
1

J.B. INSTITUTE OF ENGINEERING AND TECHNOLOGY

(UGC AUTONOMOUS)

Bhaskar Nagar, Moinabad Mandal, R.R. District, Hyderabad -500075

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SUBJECT: MACHINE LEARNING

Branch: CSE

IV B. TECH I SEM (R-18)

Prepared by S.Gayathri Devi

Assistant Professor

2

LECTURE NOTES

Unit 1

What is Machine learning?

Machine learning is an application of artificial intelligence (AI) that provides

systems the ability to automatically learn and improve from experience without

being explicitly programmed. Machine learning focuses on the development of

computer programs that can access data and use it learn for themselves.

The process of learning begins with observations or data, such as examples, direct

experience, or instruction, in order to look for patterns in data and make better

decisions in the future based on the examples that we provide. The primary aim

is to allow the computers learn automatically without human intervention or

assistance and adjust actions accordingly.

Some machine learning methods

Machine learning algorithms are often categorized as supervised or unsupervised.

 Supervised machine learning algorithms can apply what has been learned

in the past to new data using labeled examples to predict future events.

Starting from the analysis of a known training dataset, the learning

algorithm produces an inferred function to make predictions about the

output values. The system is able to provide targets for any new input after

sufficient training. The learning algorithm can also compare its output with

the correct, intended output and find errors in order to modify the model

accordingly.

 In contrast, unsupervised machine learning algorithms are used when the

information used to train is neither classified nor labeled. Unsupervised

learning studies how systems can infer a function to describe a hidden

structure from unlabeled data. The system doesn’t figure out the right

output, but it explores the data and can draw inferences from datasets to

describe hidden structures from unlabeled data.

3

 Semi-supervised machine learning algorithms fall somewhere in between

supervised and unsupervised learning, since they use both labeled and

unlabeled data for training – typically a small amount of labeled data and a

large amount of unlabeled data. The systems that use this method are able

to considerably improve learning accuracy. Usually, semi-supervised

learning is chosen when the acquired labeled data requires skilled and

relevant resources in order to train it / learn from it. Otherwise, acquiring

unlabeled data generally doesn’t require additional resources.

 Reinforcement machine learning algorithms is a learning method that

interacts with its environment by producing actions and discovers errors or

rewards. Trial and error search and delayed reward are the most relevant

characteristics of reinforcement learning. This method allows machines and

software agents to automatically determine the ideal behavior within a

specific context in order to maximize its performance. Simple reward

feedback is required for the agent to learn which action is best; this is

known as the reinforcement signal.

Machine learning enables analysis of massive quantities of data. While it

generally delivers faster, more accurate results in order to identify profitable

opportunities or dangerous risks, it may also require additional time and

resources to train it properly. Combining machine learning with AI and cognitive

technologies can make it even more effective in processing large volumes of

information.

Well-Posed Learning Problems:

A computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E. Some of the examples for well-posed

learning problem are given below:

1. Learning to classify chemical compounds

4

2. Learning to drive an autonomous vehicle

3. Learning to play bridge

4. Learning to parse natural language sentences

Driverless car

Can we phrase this as a well-posed learning problem?

T = driving a car on a busy interstate highway given image data from a forward-

looking camera

P = number of errors made, as judged by a human observer

E = image and control information recorded from driving sessions with a human

driving the same vehicle

5

Designing a Learning System:

In designing a learning system, we have to deal with (at least) the following issues:

1. Training experience

2. Target function

3. Learned function

4. Learning algorithm

Example: Consider the task T of parsing Swedish sentences, using the

performance measure P of labeled precision and recall in a given test corpus (gold

standard).

Training Experience

Issues concerning the training experience:

1. Direct or indirect evidence (supervised or unsupervised).

2. Controlled or uncontrolled sequence of training examples.

3. Representativity of training data in relation to test data.

Training data for a syntactic parser:

1. Treebank versus raw text corpus.

2. Constructed test suite versus random sample.

3. Training and test data from the same/similar/different sources with the

same/similar/different annotations.

