the 

search  in  regions  where  the  gradient  is  unchanging,  thereby  speeding 

convergence. 
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 LEARNING IN ARBITRARY ACYCLIC NETWORKS 
 

 

Derivation of the BACKPROPAGATION Refer 

P101-P103 

 REMARKS ON THE BACKPROPAGATION ALGORITHM 

 Convergence and Local Minima 

Because the error surface for multilayer networks may contain many 

different local minima, gradient descent can become trapped in any of these. As a 

result, BACKPROPAGATION over multilayer networks is only guaranteed to 

converge toward some local minimum in E and not necessarily to the global 

minimum error. 

Common heuris- tics to attempt to alleviate the problem of local  minima 

include: 

Add a momentum term to the weight-update rule as described in Equa- tion 

(4.18). 

Use stochastic gradient descent rather than true gradient descent. 
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Train multiple networks using the same data, but  initializing  each  network 

with different random weights. If the different training efforts lead to different local  

minima, then the network with the  best  performance  over  a  separate  validation 

data set can be selected. Alternatively, all networks can be retained and treated as 

a "committee" of networks whose output is the (possibly weighted) average of the 

individual network outputs. 

 Representational Power of Feedforward Networks 

What set of functions  can  be  represented  by  feedfonvard  networks?  Of 

course the answer depends on the  width  and  depth  of  the  networks.  Although 

much is still unknown about which  function  classes  can  be  described  by  which 

types of networks, three quite general results are known: 

Boolean functions. To see how this can  be  done,  consider  the  following 

general scheme for representing an arbitrary boolean function: For each  possible 

input vector, create a distinct hidden unit and set its weights so that it activates if 

and only if this specific vector  is  input  to  the  network.  This  produces  a  hidden 

layer that will always have exactly one unit active. Now implement the output unit 

as an OR gate that activates just for the desired input patterns. 

Continuous functions. 

Arbitraryfunctions. The proof of this involves showing that any function can 

be approximated by a linear combination of many localized functions that have 

value 0 everywhere except for some small region, and then showing that two layers 

of sigmoid units are sufficient to produce good local approximations. 

 Hypothesis Space Search and Inductive Bias 

Notice this hypothesis space is continuous, in contrast to the hypothesis 

spaces of decision tree learning and other methods based on discrete 

representations. The fact that it is continuous, together with the fact that E is 

differentiable with respect to the continuous parameters of the hypothesis, results  

in a well-defined error gradient that provides a very useful structure for organizing 

the search for the best hypothesis. This structure is quite different from the 

general-to-specific ordering used to organize the search for symbolic concept 



31 
 

learning algorithms, or the simple-to-complex ordering over decision trees used by 

the ID3 and C4.5 algorithms. 

One can roughly characterize it as smooth in- terpolation between data 

points. Given two positive training examples with no negative examples between 

them, BACKPROPAGATION will tend to label points in between as positive 

examples as well. 

 Hidden Layer Representation 

Consider, for example, the network shown in Figure 4.7. Here,  the  eight 

network inputs are  connected  to  three  hidden units, which  are  in  turn  connected 

to the eight output units. Because of this structure, the three hidden units will  be 

forced  to   re-represent   the   eight   input   values   in   some   way   that   captures 

their relevant features, so that this hidden layer representation can be used by the 

output units to compute the correct target values. 

 

 Generalization, Overfitting, and Stopping Criterion 

One obvious choice is to continue training until the errcr E on the training 

examples falls below some predetermined threshold. In fact, this is a poor strategy 
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because BACKPROPAGATION is susceptible to overfitting the training examples at 

the cost of decreasing generalization accuracy over other unseen examples. 

Given enough weight-tuning iterations, BACKPROPAGATION will often be 

able to create overly complex decision surfaces that fit noise in the training data or 

unrepresen- tative characteristics of the particular training sample. This 

overfitting problem is analogous to the overfitting problem in decision tree learning 

(see Chapter 3). 

Several techniques are available to address the overfitting problem for 

BACK- PROPAGATION learning: 

One approach, known as weight decay, is to decrease  each  weight by some 

small factor during each iteration. This is equivalent to modifying the definition of 

E to include a penalty term corresponding to the total magnitude of the network 

weights. The motivation for this approach is to keep weight values small, to bias 

learning against complex decision surfaces. 

One of the most successful methods for overcoming the overfitting problem 

is to simply provide a set of validation data to the algorithm in addition to the 

training data. The algorithm monitors the error with respect to this validation set,  

while using the training set to drive the gradient descent search. Clearly, it should 

use the number of iterations that produces the lowest error over the validation set, 

since this is the best indicator of network performance over unseen examples. In 

typical implementations of this approach, two copies of the network weights are 

kept: one copy for training and a separate copy of the  best-performing weights 

thus far, measured by their error over the validation set. Once the trained weights 

reach a significantly higher error over the validation set than the stored weights, 

training is terminated and the stored weights are returned as the final hypothesis. 

In general, the issue of overfitting and how to overcome it  is a subtle one. 

The above cross-validation approach works best when extra data are available to 

provide a validation set. Unfortunately, however, the problem of overfitting is most 

severe for small training sets. In these cases, a k-fold cross-validation approach is 

sometimes used, in which cross validation is performed k different times, each 
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time using a different partitioning of the data into training and validation sets, and 

the results are then averaged. In one version of this approach, the m available 

examples are partitioned into k disjoint subsets, each of size m/k. The cross- 

validation procedure is then run k times, each time using a different one of these 

subsets as the validation set and combining the other subsets for the training set. 

Thus, each example is used in the validation set for one of the experiments and in 

the training set for the other k - 1 experiments. On each experiment the above 

cross-validation approach is used to determine the number of iterations i that 

yield the best performance on the validation set. The mean /i of these estimates for  

i is then calculated, and a final run of BACKPROPAGATION is performed training 

on all n examples for /i iterations, with no validation set. This procedure is closely 

related to the procedure for comparing two learning methods based on limited 

data, described in Chapter 5. 

 
Decision Tree Learning: 

Decision tree learning is one of the most widely used and practical methods 

for inductive inference. It is a method for approximating discrete-valued functions 

that is robust to noisy data and capable of learning disjunctive expressions. This 

chapter describes a family of decision tree learning algorithms that includes widely 

used algorithms such as ID3, ASSISTANT, and C4.5. These decision tree learning 

methods search a completely expressive hypothesis space and thus avoid the 

difficulties of restricted hypothesis spaces. Their inductive bias is a preference for 

small trees over large trees. 
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In general, decision trees represent a disjunction of conjunctions of 

constraints on the attribute values of instances. Each path from the tree root to a 

leaf corresponds to a conjunction of attribute tests, and the tree itself to a 

disjunction of these conjunctions. For example, the decision tree shown in Figure 

3.1 corresponds to the expression: (Outlook = Sunny ^ Humidity  =  Normal)  v 

(Outlook = Overcast) v (Outlook = Rain A Wind = Weak). 

Decision tree learning is generally best suited to problems with the following 

characteristics: instances are represented by attribute-value pairs; the target 

function has discrete output values; disjunctive descriptions may be required; the 

training data may contain errors; the training data may contain missing attribute 

values. 

 THE BASIC DECISION TREE LEARNING ALGORITHM 

Our basic algorithm, ID3, learns decision trees by constructing them 

topdown, beginning with the question "which attribute should be tested at the root 

of the tree?'To answer this question, each instance attribute is evaluated using a 

statistical test to determine how well it alone classifies the training examples. The 

best attribute is selected and used as the test at the root node of the tree. A 

descendant of the root node is then created for each possible value of this 
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attribute, and the training examples are sorted to the appropriate descendant node 

(i.e., down the branch corresponding to the example's value for this attribute). The 

entire process is then repeated using the training examples associated with each 

descendant node to select the best attribute to test at that point in the tree. This 

forms a greedy search for an acceptable decision tree, in which the algorithm never 

backtracks to reconsider earlier choices. A simplified version of the algorithm, 

specialized to learning boolean-valued functions (i.e., concept learning), is 

described in Table 3.1. 

 

 Which Attribute Is the Best Classifier? We will define a 

statistical property, called informution gain, that measures how well a 

given attribute separates the training examples according to their target 

classification. ID3 uses this information gain measure to select among 

the candidate attributes at each step while growing the tree. 



36 
 

In order to define information gain precisely, we begin by defining a measure 

commonly used in information theory, called entropy, that characterizes the 

(im)purity of an arbitrary collection of examples. Given a collection S, containing 

positive and negative examples of some target concept, the entropy of S relative to 

this boolean classification is 

 

where p+, is the proportion of positive examples in S and p-, is  the 

proportion of negative examples in S. In all calculations involving entropy we 

define 0 log 0 to be 0. 

More generally, if the target attribute can take on c different values, then the 

entropy of S relative to this c-wise classification is defined as 

 

where pi is the proportion of S belonging to class i. Note the logarithm is still 

base 2 because entropy is a measure of the expected encoding length measured in 

bits. Note also that if the target attribute can take on c  possible  values,  the 

entropy can be as large as log2c. 

The measure we will use, called information gain, is simply the expected 

reduction in entropy caused by partitioning the examples according to this 
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attribute. More precisely, the  information  gain,  Gain(S,  A)  of  an  attribute  A, 

relative to a collection of examples S, is defined as 

 

 
where Values(A) is the set of all possible values for attribute A, and Sv is the 

subset of S for which attribute A has value v (i.e., Sv = {s ∈ SIA(s) = v}). 

Information gain is precisely the measure used by ID3 to select the best 

attribute at each step in growing the tree. The use of information gain to evaluate 

the relevance of attributes is summarized in Figure 3.3. 

 
 An Illustrative Example 

... 

 HYPOTHESIS SPACE SEARCH IN DECISION TREE LEARNING 

By viewing ID3 in terms of its search space and search strategy, we can get 

some insight into its capabilities and limitations: 

ID3's hypothesis space of all decision trees is a complete space of finite discrete-

valued functions, relative to the available attributes. Because every finite discrete-

valued function can be represented by some decision tree, ID3 avoids one 
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of the major risks of methods that search incomplete hypothesis spaces (such as 

methods that consider only conjunctive hypotheses): that the hypothesis space 

might not contain the target function. 

ID3 maintains only a single current hypothesis as it searches through the 

space of decision trees. This contrasts, for example, with the earlier version space 

Candidate-Elimination method, which maintains the set of all hypotheses 

consistent with the available training examples. By determining only a single 

hypothesis, ID3 loses the capabilities that follow from explicitly representing all 

consistent hypotheses. 

ID3 in its pure form  performs  no  backtracking  in  its  search.  Once  it,selects 

an attribute to test at a particular  level  in  the  tree,  it  never  backtracks  to 

reconsider this choice. Therefore, it  is  susceptible  to  the  usual  risks  of  hill- 

climbing search without backtracking: converging to locally  optimal  solutions  that 

are not globally optimal. Below we discuss an extension that adds a form of 

backtracking (post-pruning the decision tree. 

ID3 uses all training examples at each step in the search to make 

statistically based decisions regarding how to refine its current hypothesis. One 

advantage of using statistical properties of all the examples (e.g., information gain) 

is that the resulting search is much less sensitive to errors in individual training 

examples. ID3 can be easily extended to handle noisy training data by modifying 

its termination criterion to accept hypotheses that imperfectly fit  the  training 

data. 

 
 

trees. 

 INDUCTIVE BIAS IN DECISION TREE LEARNING 

Approximate  inductive  bias  of  ID3:  Shorter  trees  are  preferred  over  larger 

 

A  closer  approximation  to  the  inductive  bias  of  ID3:  Shorter  trees  are 

preferred over longer trees. Trees that place high information gain attributes close 

to the root are preferred over those that do not. 

 Restriction Biases and Preference Biases 
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The inductive bias of ID3 is thus a preference for certain hypotheses over 

others (e.g., for shorter hypotheses), with no hard restriction on the hypotheses 

that can be eventually enumerated. This form of bias is typically called  a 

preference bias (or, alternatively, a search bias). In contrast, the bias of the 

CANDIDATE-ELIMINATION alorithm is in the form of a categorical restriction on 

the set of hypotheses considered. This form of bias is typically called a restriction 

bias (or, alternatively, a language bias). 

Typically, a preference bias is more desirable than a  restriction  bias, 

because it allows the learner to work within a complete hypothesis space that is 

assured to contain the unknown target function. In  contrast,  a  restriction  bias 

that strictly limits the set of potential hypotheses is generally less desirable, 

because it introduces the possibility of excluding the unknown target function 

altogether. 

Whereas ID3 exhibits a purely preference bias and CANDIDATE- 

ELIMINATION a purely restriction bias, some learning systems combine both. 