Target Function and Learned Function:

The problem of improving performance can often be reduced to the problem of

learning some particular target function.

A shift-reduce parser can be trained by learning a transition function f : C -> C,

where C is the set of possible parser configurations.

In many cases, we can only hope to acquire some approximation to the ideal

target function.

The transition function f can be approximated by a function ˆf : Σ->Action from

stack (top) symbols to parse actions.

Learning Algorithm:

6

In order to learn the (approximated) target function we require:

1. A set of training examples (input arguments)

2. A rule for estimating the value corresponding to each training

example (if this is not directly available)

3. An algorithm for choosing the function that best fits the training data

* Given a treebank on which we can simulate the shift-reduce parser, we

may decide to choose the function that maps each stack symbol σ to the action

that occurs most frequently

when σ is on top of the stack.

Designing of a Learning System:

Fig: Designing of a Learning system (First View)

7

Design Cycle of a Learning System:

8

9

10

11

12

13

Issues in Machine Learning:

 What algorithms exist for learning general target functions from specific

training examples? In what settings will particular algorithms converge to

the desired function, given sufficient training data? Which algorithms

perform best for which types of problems and representations?

 How much training data is sufficient? What general bounds can be found to

relate the confidence in learned hypotheses to the amount of training

experience and the character of the learner's hypothesis space?

 When and how can prior knowledge held by the learner guide the process of

generalizing from examples? Can prior knowledge be helpful even when it is

only approximately correct?

 What is the best strategy for choosing a useful next training experience, and

how does the choice of this strategy alter the complexity of the learning

problem?

 What is the best way to reduce the learning task to one or more function

approximation problems? Put another way, what specific functions should

the system attempt to learn? Can this process itself be automated?

 How can the learner automatically alter its representation to improve its

ability to represent and learn the target function?

Perspectives of Machine Learning:

 One useful perspective on machine learning is that it involves searching a

very large space of possible hypotheses to determine one that best fits the

observed data and any prior knowledge held by the learner.

 The learner's task is to search through a vast space to locate the

hypothesis that is most consistent with the available training

examples.The LMS algorithm for fitting weights achieves this goal by

iteratively tuning the weights, adding a correction to each weight each

time the hypothesized evaluation function predicts a value that differs

from the training value. This algorithm works well when the hypothesis

14

representation considered by the learner defines a continuously

parameterized space of potential hypotheses.

 To be precise, it’s better to follow this perspective of learning as a search

problem in order to characterize learning methods by their search

strategies and by the underlying structure of the search spaces they

explore. This viewpoint is useful in formally analyzing the relationship

between the size of the hypothesis space to be searched, the number of

training examples available, and the confidence we can have that a

hypothesis consistent with the training data will correctly generalize to

unseen examples.

Concept Learning:

Concept learning: Inferring a boolean-valued function from training examples of

its input and output.

Terminology and notation:

1. The set of items over which the concept is defined is called the set of instances

and denoted by X.

2. The concept or function to be learned is called the target concept and denoted

by

c : X -> {0, 1}.

3. Training examples consist of an instance x ∈X along with its target concept

value c(x). (An instance x is positive if c(x) = 1 and negative if c(x) = 0.)

Hypothesis Spaces and Inductive Learning

Given a set of training examples of the target concept c, the problem faced by the

learner is to hypothesize, or estimate, c.

 The set of all possible hypotheses that the learner may consider is denoted H.

 The goal of the learner is to find a hypothesis h ∈ H such that h(x) = c(x) for all x

∈ X.

15

 The inductive learning hypothesis: Any hypothesis found to approximate the target

function well over a sufficiently large set of training examples will also approximate

the target function well over other unobserved examples.

Hypothesis Representation

 The hypothesis space is usually determined by the human designer’s

choice of hypothesis representation.

 We assume:

1. An instance is represented as a tuple of attributes

<a1 = v1, . . . , an = vn>

2. A hypothesis is represented as a conjunction of constraints on instance

attributes.

3. Possible constraints are ai = v (specifying a single value),? (any value is

acceptable), and ; ∅ (no value is acceptable).

A Simple Concept Learning Task

Target concept: Proper name.

Instances: Words (in text).

Instance attributes:

1. Capitalized: Yes, No.

2. Sentence-initial: Yes, No.

3. Contains hyphen: Yes, No.

Training examples:

16

UNIT-2
Artificial Neural Networks

Artificial neural networks (ANNs) provide a general, practical method for

learning real-valued, discrete-valued, and vector-valued functions from examples.

Algorithms such as BACKPROPAGATION use gradient descent to tune network

parameters to best fit a training set of input-output pairs. ANN learning is robust

to errors in the training data and has been successfully applied to problems such

as interpreting visual scenes, speech recognition, and learning robot control

strategies.

17

 NEURAL NETWORK REPRESENTATIONS

18

These are called "hidden" units because their output is available only within

the network and is not available as part of the global network output.

The network structure of ALYINN is typical of many ANNs. Here the

individual units are interconnected in layers that form a directed acyclic

graph(DAG). In general, ANNs can be graphs with many types of structures-acyclic

or cyclic, directed or undirected. This chapter will focus on the most common and

practical ANN approaches, which are based on the BACKPROPAGATION algorithm.

The BACK- PROPAGATION algorithm assumes the network is a fixed structure

that corresponds to a directed graph, possibly containing cycles. Learning

corresponds to choosing a weight value for each edge in the graph. Although

certain types of cycles are allowed, the vast majority of practical applications

involve acyclic feed-forward networks, similar to the network structure used by

ALVINN.

APPROPRIATE PROBLEMS FOR NEURAL NETWORK LEARNING It is

appropriate for problems with the following characteristics:

Instances are represented by many attribute-value pairs.

The target function output may be discrete-valued, real-valued, or a vector

of several real- or discrete-valued attributes.

The training examples may contain errors.

Long training times are acceptable.

Fast evaluation of the learned target function may be required. Although

ANN learning times are relatively long, evaluating the learned network, in order to

apply it to a subsequent instance, is typically very fast. For example, ALVINN

applies its neural network several times per second to continually update its

steering command as the vehicle drives forward.

The ability of humans to understand the learned target function is not

important.

 PERCEPTRON - the most simple ANN system

19

 Representational Power of Perceptron

In fact, AND and OR can be viewed as special cases of m-of-n functions: that

is, functions where at least m of the n inputs to the perceptron must be true. The

OR function corresponds to rn = 1 and the AND function to m = n. Any m-of-n

function is easily represented using a perceptron by setting all input weights to the

same value (e.g., 0.5) and then setting the threshold wo accordingly.

In fact, every boolean function can be represented by some network of

perceptrons only two levels deep, in which the inputs are fed to multiple units, and

the outputs of these units are then input to a second, final stage.

 The Perceptron Training Rule

20

Let us begin by understanding how to learn the weights for a single

perceptron. Here the precise learning problem is to determine a weight vector that

causes the perceptron to produce the correct f 1 output for each of the given

training examples. Several algorithms are known to solve this learning problem.

Here we consider two: the perceptron rule and the delta rule (a variant of the LMS

rule used in Chapter 1 for learning evaluation functions).

One way to learn an acceptable weight vector is to begin with random

weights, then iteratively apply the perceptron to each training example, modifying

the perceptron weights whenever it misclassifies an example. This process is

repeated, iterating through the training examples as many times as needed until

the perceptron classifies all training examples correctly. Weights are modified at

each step according to the perceptron training rule, which revises the weight wi

associated with input xi according to the rule wi <- wi + △wi, where △wi = q(t -

o)xi. Here t is the target output for the current training example, o is the output

generated by the perceptron, and q is a positive constant called the learning rate.

The role of the learning rate is to moderate the degree to which weights are

changed at each step. It is usually set to some small value (e.g., 0.1) and is

sometimes made to decay as the number of weight-tuning iterations increases.