Consider, for example, the program described in Chapter 1 for learning  a 

numerical evaluation function for game playing. In this case, the learned 

evaluation function is represented by a linear combination of a fixed set of board  

features, and the learning algorithm adjusts the parameters of this linear 

combination to best fit the available training data. In this case, the decision to use 

a linear function to represent the evaluation function introduces a restriction bias 

(nonlinear evaluation functions cannot be represented in this form). At the same 

time, the choice of a particular parameter tuning method (the LMS algorithm in 

this case) introduces a preference bias stemming from the ordered search through 

the space of all possible parameter values. 

 Why Prefer Short Hypotheses? 

Is ID3's inductive bias favoring shorter decision trees a sound basis for 

generalizing beyond the training data? Philosophers and others have debated this 

question for centuries, and the debate remains unresolved to this day. William of 
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Occam was one of the first to discusst the question, around the year 1320, so this 

bias often goes by the name of Occam's razor. 

Occam's razor: Prefer the simplest hypothesis that fits the data. 

Of course giving an inductive  bias  a  name  does  not  justify  it.  Why  should 

one prefer simpler hypotheses? Notice that scientists  sometimes  appear  to  follow 

this inductive  bias.  One  argument  is  that  because  there  are  fewer  short 

hypotheses than long ones (based on straightforward combinatorial arguments), it 

is less likely that one will  find  a  short  hypothesis  that  coincidentally  fits  the 

training data. In contrast  there  are  often  many  very  complex  hypotheses  that  fit 

the current training data but fail to generalize correctly to subsequent data. 

Upon closer examination, it turns out there is a major difficulty with the 

above argument. By the same reasoning we could have argued that one should 

prefer decision trees containing exactly 17 leaf nodes with 11 nonleaf nodes, that 

use the decision attribute A1 at the root, and test attributes A2 through All, in  

numerical order. There are relatively few such trees, and we might argue (by the 

same reasoning as above) that our a priori chance of finding one consistent with 

an arbitrary set of data is therefore small..... 

A second problem with the above argument for Occam's razor is that the size 

of a hypothesis is determined by  the  particular  representation  used  internally  by 

the learner. Two learners using different internal representations could therefore 

anive at different hypotheses, both justifying their contradictory conclusions by 

Occam's razor! 

 ISSUES IN DECISION TREE LEARNING 

Practical issues in learning decision trees include determining how deeply to 

grow the decision tree, handling continuous attributes, choosing an appropriate 

attribute selection measure, andling training data with missing attribute values, 

handling attributes with differing costs, and improving computational efficiency.  

Below we discuss each of these issues and extensions to the basic ID3 algorithm 

that address them. ID3 has itself been extended to address most of these issues, 

with the resulting system renamed C4.5 (Quinlan 1993). 



41 
 

 Avoiding Overfitting the Data 

Definition: Given a hypothesis space H, a hypothesis h E H is said to overlit 

the training data if there exists some alternative hypothesis h' E H, such that h 

has smaller error than h' over the training examples, but h' has a  smaller error 

than h over the entire distribution of instances. 

Random noise in the training examples can lead to overfitting. In fact, 

overfitting is possible even when the training data are noise-free, especially when 

small numbers of examples are associated with leaf nodes. In this case, it is quite 

possible for coincidental regularities to occur, in which some attribute happens to 

partition the examples very well, despite being unrelated to the actual target 

function. Whenever such coincidental regularities exist, there is a risk of 

overfitting. 

There are several approaches to avoiding overfitting in decision tree learning. 

These can be grouped into two classes: approaches that stop growing the tree 

earlier, before it reaches the point where it perfectly classifies the training data;  

approaches that allow the tree to overfit the data, and then post-prune the tree. 

Although the first of these approaches might seem.more direct, the second 

approach of post-pruning overfit trees has been found to be more successful in 

practice. This is due to the difficulty in the first approach of estimating precisely 

when to stop growing the tree. 

A key question is what criterion is to be used to determine the correct final 

tree size. Approaches include: 

Use a separate set of examples, distinct from the training examples, to 

evaluate the utility of post-pruning nodes from the tree. 

Use all the available data for training, but apply a statistical test to estimate 

whether expanding (or pruning) a particular node is likely to produce  an 

improvement beyond the training set. 

Use an explicit measure of the complexity for encoding the training examples 

and the decision tree, halting growth of the tree when this encoding size is 

minimized. This approach, based on a heuristic called the Minimum Description 



42 
 

Length principle, is discussed further in Chapter 6, as well as  in  Quinlan  and 

Rivest (1989) and Mehta et al. (199.5). 

The first of the above approaches is the most common and is often referred 

to as a training and validation set approach. Of course, it is important that the 

validation set be large enough to itself provide a statistically significant sample of 

the instances. One common heuristic is to withhold one-third of the available 

examples for the validation set, using the other two-thirds for training. 

 REDUCED ERROR PRUNING 

Nodes are removed only if the resulting pruned tree performs no worse than 

the original over the validation set. This  has the effect that  any leaf node added 

due to coincidental regularities in the training set is likely to be pruned because 

these same coincidences are unlikely to occur in the validation set. 

Using a separate set of data to  guide  pruning  is  an  effective  approach 

provided a large amount of data is available. The major drawback of this approach 

is that when data is limited, withholding part of  it  for  the  validation  set  reduces 

even further the number of examples available for training. 

 RULE POST-PRUNING 

Rule post-pruning involves the following steps: 

1. Infer the decision tree from the training set, growing the tree until the 

training data is fit as well as possible and allowing overfitting to occur. 

2. Convert the learned tree into an equivalent set  of  rules  by  creating  one 

rule for each path from the root node to a leaf node. 

3. Prune (generalize) each rule by removing any preconditions that result in 

improving its estimated accuracy. 

4. Sort the pruned rules by their estimated accuracy, and consider them in 

this sequence when classifying subsequent instances. 

To illustrate, consider again the decision tree in Figure 3.1............. 

Why convert the decision tree to rules before pruning? There are three main 

advantages: 
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Converting to rules allows distinguishing among the different contexts in 

which a decision node is used. Because  each distinct path  through the decision 

tree node produces a distinct rule, the pruning decision regarding that attribute 

test can be made differently for each path. In contrast, if the tree itself  were 

pruned, the only two choices would be to remove the decision node completely, or 

to retain it in its original form. 

Converting to rules removes  the  distinction  between  attribute  tests  that 

occur near the root of the  tree  and  those  that  occur  near  the  leaves.  Thus,  we 

avoid messy bookkeeping issues such as how to reorganize the tree if the root node 

is pruned while retaining part of the subtree below this test. 

Converting to rules improves readability. Rules are often easier for to 

understand. 

 Incorporating Continuous-Valued Attributes 

This can be accomplished by dynamically defining new discrete- valued 

attributes that partition the continuous attribute value into a discrete set of 

intervals. In particular, for an attribute A that is continuous-valued, the algorithm 

can dynamically create a new boolean attribute A, that is true if A < c and false 

otherwise. 

The  only   question   is   how   to   select   the   best   value   for   the   threshold 

c. Clearly, we would like to pick a threshold, c, that produces the greatest 

information gain. As an example, suppose we wish to include the continuous- 

valued attribute Temperature in describing the training example days in the 

learning task of Table 3.2....... 

Alternative Measures for Selecting Attribute 

information gain 

gain ratio 

An alternative to the GainRatio, designed to directly address the above 

difficulty, is a distance-based measure introduced by Lopez de Mantaras (1991). 

This measure is based on defining a distance metric between partitions of'the data. 

Each attribute is evaluated based on the distance between the data partition it 
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creates and the perfect partition (i.e., the partition that perfectly classifies the 

training data). The attribute whose partition is closest to the perfect partition is 

chosen. 

A variety of other selection measures have been proposed as well (e.g., see 

Breiman et al. 1984; Mingers 1989a; Kearns and Mansour 1996; Dietterich et al.  

1996). 

 Handling Training Examples with Missing Attribute Values 

One strategy for dealing with the missing attribute value is to assign it the 

value that is most common among training examples at node n. 

A second, more complex procedure is to assign a probability to each of the 

possible values of A rather than simply assigning the most common value to A(x). 

These probabilities can be estimated  again  based  on  the  observed  frequencies  of 

the various values for A among the examples at node n. 

 Handling Attributes with Differing Costs 

ID3 can be modified to take into  account attribute costs  by introducing a 

cost term into the attribute selection measure. For example, we might divide the 

Gain by the cost of the attribute, so that lower-cost attributes would be preferred. 

While such cost-sensitive measures do not guarantee finding an optimal cost- 

sensitive decision tree, they do bias the search in favor of low-cost attributes. 

A large variety of extensions to the basic ID3 algorithm has been developed 

by different researchers. These include methods for post-pruning trees, handling 

real-valued attributes, accommodating training examples with missing attribute  

values, incrementally refining decision trees as new training examples become 

available, using attribute selection measures other than information gain, and 

considering costs associated with instance attributes. 
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Unit-3 
Bayesian Learning: 

 INTRODUCTION 

Bayesian learning methods are relevant to our study of machine learning 

for two different reasons. First, Bayesian learning algorithms that calculate 

explicit probabilities for hypotheses, such as the naive Bayes classifier, are 

among the most practical approaches to certain types of  learning 

problems. The second reason that Bayesian methods are important to our 

study of machine learning is that they provide a useful perspective for 

understanding many learning algorithms that do not explicitly manipulate 

probabilities. 

One practical difficulty in applying Bayesian methods is that  they 

typically require initial knowledge of many probabilities. When these 

probabilities are not known in advance they are often estimated based on 

background knowledge, previously available data, and assumptions about the 

form of the underlying distributions. A second practical difficulty is the 

significant computational cost required to determine the Bayes optimal 

hypothesis in the general case (linear in the number of candidate hypotheses). 

 BAYES THEOREM 
 

The most probable hypothesis h ∈ H given the observed data D (or at 

least one of the maximally probable if there are several) is called a maximum a 

posteriori (MAP) hypothesis. 
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We will assume that every hypothesis in H is equally probable a priori 

(P(hi) = P(hj) for all hi and hj in H). In this case we can further  simplify 

Equation (6.2) and need only consider the term P(D|h) to find the most 

probable hypothesis. 

 

 BAYES THEOREM AND CONCEPT LEARNING 
 

 Brute-Force Bayes Concept Learning 
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This algorithm may require significant computation, because it applies 

Bayes theorem to each hypothesis in H to calculate P(hJ D). While this may 

prove impractical for large hypothesis spaces, the algorithm is still of interest 

because it provides a standard against which we may judge the performance of 

other concept learning algorithms. 

 

where 
 

 

, because every hypothesis h in H has the 

same prior probability; 
 
 
 

 

, because we 

assume noise-free training data, the probability of observing classification di 

given h is just 1 if di = h(xi) and 0 if di != h(xi). 

 MAP Hypotheses and Consistent Learners 

We will say that a learning algorithm is a consistent learner provided it 

outputs a hypothesis that commits zero errors over the training examples. 

Given the above analysis, we can conclude that every consistent  learner 

outputs a MAP hypothesis, if we assume a uniform prior probability 
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distribution over H (i.e., P(hi) = P(hj) for all i, j), and ifwe assume deterministic, 

noise free training data (i.e., P(D Ih) = 1 if D and h are consistent, and 0 

otherwise). 

To summarize, the Bayesian framework allows one way to characterize 

the behavior of learning algorithms (e.g., FIND-S),e ven when the learning 

algorithm does not explicitly manipulate probabilities. By identifying 

probability distributions P(h) and P(Dlh) under which the algorithm outputs 

optimal (i.e., MAP) hypotheses, we can characterize the implicit assumptions , 

under which this algorithm behaves optimally. 

 MAXIMUM LIKELIHOOD AND LEAST-SQUARED ERROR 

HYPOTHESES 

A straightforward Bayesian analysis will show that under certain 

assumptions any learning algorithm that minimizes the squared error between 

the  output  hypothesis  predictions  and  the  training  data  will  output  a 

maximum likelihood hypothesis. 

P165-P166probability densities and Normal distributions： 

 
 

. 

Thus,   Equation   (6.6)   shows    that    the    maximum    likelihood 

hypothesis hML is the one that minimizes  the  sum  of  the  squared  errors 

between the observed training values di and the  hypothesis  predictions  h(xi). 

This holds under the assumption that the observed training values di  are 

generated by adding random noise to the true target value, where this random 

noise is drawn independently for each example from a Normal distribution with 

zero mean. 

Of course, the maximum likelihood hypothesis might not be the MAP 

hypothesis, but if one assumes uniform prior probabilities over the hypotheses 

then it is. 
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 MAXIMUM LIKELIHOOD HYPOTHESES FOR PREDICTING 

PROBABILITIES 

In this section we derive a  weight-training  rule  for  neural  network 

learning that seeks to maximize G(h, D) using gradient ascent. 