Why should this update rule converge toward successful weight values? In

this case, (t - o) is zero, making △wi zero, so that no weights are updated. Suppose

the perceptron outputs a -1, when the target output is + 1....

In fact, the above learning procedure can be proven to converge within a

finite number of applications of the perceptron training rule to a weight vector that

correctly classifies all training examples, provided the training examples are

linearly separable and provided a sufficiently small 7 is used (see Minsky and

Papert 1969). If the data are not linearly separable, convergence is not assured.

 Gradient Descent and the Delta Rule

If the training examples are not linearly separable, the delta rule converges

toward a best-fit approximation to the target concept.

21

The key idea behind the delta rule is to use gradient descent to search the

hypothesis space of possible weight vectors to find the weights that best fit the

training examples. This rule is important because gradient descent provides the

basis for the BACKPROPAGATION algorithm, which can learn networks with many

interconnected units. It is also important because gradient descent can serve as

the basis for learning algorithms that must search through hypothesis spaces

containing many different types of continuously parameterized hypotheses.

In order to derive a weight learning rule for linear units, let us begin by

specifying a measure for the training error of a hypothesis (weight vector), relative

to the training examples. Although there are many ways to define this error, one

common measure that will turn out to be especially convenient is

where D is the set of training examples, td is the target output for training

example d, and od is the output of the linear unit for training example d.

 VISUALIZING THE HYPOTHESIS SPACE

22

 DERIVATION OF THE GRADIENT DESCENT RULE

To summarize, the gradient descent algorithm for training linear units is as

follows: Pick an initial random weight vector. Apply the linear unit to all training

examples, then compute Awi for each weight according to Equation (4.7). Update

each weight wi by adding Awi, then repeat this process. This algorithm is given in

Table 4.1.

23

Because the error surface contains only a single global minimum, this

algorithm will converge to a weight vector with minimum error, regardless of

whether the training examples are linearly separable, given a sufficiently small

learning rate q is used. If r) is too large, the gradient descent search runs the risk

of overstepping the minimum in the error surface rather than settling into it. For

this reason, one common modification to the algorithm is to gradually reduce the

value of r) as the number of gradient descent steps grows.

 STOCHASTIC APPROXIMATION TO GRADIENT DESCENT

Gradient descent is an important general paradigm for learning. It is a

strategy for searching through a large or infinite hypothesis space that can be

applied whenever (1) the hypothesis space contains continuously parameterized

hypotheses (e.g., the weights in a linear unit), and (2) the error can be

differentiated with respect to these hypothesis parameters. The key practical

difficulties in applying gradient descent are (1) converging to a local minimum can

sometimes be quite slow (i.e., it can require many thousands of gradient descent

steps), and (2) if there are multiple local minima in the error surface, then there is

no guarantee that the procedure will find the global minimum.

24

One common variation on gradient descent intended to alleviate these

difficulties is called incremental gradient descent, or alternatively stochastic

gradient descent. Whereas the gradient descent training rule presented in

Equation (4.7) computes weight updates after summing over all the training

examples in D, the idea behind stochastic gradient descent is to approximate this

gradient descent search by updating weights incrementally, following the

calculation of the error for each individual example. The modified training rule is

like the training rule given by Equation (4.7) except that as we iterate through

each training example we update the weight according to △wi = q(t - o)xi, where t,

o, and xi are the target value, unit output, and ith input for the training example

in question.

One way to view this stochastic gradient descent is to consider a distinct

error function defined for each individual training example d as follows

where t, and od are the target value and the unit output value for training

example d.

The key differences between standard gradient descent and stochastic

gradient descent are:

In standard gradient descent, the error is summed over all examples before

updating weights, whereas in stochastic gradient descent weights are updated

upon examining each training example.

Summing over multiple examples in standard gradient descent requires

more computation per weight update step. On the other hand, because it uses the

true gradient, standard gradient descent is often used with a larger step size per

weight update than stochastic gradient descent.

In cases where there are multiple local minima with respect to E(->w),

stochastic gradient descent can sometimes avoid falling into these local minima

because it uses the various △Ed(->w) rather than △E(->w) to guide its search.