To summarize section 6.4 and section 6.5, these two weight update rules 

converge toward maximum likelihood hypotheses in two different settings. The 

rule that minimizes sum of squared error seeks the maximum  likelihood 

hypothesis under the assumption that the training data can be modeled by 

Normally distributed noise added to the target function value. The rule that 

minimizes cross entropy seeks the maximum likelihood hypothesis under the 

assumption that the observed boolean value is a probabilistic  function  of  the 

input instance. 

 MINIMUM DESCRIPTION LENGTH PRINCIPLE 

Clearly, to minimize the expected code length we should assign  shorter 

codes to messages that  are  more  probable.  Shannon  and  Weaver  (1949) 

showed that the optimal code (i.e., the code that minimizes the expected 

message length) assigns -log2pi bits to encode message i. We will refer to the 

number of bits required to encode message i using code C  as  the  description 

length of message i with respect to C, which we denote by Lc(i). 

 

 

 BAYES OPTIMAL CLASSIFIER 
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No other classification method using the same hypothesis space  and 

same prior knowledge can outperform this method on average. This method 

maximizes the probability that the new instance is classified correctly, given 

the available data, hypothesis space, and prior probabilities over the 

hypotheses. 

Note one curious property of the Bayes optimal classifier is that the pre- 

dictions it makes can correspond to a hypothesis not contained in H! One way 

to view this situation is to think of the Bayes optimal classifier as effectively 

considering a hypothesis space H' different from the space of hypotheses H to 

which Bayes theorem is being applied. In particular, H' effectively includes 

hypotheses that perform comparisons between linear combinations of 

predictions from multiple hypotheses in H. 

 GIBBS ALGORITHM 
 

In particular, it implies  that  if  the learner  assumes  a  uniform  prior  over 

H, and if target concepts are in fact drawn from such a  distribution  when 

presented to the learner, then classifying the next instance according  to  a 

hypothesis drawn at random from the current version  space  (according  to  a 

uniform distribution), will have expected error at most twice that of the Bayes 

optimal classijier. Again, we have an example where a Bayesian analysis of a non-

Bayesian algorithm yields insight into the performance of that algorithm. 

 NAIVE BAYES CLASSIFIER 

The naive Bayes classifier applies to learning tasks where each instance 

x is described by a conjunction of attribute values and where the target 
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function f (x) can take on any value from some finite set V. A set of training 

examples of the target function is provided, and a new instance is presented,  

described by the tuple of attribute values (al, a2.. .a,). The learner is asked to 

predict the target value, or classification, for this new instance. 

The Bayesian approach: 
 

The problem is that the number of these terms(different P(al, a2.. an | vj) 

terms) is equal to the number of possible instances times the  number  of 

possible target values. Therefore, we need to see every instance in the instance 

space many times in order to obtain reliable estimates. 

The naive Bayes  classifier  is  based  on  the  simplifying  assumption  that 

the attribute values are conditionally independent(条件独立) given the target 

value. 

 

 
 
 

Whenever the naive Bayes assumption of conditional independence is 

satisfied, this naive Bayes classification VNB is identical to the MAP 

classification. 

Notice that in a naive Bayes classifier the number of distinct P(ai l vj) 

terms that must be estimated from the training data is just the number of 
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distinct attribute values times the number of distinct target values-a much 

smaller number than if we were to estimate the P(a1, a2 . . . an l vj) terms as 

first contemplated. 

 BAYESIAN BELIEF NETWORKS 

In this section we introduce the key concepts and the representation of 

Bayesian belief networks. 

Consider an arbitrary set of random variables Y1 . . . Yn, where each 

variable Yi can take on the set of possible values V(Yi). We define the joint 

space of the set of variables Y to be the cross product V(Y1) x V(Y2) x . . . V(Yn). 

In other words, each item in the joint space corresponds to one of the possible 

assignments of values to the tuple of variables (Y1 . . . Yn). The probability 

distribution over this joint space is called the joint probability distribution. A 

Bayesian belief network describes the joint probability distribution for a set of 

variables. 

 Conditional Independenc 

 Representation 

In general, a Bayesian network represents the joint probability 

distribution by specifying a set of conditional independence assumptions, 

represented by a directed acyclic graph), together with sets of local conditional 

probabilities. Each variable in the joint space is represented by a node in the 

Bayesian network. For each variable two types of information are specified, the 

network arcs and a conditional probability table. 

The joint probability for any desired assignment of values (y1, . . . , yn) to 

the tuple of network variables (Y1 . . . Yn) can be computed by the formula 
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 Inference 

In general, a Bayesian network can be used to compute the probability 

distribution for any subset of network variables given the values or 

distributions for any subset of the remaining variables. 

Exact inference of probabilities in general for  an  arbitrary  Bayesian 

network is known to be NP-hard (Cooper 1990). Numerous methods have been 

proposed for probabilistic inference in Bayesian networks, including exact 

inference methods and approximate  inference  methods  that  sacrifice  precision 

to gain efficiency. For example, Monte Carlo methods provide approximate 

solutions by randomly sampling the distributions of the unobserved variables 

(Pradham and Dagum 1996). 

 Learning Bayesian Belief Networks 

In the case where the network structure is given in advance and the 

variables are fully observable in the training examples, learning the conditional 
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probability tables is straightforward. We simply estimate the conditional 

probability table entries just as we would for a naive Bayes classifier. 

In the case where the network structure is given but only some of the 

variable values are observable in the training data, the learning problem is 

more difficult......6.11.5.... 

Gradient Ascent Training of Bayesian Networks P188-

P190 

 Learning the Structure of Bayesian Networks 

Learning Bayesian networks when the network structure is not known in 

advance is also difficult. 

 THE EM ALGORITHM 

In this section we describe the EM algorithm (Dempster et al. 1977), a 

widely used approach to learning in the presence of unobserved variables. The 

EM algorithm can be used even for variables whose value is never directly 

observed, provided the general form of the probability distribution governing 

these variables is known. 

 Estimating Means of k Gaussians 

 General Statement of EM Algorithm 

More generally, the EM algorithm can be applied in many settings where 

we wish to estimate some set of parameters 8 that describe an underlying 

probability distribution, given only the observed portion of the full data 

produced by this distribution. 
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Derivation of the k Means Algorithm P195-

P196 

 SUMMARY AND FURTHER READING 

Bayesian methods provide the  basis  for  probabilistic  learning  methods 

that accommodate (and require) knowledge about the prior probabilities of 

alternative hypotheses and about  the  probability  of  observing  various  data 

given the hypothesis. Bayesian methods allow assigning a posterior probability 

to each candidate hypothesis, based on these assumed priors and the observed 

data. 

Bayesian methods can be used to determine the most probable 

hypothesis given the data-the maximum a posteriori (MAP) hypothesis. This is 

the optimal hypothesis in the sense that no other hypothesis is more likely. 

The Bayes optimal classifier combines the predictions of all alternative 

hypotheses, weighted by their posterior probabilities, to calculate the most 

probable classification of each new instance. 

The naive Bayes classifier is a Bayesian learning method that  has  been 

found to be useful in many practical applications. It is called "naive" because it 

incorporates the simplifying assumption that attribute values are conditionally 

independent, given the classification of the instance.  When  this  assumption  is 

met, the naive Bayes classifier outputs the MAP classification. Even when this 

assumption is not met, as in  the  case  of  learning  to  classify  text,  the  naive 

Bayes classifier is often quite effective. Bayesian belief networks provide a more 

expressive representation for sets of conditional independence  assumptions 

among subsets of the attributes. 

The framework of Bayesian reasoning can provide a useful basis for 

analyzing certain learning methods that do not directly apply Bayes theorem. 

For example, under certain conditions it can be shown that minimizing the 

squared error when learning a real-valued target function corresponds to 

computing the maximum likelihood hypothesis. 

The Minimum Description Length principle recommends choosing the 

hypothesis that minimizes the description length of the hypothesis plus the 
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description length of the data given the hypothesis. Bayes theorem and basic 

results from information theory can be used to provide a rationale for this 

principle. 

In many practical learning tasks, some of the relevant instance variables 

may be unobservable. The EM algorithm provides a quite general approach to 

learning in the presence of unobservable variables. This algorithm begins with 

an arbitrary initial hypothesis. It then repeatedly calculates the expected values 

of the hidden variables (assuming the current hypothesis is correct), and then 

recalculates the maximum likelihood hypothesis (assuming the hidden 

variables have the expected values calculated by the first step). This procedure 

converges to a local maximum likelihood hypothesis, along with estimated 

values for the hidden variables. 

 
Computational Learning Theory: 

This theory seeks to answer questions such as "Under what conditions is 

successful learning possible and impossible?" and "Under what conditions is a 

particular learning algorithm assured of learning successfully?' Two specific 

frameworks for analyzing learning algorithms are considered. Within  the 

probably approximately correct (PAC) framework, we identify classes of 

hypotheses that can and cannot be  learned  from  a  polynomial  number  of 

training examples and  we  define  a  natural  measure  of  complexity  for 

hypothesis spaces that allows bounding the  number  of  training  examples 

required for inductive learning. Within the mistake bound framework, we 

examine the number of training errors that will be made by a learner before it 

determines the correct hypothesis. 

 INTRODUCTION 

Our goal is to answer questions such as: 

Sample complexity. How many training examples are needed for a learner 

to converge (with high probability) to a successful hypothesis? 
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Computational complexity. How much computational effort is needed for a 

learner to converge (with high probability) to a successful hypothesis? 

Mistake bound. How many training examples will the learner misclassify 

before converging to a successful hypothesis? 

As we might expect, the answers to the above questions depend on the 

particular setting, or learning model, we have in mind. 

 PROBABLY LEARNING AN APPROXIMATELY CORRECT 

HYPOTHESIS 

In this section we consider a particular setting for the learning problem, 

called the probably approximately correct (PAC) learning model. We begin by 

specifying the problem setting that defines  the  PAC  learning  model,  then 

consider the questions of how many training examples and  how  much 

computation are required in order to learn various classes of target functions 

within this PAC model. 

For the sake of simplicity, we  restrict  the  discussion  to  the  case  of 

learning boolean-valued concepts from noise-free training data. However, many 

of the results can be extended to the more general scenario of  learning  real- 

valued target functions (see, for example, Natarajan 1991), and some can be 

extended to learning from certain types of noisy data (see, for  example,  Laird 

1988; Kearns and Vazirani 1994). 

 The Problem Setting 

X refer to the set of all possible instances over which target functions 

may be defined. 

C refer to some set of target concepts that our learner might be called 

upon to learn. Each target concept c in C corresponds to some subset of X, or 

equivalently to some boolean-valued function c : X -> {0, 1}. 

We assume instances are generated at random from X according to some 

probability  distribution   D.   In   general,   D   may   be   any   stationary 

distribution( not change over time), and it will not generally be known to the 

learner. 
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Training examples are generated by drawing an instance x at random 

according to D, then presenting  x  along  with  its  target  value,  c(x),  to  the 

learner. 

The learner L considers some set H of  possible  hypotheses  when 

attempting to learn the target concept. For example, H might be the set of all 

hypotheses describable by conjunctions of the attributes age and height. 

After observing a sequence of training examples of the target concept c, L 

must output some hypothesis h from H, which is its estimate of c. To be fair, 

we evaluate the success of L by the performance of h over new instances drawn 

randomly from X according to D, the same probability distribution used to 

generate the training data. 

 Error of a Hypothesis 
 

Note that error depends strongly on the unknown probability distribution 

D. 

We will  use  the  term  training  error  to  refer  to  the  fraction  of  training 

examples misclassified by h, in contrast to the true error defined above. Much 

of our analysis of the complexity of learning centers around the question "how 

probable is it that the observed training error for h gives a misleading estimate 

of the true errorv(h)?" 

 PAC Learnability 

In short, we require  only  that  the  learner  probably  learn  a  hypothesis 

that is approximately correct-hence the term probably approximately correct 

learning, or PAC learning for short. 
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Here, n is the size of instances in X. For example, if instances in X are 

conjunctions of k boolean features, then n = k. The second  space  parameter, 

size(c), is the encoding length  of  c  in  C,  assuming  some  representation  for  C. 

For example, if  concepts  in  C  are  conjunctions  of  up  to  k  boolean  features, 

each described by listing the indices of the features in  the  conjunction,  then 

size(c) is the number of boolean features actually used to describe c. 

In fact, a typical approach to showing that some class C  of  target 

concepts is PAC-learnable, is to first show that each target concept in C can be 

learned from a polynomial number of training examples and then show that the 

processing time per example is also polynomially bounded. 

 SAMPLE COMPLEXITY FOR FINITE HYPOTHESIS SPACES 

The growth in the number of required training examples with problem 

size, called the sample complexity of the learning problem, is the 

characteristic that is usually of greatest interest. The reason is that in most 

practical settings the factor that most limits success of the learner  is  the 

limited availability of training data. 

Here we present a general bound on the sample complexity for a very 

broad class of learners, called consistent learners. A learner is consistent if it 

outputs hypotheses that perfectly fit the training data, whenever possible. 

To accomplish this, it is useful to recall the definition of version space 

from Chapter 2. There we defined the version space, VSH,D, to be the set of all  

hypotheses h ∈ H that correctly classify the training examples D. 
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The version space is ∈-exhausted just in the case that all the hypotheses 

consistent with the observed training examples (i.e., those with zero training 

error) happen to have true error less than ∈. 

 

We have just proved an upper bound on the probability that the version 

space is not €-exhausted, based on the number of training examples m, the 

allowed error E, and the size of H. 

 

To summarize, the inequality shown in Equation (7.2) provides a general 

bound on the number of training examples sufficient for any consistent learner 

to successfully learn any target concept in H, for any desired values of 6 and E. 



61 
 

 

 Agnostic Learning and Inconsistent Hypotheses 

A learner that makes no assumption that the target concept is 

representable by H and that simply finds the hypothesis with  minimum 

training error, is often called an agnostic learner. 

 

This question can be answered (see  Exercise  7.3)  using  an  argument 

analo- gous to the proof of Theorem 7.1. It is useful here to invoke the general 

Hoeffding bounds (sometimes called the additive Chernoff bounds). 

 

This is the generalization of Equation (7.2)  to  the  case  in  which  the 

learner still picks the best  hypothesis  h  ∈  H,  but  where  the  best  hypothesis 

may have nonzero training error. 

 Conjunctions of Boolean Literals Are PAC-Learnable 

Consider the class C of target concepts described by conjunctions of 

boolean literals. Is C PAC-learnable? We can show that the answer is yes by 

first showing that any consistent learner will require only a polynomial number 
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of training examples to learn any c in C, and then suggesting a  specific 

algorithm that uses polynomial time per training example. 

The size |H| of this hypothesis space is 3". To see this, consider the fact 

that there are only three possibilities for each variable in any given hypothesis: 

Include the variable as a literal in  the  hypothesis,  include  its  negation  as  a 

literal, or ignore it. Given n such variables, there are 3" distinct hypotheses. 

 

Notice that m grows linearly in the number of literals n, linearly in 1/∈, 

and logarithmically in 1/&. 

It is the FIND-S  algorithm,  which  incrementally  computes  the  most 

specific hypothesis  consistent  with  the  training  examples.  For  each  new 

positive training example, this  algorithm  computes  the  intersection  of  the 

literals shared by the current hypothesis and the new  training  example,  using 

time linear in n. Therefore, the FIND-S algorithm PAC-learns the concept class 

of conjunctions of n boolean literals with negations. 

 

 PAC-Learnability of Other Concept Classes 

 UNBIASED LEARNERS: 

Not all concept classes  have  polynomially  bounded  sample  complexity, 

that the sample complexity for the unbiased concept class is exponential in n. 

 K-TERM DNF AND K-CNF CONCEPTS: 

It is also possible to find concept classes that have polynomial sample 

complexity, but nevertheless cannot be learned in polynomial time. 
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Although k-term DNF has polynomial sample complexity, it  does  not 

have polynomial computational complexity for a learner using H = C. 

Although k-CNF is more expressive than k-term DNF, it has both 

polynomial sample complexity and polynomial time complexity. Hence, the 

concept class k-term DNF is PAC learnable by an efficient algorithm using H = 

k-CNF. 

 SAMPLE COMPLEXITY FOR INFINITE HYPOTHESIS SPACES 

Here we consider a second measure of the complexity of H, not |H|, but 

the Vapnik-Chervonenkis dimension of H (VC dimension, or VC(H), for short). 

 Shattering a Set of Instances 

Given some instance set S, we say that H shatters S if every possible 

dichotomy of S can be represented by some hypothesis from H. 

 

The ability of H to shatter a set .of instances is thus  a  measure  of  its 

capacity to represent target concepts defined over these instances. 

 The Vapnik-Chervonenkis Dimension 

Recall from Chapter  2  that  an  unbiased hypothesis  space  is  one  capable 

of representing every possible concept (dichotomy) definable over the instance 

space X. Put briefly, an unbiased hypothesis space H is one that shatters the 

instance space X. 

 

 ILLUSTRATIW EXAMPLES 

To get started, suppose the instance space X is the set of real numbers X 

= & (e.g., describing the height of people), and H the set of intervals on the real 

number line, VC(H) = 2. 
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Next consider the set X of instances corresponding to points on the x, y 

plane (see Figure 7.4). Let H be the set  of  all  linear  decision  surfaces  in  the 

plane. In other words, H is the hypothesis space corresponding to a single 

perceptron unit with two inputs (see Chapter 4 for a general discussion of 

perceptrons), VC(H) = 3.  More  generally,  it  can  be  shown  that  the  VC 

dimension of linear decision surfaces in an r dimensional space (i.e., the VC 

dimension of a perceptron with r inputs) is r + 1. 

As one final example, suppose each instance in X is described by the 

conjunction of exactly three boolean literals, and suppose that each hypothesis 

in H is described by the conjunction of up to three boolean literals. The VC 

dimension for conjunctions of n boolean literals is at least n. In  fact,  it  is 

exactly n, though showing this is more difficult, because it requires 

demonstrating that no set of n + 1 instances can be shattered. 

 Sample Complexity and the VC Dimension 
 

 

This theorem states that if the number of training examples is too few, 

then no learner can PAC-learn every target concept in any nontrivial C. Thus, 

this theorem provides a lower bound on the number of training examples 

necessary for successful learning, complementing the earlier upper bound that 

gives a suficient number. Notice this lower bound is determined by the 

complexity of the concept class C, whereas our earlier upper bounds were 

determined by H. (why?) 
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 VC Dimension for Neural Networks 

Consider a network, G, of units, which forms a layered directed acyclic 

graph. 

 
 

 THE MISTAKE BOUND MODEL OF LEARNING 

In this section we consider the mistake bound model of learning,  in 

which the learner is evaluated by the total number of mistakes it makes before 

it converges to the correct hypothesis. 

As in the PAC setting, we assume the learner  receives  a  sequence  of 

training examples. However, here we demand that upon receiving each example 

x, the learner must predict the target value c(x), before it is shown the correct 

target value by the  trainer.  The  question  considered  is  "How  many  mistakes 

will the learner make in its predictions before it learns the target concept?' 

In the examples below, we consider instead the number of  mistakes 

made before learning the target concept exactly. Learning the target concept 

exactly means converging to a hypothesis such that (Vx)h(x) = c(x). 
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 Mistake Bound for the FIND-S Algorithm 

Recall the FIND-S algorithm from Chapter 2, which incrementally 

computes the maximally specific hypothesis consistent with the training 

examples. Can we prove a bound on the total number of mistakes that FIND-S 

will make before exactly learning the target concept c? The answer is yes. 

To see this, note first that if c ∈ H, then FIND-S can never mistakenly 

classify a negative example as positive. The reason is that its current 

hypothesis h is always at least as specific as the target concept c. Therefore, to 

calculate the number of mistakes it will make, we need only count the number 

of mistakes it will make misclassifying truly positive examples as negative. 

Consider the first positive example encountered  by  FIND-S.T  he  learner 

will certainly make a mistake classifying this example, because its  initial 

hypothesis labels every instance negative. However, the result will be that half 

of the 2n terms in its initial hypothesis will be eliminated, leaving only n terms. 

For each subsequent positive example  that  is  mistakenly  classified  by  the 

current hypothesis, at least one more of the remaining n terms must be 

eliminated from the hypothesis. Therefore, the total number of  mistakes  can 

be at most n + 1. This number of mistakes will be required in the worst case, 

corresponding to learning the most general possible target concept (Vx)c(x) = 1 

and corresponding to a worst case sequence of instances that removes only one 

literal per mistake. 

 Mistake Bound for the HALVING Algorithm 

If the majority of version space hypotheses classify the new instance as 

positive, then this prediction is output by the learner. Otherwise a negative 

prediction is output. This combination of learning the version space, together 

with using a majority vote to make subsequent predictions, is often called the 

HALVING algorithm. The CANDIDATE-ELIMINATlON algorithm and the LIST- 

THEN-ELIMINATlON algorithm from Chapter 2 are examples of such 

algorithms. 
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In this section we derive a worst-case bound on the number of mistakes 

that will be made by such a learner, for any finite  hypothesis  space  H, 

assuming again that the target concept must be learned exactly. 

 

 Optimal Mistake Bounds 

It is interesting to ask what is the optimal mistake bound for an arbitrary 

concept class C, assuming H = C. By optimal mistake bound  we  mean  the 

lowest worst-case mistake bound over all possible learning algorithms. 
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 WEIGHTED-MAJORITY Algorithm 

The WEIGHTED-MAJORITY algorithm makes predictions by taking a 

weighted vote among a pool of prediction algorithms and learns by altering the 

weight associated with each prediction algorithm. 

One interesting property of the WEIGHTED-MAJORITY algorithm is that 

it is able to accommodate inconsistent training data. This is because it does 

not eliminate a hypothesis that is found to be inconsistent with some training 

example, but rather reduces its weight. 

Whenever a pre- diction algorithm misclassifies a new training example 

its weight is decreased by multiplying it by some number B, where 0 <= B <= 1. 

The exact definition of the WEIGHTED-MAJORITY algorithm is given in Table 

7.1. 

 

We now show that  the  number  of  mistakes  committed  by  the 

WEIGHTED- MAJORITY algorithm can be bounded in terms of the number of 

mistakes made by the best prediction algorithm in the voting pool. 
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 SUMMARY AND FURTHER READING 
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Genetic Algorithms: 

This chapter covers both genetic algorithms, in which hypotheses are 

typically described by bit strings, and genetic programming, in which 

hypotheses are described by computer programs. 

 MOTIVATION 

The popularity of GAS is motivated by a number of factors including: 

Evolution is known to be a successful, robust method for adaptation 

within biological systems. 
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GAS can search spaces of hypotheses containing complex interacting 

parts, where the impact of each part on overall hypothesis fitness may be 

difficult to model. 

Genetic algorithms are easily parallelized and can take advantage of the 

decreasing costs of powerful computer hardware. 

 GENETIC ALGORITHMS 

The problem addressed by GAS is to search a space of candidate 

hypotheses to identify the best hypothesis. In GAS the "best hypothesis" is 

defined as the one that optimizes a predefined numerical measure for the 

problem at hand, called the hypothesis fitness. 

Although different implementations of genetic algorithms vary in their 

details, they typically share the following structure: The algorithm operates by 

itera- tively updating a pool of hypotheses, called the population.  On  each 

iteration, all members of the population are evaluated according to the fitness 

function. A new population is then generated by probabilistically selecting  the 

most fit individuals from the current population. Some of  these  selected 

individuals are carried forward into  the  next  generation  population  intact. 

Others are used as the basis for creating new offspring individuals by applying 

genetic operations such as crossover and mutation. 

A prototypical genetic algorithm is described in Table 9.1. 
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 Representing Hypotheses 

Hypotheses in GAS are often represented by bit strings, so that they can 

be easily manipulated by genetic operators such as mutation and crossover. 

The hypotheses represented by these bit strings can be quite complex. For 

example, sets of if-then rules can easily be represented in this way, by choosing 

an encoding of rules that allocates specific substrings for each rule 
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precondition and postcondition. Placing a 1 in some position indicates that the 

attribute is allowed to take on the corresponding value. 

To pick an example, consider the attribute Outlook, which can take on 

any of the three values Sunny, Overcast, or Rain; consider a second attribute, 

Wind, that can take on the value Strong or Weak, then: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Genetic Operators 
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The two most common operators are crossover and mutation. 
 

 Fitness Function and Selection 

fitness proportionate selection, or roulette wheel selection. 

tournament selection 

rank selection 

 AN ILLUSTRATIVE EXAMPLE 

Refer。P256-P258。 

 

 HYPOTHESIS SPACE SEARCH 

The GA search can move much more abruptly, replacing a parent 

hypothesis by an offspring that may be radically different from the parent. And 
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the GA search is therefore less likely to fall into the same kind of local minima 

that can plague gradient descent methods. 

One practical difficulty in some GA applications is the problem of crowding.  

Crowding is a phenomenon in which some individual that is more highly fit 

than others in the population quickly reproduces, so that copies of this 

individual and 1 very similar individuals take over a large fraction of the 

population. The negative impact of crowding is that it reduces the diversity of 

the population, thereby slow- ing further progress by the GA. 