25

Both stochastic and standard gradient descent methods are commonly used

in practice.

Notice the delta rule in Equation (4.10) is similar to the perceptron training

rule in Equation (4.4.2). In fact, the two expressions appear to be identical.

However, the rules are different because in the delta rule o refers to the linear unit

output o(->x) = ->w * ->x, whereas for the perceptron rule o refers to the

thresholded output o(->x) = sgn(->w * ->x).

 MULTILAYER NETWORKS AND THE BACKPROPAGATION ALGORITHM

 A Differentiable Threshold Unit

What type of unit shall we use as the basis for constructing multilayer

networks? At first we might be tempted to choose the linear units discussed in the

previous section, for which we have already derived a gradient descent learning

rule. However, multiple layers of cascaded linear units still produce only linear

functions, and we prefer networks capable of representing highly nonlinear

functions. The perceptron unit is another possible choice, but its discontinuous

threshold makes it undifferentiable and hence unsuitable for gradient descent.

What we need is a unit whose output is a nonlinear function of its inputs, but whose

output is also a differentiable function of its inputs. One solution is the sigmoid unit-

a unit very much like a perceptron, but based on a smoothed, differentiable threshold

function.

The sigmoid function has the useful property that its derivative is easily

expressed in terms of its output, as we shall see, the gradient descent learning

rule makes use of this derivative.

26

 The BACKPROPAGATION Algorithm

One major difference in the case of multilayer networks is that the error

surface can have multiple local minima, in contrast to the single-minimum

parabolic error surface shown in Figure 4.4. Unfortunately, this means that

gradient descent is guaranteed only to converge toward some local minimum, and

not necessarily the global minimum error. Despite this obstacle, in practice

BACKPROPAGATION has been found to produce excellent results in many real-

world applications.

27

The BACKPROPAGATION algorithm is presented in Table 4.2. The notation

used here is the same as that used in earlier sections, with the following

extensions:

28

 ADDING MOMENTUM

To see the effect of this momentum term, consider that the gradient descent

search trajectory is analogous to that of a (momentumless) ball rolling down the

error surface. The effect of a! is to add momentum that tends to keep the ball

rolling in the same direction from one iteration to the next. This can sometimes

have the effect of keeping the ball rolling through small local minima in the error

surface, or along flat regions in the surface where the ball would stop if there were

no momentum. It also has the effect of gradually increasing the step size of the

search in regions where the gradient is unchanging, thereby speeding

convergence.

29

 LEARNING IN ARBITRARY ACYCLIC NETWORKS

Derivation of the BACKPROPAGATION Refer

P101-P103

 REMARKS ON THE BACKPROPAGATION ALGORITHM

 Convergence and Local Minima

Because the error surface for multilayer networks may contain many

different local minima, gradient descent can become trapped in any of these. As a

result, BACKPROPAGATION over multilayer networks is only guaranteed to

converge toward some local minimum in E and not necessarily to the global

minimum error.

Common heuris- tics to attempt to alleviate the problem of local minima

include:

Add a momentum term to the weight-update rule as described in Equa- tion

(4.18).

Use stochastic gradient descent rather than true gradient descent.

30

Train multiple networks using the same data, but initializing each network

with different random weights. If the different training efforts lead to different local

minima, then the network with the best performance over a separate validation

data set can be selected. Alternatively, all networks can be retained and treated as

a "committee" of networks whose output is the (possibly weighted) average of the

individual network outputs.

 Representational Power of Feedforward Networks

What set of functions can be represented by feedfonvard networks? Of

course the answer depends on the width and depth of the networks. Although

much is still unknown about which function classes can be described by which

types of networks, three quite general results are known:

Boolean functions. To see how this can be done, consider the following

general scheme for representing an arbitrary boolean function: For each possible

input vector, create a distinct hidden unit and set its weights so that it activates if

and only if this specific vector is input to the network. This produces a hidden

layer that will always have exactly one unit active. Now implement the output unit

as an OR gate that activates just for the desired input patterns.