Several strategies have been explored for reducing crowding. One 

approach is to alter the selection function, using criteria such as tournament 

selection or rank selection in place of fitness proportionate roulette wheel 

selection. A related strategy is "fitness sharing", in which the measured fitness 

of an individual is reduced by the presence of other, similar individuals in the 

population. A third approach is to restrict the kinds of individuals allowed to 

recombine to form offspring. For example, by allowing only the most similar 

individuals to recombine, we can encourage the formation of clusters of similar  

individuals, or multiple "subspecies" within the population. A related approach 

is to spatially distribute individuals and allow only nearby individuals to 

recombine. Many of these techniques are inspired by the analogy to biological 

evolution. 

 Population Evolution and the Schema Theorem 

It is interesting to ask whether one can mathematically characterize 

the evolution over time of the population within a GA. 

The schema theorem of Holland (1975) provides one such 

characterization. It is based on the concept of schemas, or patterns that 

describe sets of bit strings. To be precise, a schema is any string composed of 

Os, Is, and *'s. Each schema represents the set of bit strings containing the 

indicated 0s and Is, with each "*" interpreted as a "don't care." For example, the 

schema 0*10 represents the set of bit strings that includes exactly 0010 and 

0110. 
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The schema theorem characterizes the evolution of the population within 

a GA in terms of the number of instances representing each schema. Let 

m(s, t) denote the number of instances of schema s in the population at time t 

(i.e., during the tth generation). The schema theorem describes the expected 

value of m(s, t + 1) in terms of m(s, t) and other properties of the schema, 

population, and GA algorithm parameters. 

Let /f(t) denote the average fitness of all individuals in the population at time t 

and let ^u(s, t) denote the average fitness of instances of schema s in the 

population at time t. then: 

 
 

If we view the GA as performing a virtual parallel search through the 

space of possible schemas at the same time it performs its explicit parallel 

search through the space of individuals, then Equation (9.3) indicates  that 

more fit schemas will grow in influence over time. 

The schema theorem is perhaps the most widely cited characterization of 

population evolution within a GA. One way in which it is incomplete is that it 

fails to consider the (presumably) positive effects of crossover and mutation.  

Numerous more recent theoretical analyses have been proposed, including 

analyses based on Markov chain models and on statistical mechanics models. 

See, for example, Whitley and Vose (1995) and Mitchell (1996). 

 GENETIC PROGRAMMING 

Genetic programming (GP) is a form of evolutionary computation in 

which the in- dividuals in the evolving population are computer programs 

rather than bit strings. 

 Representing Programs 

Programs manipulated by a GP are typically represented by trees 

corresponding to the parse tree of  the  program.  Each  function  call  is 

represented by a node in the tree, and the arguments to the function are given 
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by its descendant nodes. For example, Figure 9.1 illustrates this  tree 

representation for the function sin(x) + sqrt(x*x + y). 

To apply genetic programming to a particular domain, the user must 

define the primitive functions to be considered (e.g., sin, cos, +, -, 

exponentials),a s well as the terminals (e.g., x, y, constants such as 2). The 

genetic programming algorithm then uses an evolutionary search to explore the 

vast space of programs that can be described using these primitives. 
 

As in a  genetic  algorithm,  the  prototypical  genetic  programming 

algorithm maintains a population  of  individuals  (in  this  case,  program  trees). 

On each iteration, it produces a new generation of individuals using selection, 

crossover, and mutation. The fitness of a given individual program in the 

population is typ- ically determined by executing  the  program  on  a  set  of 

training data. 
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 Illustrative Example 
 

As in most GP applications, the choice of problem representation has a 

significant impact on the ease of solving the problem. In Koza's formulation, 
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the primitive functions used to compose programs for this task include the 

following three terminal arguments: 

CS (current stack), which refers to the name of the top block on the stack, or F 

if there is no current stack. 

TB (top correct block), which refers to the name of the topmost  block  on  the 

stack, such that it and those blocks beneath it are in the correct order. 

NN (next necessary), which refers to the name of the next block needed above 

TB in the stack, in order to spell the word "universal" or F if no more blocks are 

needed. 

 Remarks on Genetic Programming 

Despite the huge size of the hypothesis space it must search, genetic 

programming has been demonstrated to produce intriguing results in  a 

number of applications. 

In most  cases,  the  performance  of  genetic  programming  depends 

crucially on the choice of representation and  on  the  choice  of fitness  function. 

For this reason, an active area of current research is aimed at the automatic 

discovery and incorporation of subroutines that improve on the original set of 

primitive functions, thereby allowing the system to dynamically alter  the 

primitives from which it constructs individuals. See, for example, Koza (1994). 

 MODELS OF EVOLUTION AND LEARNING 

One interesting question regarding evolutionary systems is "What is the 

relationship between learning during the lifetime of a single individual, and the 

longer time frame species-level learning afforded by evolution?' 

 Lamarckian Evolution 

 Baldwin Effect 

 PARALLELIZING GENETIC ALGORITHMS 

GAS are naturally suited to parallel implementation, and a number of 

approaches to parallelization have been explored. Coarse grain approaches to 

parallelization subdivide the population into somewhat distinct groups of 

individuals, called demes. Each deme is assigned to a different computational 

node, and a standard GA search is performed at each node. Communication 
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and cross-fertilizationbetween demes occurs on a less frequent basis  than 

within demes. In contrast to coarse-grained parallel implementations of GAS, 

fine-grained implementations typically assign one processor per individual in 

the population. Recombination then takes place among neighboring 

individuals. 

 
Instance Based Learning: 

Instance-based learning methods such as nearest neighbor and locally 

weighted regression are conceptually straightforward approaches to 

approximating  real-valued  or  discrete-valued  target  functions.  Learning  in 

these algorithms consists of simply storing the presented training data. When a 

new query instance is encountered,  a  set  of  similar  related  instances  is 

retrieved from memory and used to classify the new query instance. 

One key difference between these approaches and the methods discussed 

in other chapters is that instance-based approaches can construct a different 

approximation to the target function for each distinct query instance that must 

be classified. In fact, many techniques construct only a local approximation to 

the target function that applies in the neighborhood of the new query instance,  

and never construct an approximation designed to perform well over the entire 

instance space. This has significant advantages when the  target  function  is 

very complex, but can still be described by a collection of less complex local 

approximations. 

 k-NEAREST NEIGHBOR LEARNING 
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In nearest-neighbor learning the target function may be either discrete- 

valued or real-valued. Let us first consider learning discrete-valued target 

functions of the form f : X -> V, where V is the finite set {v1, . . . vs}. The k- 

NEARESNTE IGHBOR algorithm for approximating a discrete-valued target 

function is given in Table 8.1. 

 
 

 Distance-Weighted NEAREST NEIGHBOR Algorithm 

One obvious refinement to the k-NEAREST NEIGHBOR algorithm is  to 

weight the contribution of each of the k neighbors according to their distance 

to the query point xq, giving greater weight to closer neighbors. 



83 
 

 

 Remarks on k-NEARESTN EIGHBOR Algorithm 

It is robust to noisy training data and quite effective when it is provided a 

sufficiently large set of training data. 

The inductive bias corresponds to an assumption that the classification 

of an instance x, will be most similar to the classification of other instances 

that are nearby in Euclidean distance. 

One disadvantage of instance-based approaches is that the cost of 

classifying new instances can be high. This is due to the fact that nearly all 

computation takes place at classification time rather than when the training 

examples are first encountered. 

A second disadvantage to many instance-based approaches, especially 

nearest neighbor approaches, is that they typically consider all attributes of the 

instances when attempting to retrieve similar training examples from memory.  

If the target concept depends on only a few of the many available attributes,  

then the instances that are truly most "similar" may well be a large distance 

apart. This difficulty, which arises when many irrelevant attributes are 
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present, is sometimes referred to as the curse of dimensionality. Nearest- 

neighbor approaches are especially sensitive to this problem. 

One interesting approach to overcoming this problem is to weight each 

attribute differently when calculating the distance between two instances. This 

corresponds to stretching the axes in the Euclidean space, shortening the axes 

that correspond to less relevant attributes, and lengthening the axes that 

correspond to more relevant attributes. The amount by which each axis should 

be stretched can be determined automatically using a cross-validation 

approach. 

An even more drastic alternative is to completely eliminate the  least 

relevant attributes from the  instance  space.  This  is  equivalent  to  setting  some 

of the zi scaling factors to zero. 

 A Note on Terminolog 

Much of the literature on nearest-neighbor methods and weighted local 

regression uses a terminology that has arisen from the field of  statistical 

pattern recognition. In reading that literature, it is useful to know the following 

terms: 

Regression means approximating a real-valued target function. 

Residual is the error ^f(x) - f (x) in approximating the target function. 

Kernel function is the function of distance that is used to determine  the 

weight of each training example. In other words, the kernel  function  is  the 

function K such that wi = K(d(xi, x,)). 

 LOCALLY WEIGHTED REGRESSION 

The nearest-neighbor approaches described in the previous section can 

be thought of as approximating the target function f (x) at the single query point 

x = xq. Locally weighted regression is a generalization of this approach. It 

constructs an explicit approximation to f over a local region surrounding xq. 
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 Locally Weighted Linear Regression 
 

Recall that in Chapter 4 we discussed methods such as gradient descent 

to find the coefficients w0 . . . wn to minimize the error in fitting such linear 

functions to a given set of training examples. How shall we modify this 

procedure to derive a local approximation rather than a global one? The simple 

way is to redefine the error criterion E to emphasize fitting the local training 

examples, as following: 

 
 

In fact, if we are fitting a linear function to a fixed set of  training 

examples, then methods much more efficient than gradient descent are 

available to directly solve for the desired coefficients w0 . . . wn. Atkeson et al. 

(1997a) and Bishop (1995) survey several such methods. 
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 RADIAL BASIS FUNCTION 
 

 

 

Several alternative methods have been proposed for choosing an 

appropriate number of hidden units or, equivalently, kernel functions. One 

approach is to allocate a Gaussian kernel function for each training example 

(xi, f (xi)), centering this Gaussian at the point xi. Each of these kernels may be 

assigned the same width &2. A second approach is to choose a set of kernel 

functions: The set of kernel functions may be distributed with centers spaced 

uniformly throughout the instance space X. Alternatively, we may wish to 

distribute the centers nonuniformly, especially if the instances themselves are 
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found to be distributed nonuniformly over X. Alternatively, we may identify 

prototypical clusters of instances, then add a kernel function centered at each 

cluster. 

To summarize, radial basis function networks provide a global 

approximation to the target function, represented by a linear combination of 

many local kernel functions. The value for any given kernel function is non- 

negligible only when the input x falls into the region defined by its particular 

center and width. Thus, the network can be viewed as a smooth linear 

combination of many local approximations to the target function. 

One key advantage to RBF networks is that they can be trained much 

more efficiently than feedforward networks trained with BACKPROPAGATION. 

This follows from the fact that the input layer and the output layer of an RBF 

are trained separately. 

 CASE-BASED REASONING 

Instance-based methods such as k-NEAREST NEIGHBOaRn d locally 

weighted regression share three key properties. First, they are lazy learning 

methods in that they defer the  decision  of  how  to  generalize  beyond  the 

training data until a new query instance is observed. Second, they classify new 

query instances  by  analyzing  similar  instances  while  ignoring  instances  that 

are very different from the query. Third,  they  represent  instances  as  real- 

valued points in  an  n-dimensional  Euclidean  space.  Case-based  reasoning 

(CBR) is a learning paradigm based on the first two of these principles, but not 

the third. In  CBR,  instances  are  typically  represented  using  more  rich 

symbolic descriptions, and the methods used to retrieve similar instances are 

correspondingly more elaborate. 

Let us consider a prototypical example of a case-based reasoning system 

to ground our discussion. The CADET system (Sycara et al. 1992) employs case-

based reasoning to assist in the conceptual design of simple mechanical devices 

such as water faucets. 

Given this functional specification for the new design problem, CADET 

searches its library for stored cases whose functional descriptions match the 
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design problem. If an exact match is found, indicating that some stored case 

implements exactly the desired function, then this case can be returned as a 

suggested solution to the design problem. If no exact match  occurs,  CADET 

may find cases that match various subgraphs of the desired functional 

specification. 

It is instructive to examine the correspondence between  the  problem 

setting of CADET and the general setting for instance-based methods such as k-

NEAREST NEIGHBORIn. CADET each stored training example describes a function 

graph along with the structure that implements it. New queries correspond to new 

function graphs. Thus, we can map the CADET problem into our standard 

notation by defining  the  space  of  instances  X  to  be  the  space  of all function 

graphs.  The  target  function  f  maps  function  graphs  to  the structures that 

implement them. Each stored training example (x, f (x)) is a pair that describes 

some function graph x and the structure f (x) that implements x. The system 

must learn from the training example cases to output the structure f (xq) that 

successfully implements the input function graph query xq. 

 REMARKS ON LAZY AND EAGER LEARNING 

In this chapter we considered three lazy learning methods: the k- 

NEAREST NEIGHBOR algorithm, locally weighted regression, and case-based 

reasoning. We call these methods lazy because they defer the decision of how to 

generalize beyond the training data until each new query instance is 

encountered. We also discussed one eager learning method: the method for 

learning radial basis function networks. We call this method eager because it  

generalizes beyond the training data before observing the new query, 

committing at training time to the network structure and weights that define 

its approximation to the target function. In this same sense, every other 

algorithm discussed elsewhere in this book (e.g., BACKPROPAGATION, C4.5) is 

an eager learning algorithm. 

Are there important differences in what can be achieved by lazy  versus 

eager learning? Differences in computation time and differences in the 

classifications(or inductive bias) produced for new queries and differences in 
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generalization accuracy(related to the distinction between global and local 

approximations to the target function). Inductive bias:  Lazy  methods  may 

consider the query instance x, when deciding how to generalize beyond  the 

training data D; Eager methods cannot. By the time they observe the  query 

instance x, they have already chosen their (global) approximation to the target 

function. 

Lazy methods have the option of selecting a different hypothesis or local 

approximation to the target function for each query instance. Eager methods 

using the same hypothesis space are more restricted because they  must 

commit to a single hypothesis that covers the entire instance space. Eager 

methods can, of course, employ hypothesis spaces that combine multiple local 

approximations, as in RBF networks. However, even these combined local 

approximations do not give eager methods the full ability of lazy methods to 

customize to unknown future query instances. 

 SUMMARY AND FURTHER READING 

Instance-based  learning  methods  differ  from  other  approaches  to 

function approximation because  they  delay  processing  of  training  examples 

until they must label a new query instance. As a result, they need not form an 

explicit hypothesis of the entire target function over the entire instance space, 

independent of the query instance. Instead, they may form a different local 

approximation to the target function for each query instance. 

Advantages of instance-based methods include the  ability  to  model 

complex target functions by a collection  of  less  complex  local  approximations 

and the fact that information present in the training examples is never lost 

(because the examples themselves are stored explicitly). The main practical 

difficulties include efficiency of labeling new instances (all processing is done at 

query time rather than in advance), difficulties in determining an appropriate 

distance metric for retrieving "related" instances (especially when examples are 

represented by complex symbolic descriptions), and the negative impact of 

irrelevant features on the distance metric. 
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k-NEARESNTE IGHBOR is an instance-based algorithm for 

approximating real-valued or discrete-valued target functions, assuming 

instances correspond to points in an n-dimensional Euclidean  space.  The 

target function value for a new query is estimated from the known values of the 

k nearest training examples. 

Locally weighted regression methods are a generalization of k-NEAREST 

NEIGHBOiRn which an explicit local approximation to the target function is 

constructed for each query instance. The local approximation to  the  target 

function may be  based  on  a  variety  of  functional  forms  such  as  constant, 

linear, or quadratic functions or on spatially localized kernel functions. 

Radial basis function (RBF) networks are a type of artificial neural 

network constructed from spatially localized kernel functions. These can be 

seen as a blend of instance-based approaches (spatially localized influence of 

each kernel function) and neural network approaches (a global approximation 

to the target function is formed at training time rather than a local 

approximation at query time). Radial basis function networks have been used 

successfully in applications such as interpreting visual scenes, in which the 

assumption of spatially local influences is well-justified. 

Case-based reasoning is an instance-based approach in which instances 

are represented by complex logical descriptions rather than points in a 

Euclidean space. Given these complex symbolic descriptions of  instances,  a 

rich variety of methods have been proposed for mapping from the training 

examples to target function values for new instances. Case-based reasoning 

methods have been used in applications such as modeling legal reasoning and 

for guiding searches in complex manufacturing and transportation planning 

problems. 
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Analytical Learning: 

Unit-4 

Inductive learning methods such as neural network and decision tree 

learning require a certain number of training examples to achieve a given level 

of generalization accuracy, as reflected in the theoretical bounds and 

experimental results discussed in earlier chapters. Analytical learning uses 

prior knowledge and deductive reasoning to augment the information provided 

by the training examples, so that it is not subject to these same bounds. This 

chapter considers an analytical learning method called explanation-based 

learning (EBL). In explanation-based learning, prior knowledge is used to 

analyze, or explain, how each observed training example satisfies the target 

concept. This explanation is then used to distinguish the relevant features of 

the training example from the irrelevant, so that examples can be generalized 

based on logical rather than statistical reasoning. 

 INTRODUCTION 

Previous chapters have considered a variety of inductive learning 

methods: that is, methods that generalize from observed training examples by 

identifying features that empirically distinguish positive from negative training 

examples. Decision tree learning, neural network learning, inductive logic 

programming, and genetic algorithms are all examples of inductive methods 

that operate in this fashion. The key practical limit on these inductive learners 

is that they perform poorly when insufficient data is available. In fact, as 

discussed in Chapter 7, theoretical analysis shows that there are fundamental 

bounds on the accuracy that can be achieved when learning inductively from a 

given number of training examples. 

 
Can we develop learning methods that are  not  subject  to  these 

fundamental bounds on learning accuracy imposed by  the  amount  of  training 

data available? Yes, if we are willing  to  reconsider  the  formulation  of  the 

learning problem itself. One way is to develop learning algorithms that accept 
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explicit prior knowledge as an input, in addition to the input training data. 

Explanation-based learning is one such approach. It uses prior knowledge to 

analyze, or explain, each training example in order to infer which example 

features are relevant to the target function and which are irrelevant. These 

explanations enable it to generalize more accurately than inductive systems 

that rely on the data alone. 

As we saw in the previous chapter, inductive logic programming systems 

such as CIGOL also use prior background knowledge to guide learning. 

However, they use their background knowledge to infer features that augment 

the input descriptions of instances, thereby increasing the complexity of the 

hypothesis space to be searched. In contrast, explanation-based learning uses 

prior knowledge to reduce the complexity of the hypothesis space to be 

searched, thereby reducing sample complexity and improving generalization 

accuracy of the learner. 

 Inductive and Analytical Learning Problems 
 

The full definition of this analytical learning task is given in Table 11 .1 
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 LEARNING WITH PERFECT DOMAIN THEORIES: PROLOG-EBG 

As stated earlier, in this chapter we consider explanation-based learning 

from domain theories that are perfect, that is, domain theories that are correct 

and complete. A domain theory is said to be correct if each of its assertions is 

a truthful statement about the world. A domain theory is said to be complete 

with respect to a given target concept and instance space, if the domain theory 

covers every positive example in the instance space. 
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EXPLAIN THE TRAINING EXAMPLE: 
 

ANALYZE THE EXPLANATION: 

By collecting just the features mentioned in the leaf nodes  of  the 

explanation in  Figure  11.2  and  substituting  variables  x  and  y  for  Objl  and 

Obj2, we can form a general rule that is justified by the domain theory: 

SafeToStack(x, y) <-- Volume(x, 2) ^ Density(x, 0.3)  ^  Type(y,  Endtable),  The 

body of the above rule includes each leaf node in the proof tree, except for the 

leaf nodes "Equal(0.6, times(2,0.3)" and "LessThan(0.6,5)." We omit these two 

because they are by definition always satisfied, independent of x and y. 



96 
 

Although this explanation was formed to cover the observed training example, 

the same explanation will apply to any instance that matches this general rule. 

The above rule constitutes a significant generalization of the training example, 

because it omits many properties of the example (e.g., the Color of the two 

objects) that are irrelevant to the target concept. However, an even more 

general rule can be obtained by more careful analysis of the explanation. 

PROLOG-EBG computes the most general rule that can be justified by the 

explanation, by computing the weakest preimage of the explanation, defined as 

follows: Definition: The weakest preimage of a conclusion C with respect to a 

proof P is the most general set of initial assertions A, such that A entails C 

according to P. 
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The heart of the regression procedure is the algorithm that at each step 

regresses the current frontier of expressions through a single Horn clause from 

the domain theory. This algorithm is described and illustrated in Table 11.3.  

The final Horn clause rule output by PROLOG-EBGis formulated as follows: 

The clause body is defined to be the weakest preconditions calculated by the 

above procedure. The clause head is the target concept itself, with each 

substitution from each regression step (i.e., the substitution Oh[ in Table 11.3) 

applied to it. 
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 REMARKS ON EXPLANATION-BASED LEARNING 

 Discovering New Feature 

One interesting capability  of  PROLOG-EBGis  its  ability  to  formulate  new 

features that are not explicit  in  the  description  of  the  training  examples,  but 

that are needed to describe the general rule underlying the training example. 
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Notice this learned "feature" is similar in kind to  the  types  of  features 

represented by the hidden units of neural networks; that is, this feature is one 

of a very large set of potential features that can be computed from the available 

instance attributes. 

 
 Deductive Learning 

 

 

It is interesting to compare the PROLOG-EBG learning setting to the setting for 

inductive logic programming (ILP) discussed in Chapter 10. ILP is an inductive 

learning system, whereas PROLOG-EBG is deductive. 

 

 Inductive Bias in Explanation-Based Learning 
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Approximate inductive bias of PROLOG-EBG: The domain theory B, plus a 

preference for small sets of maximally general Horn clauses. 

 Knowledge Level Learning 
 

deductive closure: 

 EXPLANATION-BASED LEARNING OF SEARCH CONTROL KNOWLEDGE: 

As noted above, the practical applicability of the PROLOG-EBG algorithm 

is restricted by its requirement that the domain theory be correct  and 

complete. One important class of learning problems where this requirement is 

easily satisfied is learning to speed up complex search programs. In fact, the 

largest scale attempts to apply explanation-based learning have addressed the 

problem of learning to control search, or what is sometimes called "speedup" 

learning. 

In such problems the definitions of the legal  search  operators,  together 

with the definition of the search objective, provide  a  complete  and  correct 

domain theory for learning search control knowledge. 

An example of a rule learned by PRODIGYfo r this target concept in a 

simple block-stacking problem domain is 

 

In fact, there are significant practical problems with applying EBL to 

learning search control. First, in many cases the number of control rules that 

must be learned is very large (e.g., many thousands of rules). As the system 

learns more and more control rules to improve its search, it must pay a larger 
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and larger cost at each step to match this set of rules  against  the  current 

search state. Note this problem is not specific to explanation-based learning; it 

will occur for any system that represents its learned knowledge by a growing 

set of rules. A second practical problem with applying explanation-based 

learning to learning  search control is that in many cases it  is intractable even 

to construct the explanations for the desired target concept. 

 SUMMARY AND FURTHER READING 

In contrast to purely inductive learning methods that seek a hypothesis to fit  

the training data, purely analytical learning methods  seek  a  hypothesis that 

fits the learner's prior knowledge and covers the training examples. Humans 

often make use of prior knowledge to guide the formation of new hypotheses.  

This chapter examines purely analytical learning methods. The next chapter 

examines combined inductive-analytical learning. 

Explanation-based learning is a form of analytical learning in which the learner 

processes each novel training example by (1) explaining the observed target 

value for this example in terms of the domain theory, (2) analyzing this 

explanation to determine the general conditions under which the explanation 

holds, and (3) refining its hypothesis to incorporate these general conditions. 

PROLOG-EBG is an explanation-based learning algorithm that uses first-order 

Horn clauses to represent both its domain theory and its learned hypotheses. 

In PROLOG-EBG an explanation is a PROLOG proof, and the hypothesis 

extracted from the explanation is the weakest preimage of this proof. As a 

result, the hypotheses output by PROLOG-EBGfo llow deductively from its 

domain theory. 

 
Analytical learning methods such as PROLOG-EBG construct useful 

intermediate features as a side effect of analyzing individual training examples.  

This analytical approach to feature generation complements the statistically 

based generation of intermediate features (eg., hidden unit features) in 

inductive methods such as BACKPROPAGATION. 
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Although PROLOG-EBG does not produce hypotheses that extend the 

deductive closure of  its  domain  theory,  other  deductive  learning  procedures 

can. For example, a domain theory containing determination assertions (e.g., 

"nationality determines language") can be used together with observed data to 

deductively infer hypotheses that go  beyond  the  deductive  closure  of  the 

domain theory. 

One important class of problems for which a correct and complete 

domain theory can be found is the class of large state-space search problems. 

Systems such as PRODIGY and SOAR have demonstrated the utility of 

explanation-based learning methods for automatically acquiring effective 

search control knowledge that speeds up problem solving in subsequent cases. 

Despite the apparent usefulness of explanation-based learning methods 

in humans, purely deductive implementations such as PROLOG-EBG suffer the 

disadvantage that the output hypothesis is only as correct as the  domain 

theory. In the next chapter we examine approaches that combine inductive and 

analytical learning methods in order to learn effectively from imperfect domain 

theories and limited training data. 