Continuous functions.

Arbitraryfunctions. The proof of this involves showing that any function can

be approximated by a linear combination of many localized functions that have

value 0 everywhere except for some small region, and then showing that two layers

of sigmoid units are sufficient to produce good local approximations.

 Hypothesis Space Search and Inductive Bias

Notice this hypothesis space is continuous, in contrast to the hypothesis

spaces of decision tree learning and other methods based on discrete

representations. The fact that it is continuous, together with the fact that E is

differentiable with respect to the continuous parameters of the hypothesis, results

in a well-defined error gradient that provides a very useful structure for organizing

the search for the best hypothesis. This structure is quite different from the

general-to-specific ordering used to organize the search for symbolic concept

31

learning algorithms, or the simple-to-complex ordering over decision trees used by

the ID3 and C4.5 algorithms.

One can roughly characterize it as smooth in- terpolation between data

points. Given two positive training examples with no negative examples between

them, BACKPROPAGATION will tend to label points in between as positive

examples as well.

 Hidden Layer Representation

Consider, for example, the network shown in Figure 4.7. Here, the eight

network inputs are connected to three hidden units, which are in turn connected

to the eight output units. Because of this structure, the three hidden units will be

forced to re-represent the eight input values in some way that captures

their relevant features, so that this hidden layer representation can be used by the

output units to compute the correct target values.

 Generalization, Overfitting, and Stopping Criterion

One obvious choice is to continue training until the errcr E on the training

examples falls below some predetermined threshold. In fact, this is a poor strategy

32

because BACKPROPAGATION is susceptible to overfitting the training examples at

the cost of decreasing generalization accuracy over other unseen examples.

Given enough weight-tuning iterations, BACKPROPAGATION will often be

able to create overly complex decision surfaces that fit noise in the training data or

unrepresen- tative characteristics of the particular training sample. This

overfitting problem is analogous to the overfitting problem in decision tree learning

(see Chapter 3).

Several techniques are available to address the overfitting problem for

BACK- PROPAGATION learning:

One approach, known as weight decay, is to decrease each weight by some

small factor during each iteration. This is equivalent to modifying the definition of

E to include a penalty term corresponding to the total magnitude of the network

weights. The motivation for this approach is to keep weight values small, to bias

learning against complex decision surfaces.

One of the most successful methods for overcoming the overfitting problem

is to simply provide a set of validation data to the algorithm in addition to the

training data. The algorithm monitors the error with respect to this validation set,

while using the training set to drive the gradient descent search. Clearly, it should

use the number of iterations that produces the lowest error over the validation set,

since this is the best indicator of network performance over unseen examples. In

typical implementations of this approach, two copies of the network weights are

kept: one copy for training and a separate copy of the best-performing weights

thus far, measured by their error over the validation set. Once the trained weights

reach a significantly higher error over the validation set than the stored weights,

training is terminated and the stored weights are returned as the final hypothesis.

In general, the issue of overfitting and how to overcome it is a subtle one.

The above cross-validation approach works best when extra data are available to

provide a validation set. Unfortunately, however, the problem of overfitting is most

severe for small training sets. In these cases, a k-fold cross-validation approach is

sometimes used, in which cross validation is performed k different times, each

33

time using a different partitioning of the data into training and validation sets, and

the results are then averaged. In one version of this approach, the m available

examples are partitioned into k disjoint subsets, each of size m/k. The cross-

validation procedure is then run k times, each time using a different one of these

subsets as the validation set and combining the other subsets for the training set.

Thus, each example is used in the validation set for one of the experiments and in

the training set for the other k - 1 experiments. On each experiment the above

cross-validation approach is used to determine the number of iterations i that

yield the best performance on the validation set. The mean /i of these estimates for

i is then calculated, and a final run of BACKPROPAGATION is performed training

on all n examples for /i iterations, with no validation set. This procedure is closely

related to the procedure for comparing two learning methods based on limited

data, described in Chapter 5.

Decision Tree Learning:

Decision tree learning is one of the most widely used and practical methods

for inductive inference. It is a method for approximating discrete-valued functions

that is robust to noisy data and capable of learning disjunctive expressions. This

chapter describes a family of decision tree learning algorithms that includes widely

used algorithms such as ID3, ASSISTANT, and C4.5. These decision tree learning

methods search a completely expressive hypothesis space and thus avoid the

difficulties of restricted hypothesis spaces. Their inductive bias is a preference for

small trees over large trees.

34

In general, decision trees represent a disjunction of conjunctions of

constraints on the attribute values of instances. Each path from the tree root to a

leaf corresponds to a conjunction of attribute tests, and the tree itself to a

disjunction of these conjunctions. For example, the decision tree shown in Figure

3.1 corresponds to the expression: (Outlook = Sunny ^ Humidity = Normal) v

(Outlook = Overcast) v (Outlook = Rain A Wind = Weak).

Decision tree learning is generally best suited to problems with the following

characteristics: instances are represented by attribute-value pairs; the target

function has discrete output values; disjunctive descriptions may be required; the

training data may contain errors; the training data may contain missing attribute

values.

 THE BASIC DECISION TREE LEARNING ALGORITHM

Our basic algorithm, ID3, learns decision trees by constructing them

topdown, beginning with the question "which attribute should be tested at the root

of the tree?'To answer this question, each instance attribute is evaluated using a

statistical test to determine how well it alone classifies the training examples. The

best attribute is selected and used as the test at the root node of the tree. A

descendant of the root node is then created for each possible value of this

35

attribute, and the training examples are sorted to the appropriate descendant node

(i.e., down the branch corresponding to the example's value for this attribute). The

entire process is then repeated using the training examples associated with each

descendant node to select the best attribute to test at that point in the tree. This

forms a greedy search for an acceptable decision tree, in which the algorithm never

backtracks to reconsider earlier choices. A simplified version of the algorithm,

specialized to learning boolean-valued functions (i.e., concept learning), is

described in Table 3.1.

 Which Attribute Is the Best Classifier? We will define a

statistical property, called informution gain, that measures how well a

given attribute separates the training examples according to their target

classification. ID3 uses this information gain measure to select among

the candidate attributes at each step while growing the tree.

36

In order to define information gain precisely, we begin by defining a measure

commonly used in information theory, called entropy, that characterizes the

(im)purity of an arbitrary collection of examples. Given a collection S, containing

positive and negative examples of some target concept, the entropy of S relative to

this boolean classification is

where p+, is the proportion of positive examples in S and p-, is the

proportion of negative examples in S. In all calculations involving entropy we

define 0 log 0 to be 0.

More generally, if the target attribute can take on c different values, then the

entropy of S relative to this c-wise classification is defined as

where pi is the proportion of S belonging to class i. Note the logarithm is still

base 2 because entropy is a measure of the expected encoding length measured in

bits. Note also that if the target attribute can take on c possible values, the

entropy can be as large as log2c.

The measure we will use, called information gain, is simply the expected

reduction in entropy caused by partitioning the examples according to this

37

attribute. More precisely, the information gain, Gain(S, A) of an attribute A,

relative to a collection of examples S, is defined as

where Values(A) is the set of all possible values for attribute A, and Sv is the

subset of S for which attribute A has value v (i.e., Sv = {s ∈ SIA(s) = v}).

Information gain is precisely the measure used by ID3 to select the best

attribute at each step in growing the tree. The use of information gain to evaluate

the relevance of attributes is summarized in Figure 3.3.

 An Illustrative Example

...

 HYPOTHESIS SPACE SEARCH IN DECISION TREE LEARNING

By viewing ID3 in terms of its search space and search strategy, we can get

some insight into its capabilities and limitations:

ID3's hypothesis space of all decision trees is a complete space of finite discrete-

valued functions, relative to the available attributes. Because every finite discrete-

valued function can be represented by some decision tree, ID3 avoids one

38

of the major risks of methods that search incomplete hypothesis spaces (such as

methods that consider only conjunctive hypotheses): that the hypothesis space

might not contain the target function.