 
Learning Sets of Rules: 

One of the most expressive and human readable representations for learned 

hypothe- ses is sets  of  if-then  rules.  This  chapter  explores  several  algorithms 

for learning such sets of rules. 

 
 INTRODUCTION 

As shown in Chapter 3, one way to learn sets of rules is to first learn a decision 

tree, then translate the tree into an equivalent set of rules-one rule for each leaf 

node in the tree. A second method, illustrated in Chapter 9, is to use a genetic 

algorithm that encodes each rule set as a bit string and uses genetic search 

operators to explore this hypothesis space. In this chapter we explore a variety 

of algorithms that directly learn rule sets and that differ from these algorithms 

in two key respects. First,  they  are  designed  to  learn  sets  of  first-order 

rulesthat contain variables.  This  is  significant  because  first-order  rules  are 

much more expressive than propositional rules. Second, the algorithms 
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discussed here use sequential  covering algorithms  that  learn one  rule  at a  time 

to incrementally grow the final set of rules. 

In this chapter we begin by considering algorithms  that  learn  sets  of 

propositional rules; that  is,  rules  without  variables.  Algorithms  for  searching 

the hypothesis space to learn disjunctive  sets  of  rules  are  most  easily 

understood in this setting. We then consider extensions of these algorithms to 

learn first-order rules. Two general approaches to inductive logic programming 

are then considered, and the fundamental relationship between inductive and 

deductive inference is explored. 

 
 SEQUENTIAL COVERING ALGORITHMS 

Here we consider a family of algorithms for learning rule sets based  on  the 

strategy of learning one rule, removing the data it covers, then iterating this 

process. Such algorithms are called  sequential  covering  algorithms.  A 

prototypical sequential covering algorithm is described in Table 10.1. 

 

This sequential covering algorithm is one of the most widespread approaches to 

learning disjunctive sets of rules.  It  reduces  the  problem  of  learning  a 

disjunctive set of rules to a sequence of simpler problems, each requiring that a  

single conjunctive rule be learned. Because it performs a greedy search, 

formulating a sequence of rules without  backtracking,  it  is  not  guaranteed  to 

find the smallest or best set of rules that cover the training examples. 
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 General to Specific Beam Search 
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 LEARNING RULE SETS: SUMMARY 

This section considers several key dimensionsin the design space of such rule 

learning algorithms. 

First, sequential covering algorithms learn one rule at a time, removing the 

covered examples and repeating the process on the remaining examples. In 

contrast, decision tree algorithms such as ID3 learn the entire set of disjuncts 

simultaneously as part of the single search for an acceptable decision tree. We 

might, therefore, call algorithms such as ID3 simultaneous covering 

algorithms, in contrast to sequential covering algorithms such as CN2. Which 
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should we prefer? The key difference occurs in the choice made at the most 

primitive step in the search. At each search step ID3 chooses among alternative 

attributes by comparing the partitions of the data they generate. In contrast, 

CN2 chooses among alternative  attribute-value  pairs,  by  comparing  the 

subsets of data they cover. 

A second dimension along which approaches vary is the direction of the search 

in LEARN-ONE-RUILn E. the algorithm described above, the search is from 

general to specijic hypotheses. Other algorithms we have discussed (e.g., FIND- 

S from Chapter 2) search from specijic to general. 

A third dimension is whether the LEARN-ONE-RULE search is a generate then 

test search through the syntactically legal hypotheses, as it is in our suggested 

implementation, or whether it is example-driven so that individual training 

examples constrain the generation of hypotheses. One important advantage of 

the generate and test approach is that each choice in the search is based on 

the hypothesis performance over many examples, so that the impact of noisy 

data is minimized. In contrast, example-driven algorithms that refine the 

hypothesis based on individual examples are more easily misled by a single 

noisy training example and are therefore less robust to errors in the training 

data. 

A fourth dimension is whether and how rules are post-pruned. 

A final dimension is the particular definition of rule PERFORMANCE used to 

guide the search in LEARN-ONE-RULE. 

Relative frequency: Nc / N 

m-estimate of accuracy: (Nc + M*p) / (N + M) 

(negative of) Entropy. 

 LEARNING FIRST-ORDER RULES 

In the previous sections we discussed algorithms for  learning  sets  of 

propositional (i.e., variable-free) rules.  In  this  section,  we  consider  learning 

rules that contain  variables-in  particular,  learning  first-order  Horn 

theories. Our motivation for considering such rules is that they are much more 

expressive than propositional rules. 

 First-Order Horn Clauses 

The problem is that propositional representations offer no general way to 

describe the essential relations among the values of the attributes. 

First-order Horn clauses may also refer to variables in the preconditions that 

do not occur in the postconditions. 

It is also possible to use the same predicates in the rule postconditions and 

preconditions, enabling the description of recursive rules. 

 Terminology 
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 LEARNING SETS OF FIRST-ORDER RULES: FOIL 
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The FOIL algorithm is summarized in Table 10.4. 

 

Notice the outer loop corresponds to a variant of the SEQUENTIAL- 

COVERING algorithm discussed earlier; that is, it learns new rules one  at  a 

time, removing the positive examples covered by the latest rule before 

attempting to learn the next rule. The inner loop corresponds to a variant of 

our earlier LEARN-ONE-RULE algorithm, extended to accommodate first-order 

rules. 

The hypothesis space search performed by FOIL is best understood by viewing 

it hierarchically. Each iteration through FOIL'S outer loop adds a new rule to 

its disjunctive hypothesis, Learned_rules. The effect of each new rule is to 

generalize the current disjunctive hypothesis (i.e., to increase the number of 

instances it classifies as positive), by adding a,new disjunct. Viewed at  this 

level, the search is a specific-to-general search through the space of 

hypotheses, beginning with the most specific empty disjunction and 

terminating when the hypothesis is sufficiently general to cover all positive 

training examples. The inner loop of FOIL performs a finer-grained search to 

determine the exact definition of each new rule. This inner loop searches a 

second hypothesis space, consisting of conjunctions of literals, to find a 
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conjunction that will form the preconditions for the new rule. Within this 

hypothesis space, it conducts a general-to-specific, hill-climbing search, 

beginning with the most general preconditions possible (the empty 

precondition), then adding literals one at a time to specialize the rule until it  

avoids all negative examples. 

 
 Generating Candidate Specializations in FOIL: Candidate_literals 

 

The negation of either of the above forms of literals. 

 Guiding the Search in FOIL: Foil_Gain(L, R) 
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 Summary of FOIL 

In the case of noise-free training data, FOIL may continue adding new literals 

to the rule until it covers no negative examples. To handle noisy data,  the 

search is continued until some tradeoff occurs between rule accuracy, 

coverage, and complexity. FOIL uses a minimum description length approach 

to halt the growth of rules, in which new literals are added only when their 

description length is shorter than the description length of the training data 

they explain. The details of this strategy are given in Quinlan (1990). In 

addition, FOIL post-prunes each rule it learns, using the same rule  post- 

pruning strategy used for decision trees (Chapter 3). 

 
 INDUCTION AS INVERTED DEDUCTION 

 

each training instance xi follows deductively from the hypothesis h; X entails Y 

 
Research on inductive logic programing following this formulation has 

encountered several practical difficulties:  noisy training data, the number of 
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hy- potheses is so large, the complexity of the hypothesis space search 

increases as background knowledge B is increased. 

In the following section, we examine one quite general inverse entailment 

operator that constructs hypotheses by inverting a deductive inference rule. 

 
 
 
 
 
 

INVERTING    RESOLUTION Resolution 

operator of propositional form: 

 

Inverse resolution operator (propositional form).: 

 First-Order Resolution 

The resolution rule extends easily to first-order expressions. As in  the 

propositional case, it takes two clauses as input and produces a third clause as 

output. The key difference from  the  propositional  case  is  that  the  process  is 

now based on the notion of unifying substitutions. 
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 Inverting Resolution: First-Order Case 
 

 

10.7.4 Generalization, 8-Subsumption, and Entailment 

 

 SUMMARY AND FURTHER READING 
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The sequential covering algorithm learns a disjunctive set of rules by first 

learning a single accurate rule, then removing the positive examples covered by 

this rule and iterating the process over the remaining training examples. It 

provides an efficient, greedy algorithm for learning rule sets, and an alternative 

to top-down decision tree learning algorithms such as ID3, which can  be 

viewed as simultaneous, rather than sequential covering algorithms. 

In the context of sequential covering algorithms, a variety of methods  have 

been explored for learning a single rule. These methods vary in the search 

strategy they use for examining the space of possible rule preconditions. One 

popular approach, exemplified by the CN2 program, is to conduct a general-to- 

specific beam search, generating and testing progressively more specific rules 

until a sufficiently accurate rule is found. Alternative approaches search from 

specific to general hypotheses, use an example-driven search rather than 

generate and test, and employ different statistical measures of rule accuracy to 

guide the search. 

Sets of first-order rules (i.e., rules containing variables) provide a highly 

expressive representation. For example, the programming language PROLOG 

represents general programs using collections of first-order Horn clauses. The 

problem of learning first-order Horn clauses is therefore often referred to as the 

problem of inductive logic programming. 

One approach to learning sets of first-order rules is to extend the sequential 

covering algorithm of CN2 from propositional to first-order representations. 

This approach is exemplified by the FOIL program, which can learn sets of first-

order rules, including simple recursive rule sets. 

 

Following the view of induction as the inverse of deduction,  some  programs 

search for hypotheses by  using  operators  that  invert  the  well-known  opera- 

tors for deductive reasoning. For example, CIGOL uses inverse resolution, an 

operation that is the inverse of  the  deductive  resolution  operator  commonly 

used for mechanical theorem  proving.  PROGOL  combines  an  inverse  entail- 

ment strategy with a general-to-specific strategy for searching the hypothesis 

space. 
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Unit 5 
 

Combining Inductive and Analytical Learning: 

Purely inductive learning methods formulate general hypotheses by finding 

empirical regularities over the training examples. Purely  analytical methods 

use prior knowledge to derive general hypotheses deductively., This chapter 

considers methods that combine inductive and analytical  mechanisms  to 

obtain the benefits of both approaches: better generalization accuracy when 

prior knowledge is available and reliance(rely) on observed training data to 

overcome shortcomings in prior knowledge. The resulting combined methods 

outperform both purely inductive and purely analyti- cal learning methods. 

This chapter considers inductive-analytical learning methods based on both 

symbolic and artificial neural network representations. 

 MOTIVATION 
 

What criteria should we use to compare alternative approaches to combining 

inductive and analytical learning? Some specific properties we would like from 

such a learning method include(Notice this list of desirable properties is quite 

ambitious): 
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 INDUCTIVE-ANALYTICAL APPROACHES TO LEARNING 

 The Learning Problem 
 

What precisely shall we mean by "the hypothesis that best fits the training 

examples and domain theory?'. 

For example, we could require the hypothesis that minimizes some combined 

measure of these errors, such as: 

 

 
An alternative perspective on the question of how to weight prior knowl- edge 

and data is the Bayesian perspective. Recall from Chapter  6  that  Bayes 

theorem describes how to compute the posterior probability P(h1D) of hypothe- 

sis h given observed training data D. Unfortunately, Bayes theorem implicitly  

assumes pe$ect knowledge about the probability distributions P(h), P(D), and 

P(Dlh). When these quantities are only imperfectly known, Bayes theorem alone 

does not prescribe how to combine them with the observed data. 
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We will revisit the question of what we mean by "best" fit to the hypothesis and 

data as we examine specific algorithms. For now, we will simply say that the 

learning problem is tominimize some combined measure of the error of the 

hypothesis over the data and the domain theory. 

 Hypothesis Space Search 

One way to understand the range of  possible  approaches  is  to  return  to  our 

view of learning as a task of searching through the  space  of  alternative 

hypotheses. We can  characterize  most  learning  methods  as  search  algorithms 

by describing the hypothesis space H they search, the initial hypothesis  ho  at 

which they begin their search, the set  of  search  operators  0  that  define 

individual search steps, and the goal criterion G  that  specifies  the  search 

objective. 

In this chapter we explore three different methods for using prior knowledge to 

alter the search performed by purely inductive methods: 

Use prior knowledge to derive an initial hypothesis from which to begin the 

search. In this approach the domain theory B is used to construct an initial 

hypothesis ho that is consistent with B. A standard inductive method is then 

applied, starting with the initial hypothesis ho. 

Use prior knowledge to alter the objective of the hypothesis space search. In this 

approach, the goal criterion G is modified to require that the output hypothesis 

fits the domain theory as well as the training examples. 

Use prior knowledge to alter the available search steps. In this approach, the set 

of search operators 0 is altered by the domain theory. 

 USING PRIOR KNOWLEDGE TO INITIALIZE THE HYPOTHESIS 

It is easy to see the motivation for  this  technique:  if  the  domain  theory  is 

correct, the initial hypothesis  will  correctly  classify  all  the  training  examples 

and there will be no need to revise it. However, if the initial hypothesis is found 

to imperfectly classify the training examples, then it will be refined inductively 

to improve its fit to the training examples. 

 The KBANN Algorithm 

The two stages of the KBANN algorithm are first to create an artificial neural 

network that perfectly fits the domain theory and second to use the 

BACKPROPA-CATION algorithm to refine this initial network to fit the training 



118 
 

examples. The details of this algorithm, including the algorithm for creating the 

initial network, are given in Table 12.2 and illustrated in Section 12.3.2. 
 

 
 An Illustrative Example 
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 Remarks 

The chief benefit of KBANN over purely inductive BACKPROPAGATION 

(beginning with random initial weights) is that it typically generalizes more 

accurately than BACKPROPAGATION when given an approximately correct 

domain theory, es- pecially when training data is scarce. 

Limitations of KBANN include the fact that it can accommodate only 

propositional domain theories; that is, collections of variable-free Horn clauses. 

It is also possible for KBANN to be misled when given highly inaccurate domain 

theories, so that its generalization accuracy can deteriorate below the level of 

BACKPROPA-GATION. Nevertheless, it and related algorithms have been shown 

to be useful for several practical problems. 
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 USING PRIOR KNOWLEDGE TO ALTER THE SEARCH OBJECTIVE(使用先 

验知识改变搜索目标) 

An alternative way of using prior knowledge is to incorporate it into the error 

criterion minimized by gradient descent, so  that  the  network  must  fit  a 

combined function of the training data and domain theory. In this section, we 

consider using prior knowledge in this fashion. In particular, we consider prior 

knowledge in the form of known derivatives of the target function. 

 The TANGENTPROP Algorithm 
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The modified error function is: 
 

 Remarks 

Although TANGENTPROP succeeds in combining prior knowledge with train- 

ing data to guide learning of neural networks, it is not robust to errors in the 

prior knowledge. Consider what will happen when prior knowledge is incorrect, 

that is, when the training derivatives input to the learner do not correctly 

reflect the derivatives of the true target function. In this case the algorithm will 

attempt to fit incorrect derivatives. It may therefore generalize less accurately 

than if it ignored this prior knowledge altogether and used the purely inductive 

BACKPROPAGATION algorithm. If we knew in advance the degree of error in 

the training derivatives, we might use this information to select the constant p 

that determines the relative importance of fitting training values and fitting 

training derivatives. However, this information is unlikely to be known in 

advance. 
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It is interesting to compare the search through hypothesis space (weight space) 

performed by TANGENTPROP, KBANN, and BACKPROPAGATION. 
 

 The EBNN Algorithm 
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 Remarks 

To summarize, the EBNN algorithm uses a domain theory expressed as a set of 

previously learned neural networks, together with a set of training examples, to 

train its output hypothesis (the target network). For each training example 
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EBNN uses its domain theory to explain the example, then extracts training 

derivatives from this explanation. For each attribute of the instance, a training 

derivative is computed that describes  how  the  target  function  value  is 

influenced by a small change to this attribute value, according to the  domain 

theory. These training derivatives are provided to a variant of TANGENTPROP, 

which fits the target network to these derivatives and to the training example 

values. Fitting the derivatives  constrains  the  learned  network  to  fit 

dependencies given by the domain theory, while fitting the training values 

constrains it to fit the observed data itself. The weight pi placed on fitting the 

derivatives is determined independently for  each  training  example,  based  on 

how accurately the domain theory predicts the training value for this example. 

EBNN bears an interesting relation to other explanation-based learning 

methods, such as PROLOG-EBGde scribed in Chapter 11. 

There are several differences in capabilities between EBNN and the symbolic 

explanation-based methods of Chapter 11. The main difference is that EBNN 

accommodates imperfect domain theories, whereas PROLOG-EBGdo es  not. 

This difference follows from the fact that EBNN is built on the inductive 

mechanism of fitting the observed training values and uses the domain theory 

only as an additional constraint on the learned hypothesis. A second important 

difference follows from the fact that PROLOG-EBGle arns a growing set of Horn 

clauses, whereas EBNN learns a fixed-size neural network. As discussed in 

Chapter 11, one difficulty in learning sets of Horn clauses is that the cost of 

classifying a new instance grows as learning proceeds and new Horn clauses 

are added. This problem is avoided in EBNN because the fixed-size target 

network requires constant time to classify new instances. However, the fixed- 

size neural network suffers the corresponding disadvantage that it may be 

unable to represent sufficiently complex functions, whereas a growing set of 

Horn clauses can represent increasingly complex functions. 

 USING PRIOR KNOWLEDGE TO AUGMENT SEARCH OPERATORS 

In this section we consider a third way of using prior knowledge to alter the 

hypothesis space search: using it to alter the set of operators that define legal 

steps in the search through the hypothesis space. 

 

 
 The FOCL Algorithm 
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We will say a literal is operational if it is allowed to be used in describing an 

output hypothesis. For example, in the Cup example of Figure 12.3 we allow 

output hypotheses to refer only to the 12 attributes that describe the training 

examples (e.g., HasHandle, HandleOnTop). Literals based on these 12 

attributes are thus considered operational. In contrast, literals that occur only 

as intermediate features in the domain theory, but not as primitive attributes 

of the instances, are considered nonoperational. An example of a 

nonoperational attribute in this case is the attribute Stable. 

At each point in its general-to-specific search, FOCL expands its current 

hypothesis h using the following two operators: 

For each operational literal that is not part of h, create a specialization of h by 

adding this single literal to the preconditio s. This is also the method used by 

FOIL to generate candidate successors. he solid arrows in Figure 12.8 denote 

this type of specialization. 

Create an operational, logically sufficient condition for the target  concept 

according to the domain theory. Add this set of literals to the current precon- 

ditions of h. Finally, prune the preconditions of h by removing any literals that 

are unnecessary according to the training data. The dashed arrow in Figure 

12.8 denotes this type of specialization. 
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Once candidate specializations of the current hypothesis have been generated,  

using both of the two operations above, the candidate with highest informa- 

tion gain is selected. 
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 Remarks 

To summarize, FOCL uses both a syntactic generation of candidate 

specializations and a domain theory driven generation of candidate 

specializations at each step in the search. The algorithm chooses among these 

candidates based solely on their empirical support over the  training  data. 

Thus, the domain theory is used in a fashion that biases the learner, but leaves 

final search choices to be made based on performance over the training data. 

The bias introduced by the domain theory is a preference in favor of Horn 

clauses most similar to operational, logically sufficient conditions entailed by 

the domain theory. This bias is combined with the bias of the purely inductive 

FOIL program, which is a preference for shorter hypotheses. 

FOCL has been shown to generalize more accurately than the purely inductive 

FOIL algorithm in a number of application domains in which an imperfect do- 

main theory is available. 

12.7 SUMMARY AND FURTHER READING 

Approximate prior knowledge, or domain theories, are available in many 

practical learning problems. Purely inductive methods such as decision tree 

induction and neural network BACKPROPAGATION fail to utilize such domain 

theories, and therefore perform poorly when data is scarce. Purely analytical 

learning methods such as PROLOG-EBG utilize such domain theories, but 

produce incorrect hypotheses when given imperfect prior knowledge. Methods 

that blend inductive and analytical learning can gain the benefits of both 

approaches: reduced sample complexity and the ability to overrule incorrect 

prior knowledge. 

One way to view algorithms for combining inductive and analytical learning is 

to consider how the domain theory affects the hypothesis space search. In this 

chapter we examined methods that use imperfect domain theories to (1) create 

the initial hypothesis in the search, (2) expand the set of search operators that 

generate revisions to the current hypothesis, and (3) alter the objective of the 

search. 

A system that uses the domain theory to initialize the hypothesis is KBANN. 

This algorithm uses a domain theory encoded as propositional rules to 

analytically construct an artificial neural network that is equivalent to the 

domain theory. This network is then inductively refined using the 

BACKPROPAGATION algorithm, to improve its performance over the training 
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data. The result is a network biased by the original domain theory, whose 

weights are refined inductively based on the training data. 

TANGENTPROP uses prior knowledge represented by desired derivatives of the 

target function. In some domains, such as image processing, this is a natural 

way to express prior knowledge. TANGENTPROP incorporates this knowledge 

by altering the objective function minimized by gradient descent search 

through the space of possible hypotheses. 

EBNN uses the domain theory to alter the objective in searching the hypothesis 

space of possible weights for an artificial neural network. It uses a domain 

theory consisting of previously learned neural networks to perform a neural 

network analog to symbolic explanation-based learning. As in symbolic 

explanation-based learning, the domain theory is used to explain individual 

examples, yielding information about the relevance of different example 

features. With this neural network representation, however, information about 

relevance is expressed in the form of derivatives of the target function value 

with respect to instance features. The network hypothesis is trained using a 

variant of the TANGENTPROP algorithm, in which the error to be minimized 

includes both the error in network output values and the error in network 

derivatives obtained from explanations. 

FOCL uses the domain theory to expand the set of candidates considered at 

each step in the search. It uses an approximate domain theory represented by 

first order Horn clauses to learn a set of Horn clauses that approximate the 

target function. FOCL employs a sequential covering algorithm, learning each 

Horn clause by a general-to-specific search. The domain theory is used to 

augment the set of next more specific candidate hypotheses considered at each 

step of this search. Candidate hypotheses are then evaluated based on their  

performance over the training data. In this way, FOCL combines the greedy, 

general-to-specific inductive search strategy of FOIL with the rule-chaining, 

analytical reasoning of analytical methods. 

The question of how to best blend prior knowledge with  new  observations 

remains one of the key open questions in machine learning. 

 

 
Reinforcement Learning: 
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Reinforcement learning addresses the question of how an autonomous 

agent(agent) that senses and acts  in  its  environment  can  learn  to  choose 

optimal actions to achieve its goals. Each time the agent performs an action in 

its environment, a trainer may provide a reward or penalty to indicate the 

desirability of the resulting state. The task of  the agent is to learn from this 

indirect, delayed reward, to choose sequences of  actions  that  produce  the 

greatest cumulative reward. This chapter focuses on an algorithm  called  Q 

learning that  can  acquire  optimal  control  strategies  from  delayed  rewards, 

even when the agent  has  no  prior  knowledge  of  the  effects  of  its  actions  on 

the environment. Reinforcement learning algorithms are related to dynamic 

programming algorithms frequently used to solve optimization problems. 
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 INTRODUCTION 
 

This general setting for robot learning is summarized in Figure 13.1. 
 

The problem of learning a control policy to choose actions is similar in some 

respects to the function approximation problems  discussed  in  other  chapters. 

The target  function  to  be learned   in   this   case is   a   control policy,   π : S -> 

A,  that outputs an appropriate action a   from the set A, given the current state 

s from the set S. However, this  reinforcement  learning  problem  differs  from 

other function 

approximation tasks in several important respects: 

 
Delayed reward: the trainer provides only a  sequence  of  immediate  reward 

values as the agent executes its sequence of actions. The agent, therefore, faces 

the problem  of  temporal  credit  assignment:  determining  which  of  the  actions 

in its sequence are to be credited with producing the eventual rewards. 

 
Exploration: The learner faces a tradeoff in  choosing  whether  to  favor 

exploration of unknown states and actions (to gather new information), or 
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exploitation of states and actions that it has already  learned  will  yield  high 

reward (to maximize its cumulative reward). 

 
Partially observable states: In many practical situations sensors provide only 

partial information. For example,  a  robot  with  a  forward-pointing  camera 

cannot   see   what   is   behind   it.   In   such   cases,   it   may   be    necessary    for 

the agent  to  consider  its  previous  observations  together  with  its  current 

sensor data when choosing actions. 

 
Life-long learning: Robot learning often requires that the robot learn several 

related tasks within  the  same  environment,  using  the  same  sensors.  This 

setting raises the possibility of using previously  obtained  experience  or 

knowledge to reduce sample complexity when learning new tasks. 

 
 THE LEARNING TASK 

 

Here we define one quite general formulation of the problem, based on Markov 

decision   processes.   This    formulation    of    the    problem    follows    the 

problem illustrated in Figure 13.1. 
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an example: 
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 Q LEARNING 
 

 The Q Function 
 

令  

则  
 

 An Algorithm for Learning Q 
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 An Illustrative Example 
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 Convergence 
 

 

 NONDETERMINISTIC REWARDS AND ACTIONS 
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To summarize, we have simply redefined V and Q in the nondeterministic case 

to be the expected value of 

its previously defined quantity for the deterministic case. 

 
 TEMPORAL DIFFERENCE LEARNING 
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13.8 SUMMARY AND FURTHER READING 
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