ID3 maintains only a single current hypothesis as it searches through the

space of decision trees. This contrasts, for example, with the earlier version space

Candidate-Elimination method, which maintains the set of all hypotheses

consistent with the available training examples. By determining only a single

hypothesis, ID3 loses the capabilities that follow from explicitly representing all

consistent hypotheses.

ID3 in its pure form performs no backtracking in its search. Once it,selects

an attribute to test at a particular level in the tree, it never backtracks to

reconsider this choice. Therefore, it is susceptible to the usual risks of hill-

climbing search without backtracking: converging to locally optimal solutions that

are not globally optimal. Below we discuss an extension that adds a form of

backtracking (post-pruning the decision tree.

ID3 uses all training examples at each step in the search to make

statistically based decisions regarding how to refine its current hypothesis. One

advantage of using statistical properties of all the examples (e.g., information gain)

is that the resulting search is much less sensitive to errors in individual training

examples. ID3 can be easily extended to handle noisy training data by modifying

its termination criterion to accept hypotheses that imperfectly fit the training

data.

trees.

 INDUCTIVE BIAS IN DECISION TREE LEARNING

Approximate inductive bias of ID3: Shorter trees are preferred over larger

A closer approximation to the inductive bias of ID3: Shorter trees are

preferred over longer trees. Trees that place high information gain attributes close

to the root are preferred over those that do not.

 Restriction Biases and Preference Biases

39

The inductive bias of ID3 is thus a preference for certain hypotheses over

others (e.g., for shorter hypotheses), with no hard restriction on the hypotheses

that can be eventually enumerated. This form of bias is typically called a

preference bias (or, alternatively, a search bias). In contrast, the bias of the

CANDIDATE-ELIMINATION alorithm is in the form of a categorical restriction on

the set of hypotheses considered. This form of bias is typically called a restriction

bias (or, alternatively, a language bias).

Typically, a preference bias is more desirable than a restriction bias,

because it allows the learner to work within a complete hypothesis space that is

assured to contain the unknown target function. In contrast, a restriction bias

that strictly limits the set of potential hypotheses is generally less desirable,

because it introduces the possibility of excluding the unknown target function

altogether.

Whereas ID3 exhibits a purely preference bias and CANDIDATE-

ELIMINATION a purely restriction bias, some learning systems combine both.

Consider, for example, the program described in Chapter 1 for learning a

numerical evaluation function for game playing. In this case, the learned

evaluation function is represented by a linear combination of a fixed set of board

features, and the learning algorithm adjusts the parameters of this linear

combination to best fit the available training data. In this case, the decision to use

a linear function to represent the evaluation function introduces a restriction bias

(nonlinear evaluation functions cannot be represented in this form). At the same

time, the choice of a particular parameter tuning method (the LMS algorithm in

this case) introduces a preference bias stemming from the ordered search through

the space of all possible parameter values.

 Why Prefer Short Hypotheses?

Is ID3's inductive bias favoring shorter decision trees a sound basis for

generalizing beyond the training data? Philosophers and others have debated this

question for centuries, and the debate remains unresolved to this day. William of

40

Occam was one of the first to discusst the question, around the year 1320, so this

bias often goes by the name of Occam's razor.

Occam's razor: Prefer the simplest hypothesis that fits the data.

Of course giving an inductive bias a name does not justify it. Why should

one prefer simpler hypotheses? Notice that scientists sometimes appear to follow

this inductive bias. One argument is that because there are fewer short

hypotheses than long ones (based on straightforward combinatorial arguments), it

is less likely that one will find a short hypothesis that coincidentally fits the

training data. In contrast there are often many very complex hypotheses that fit

the current training data but fail to generalize correctly to subsequent data.

Upon closer examination, it turns out there is a major difficulty with the

above argument. By the same reasoning we could have argued that one should

prefer decision trees containing exactly 17 leaf nodes with 11 nonleaf nodes, that

use the decision attribute A1 at the root, and test attributes A2 through All, in

numerical order. There are relatively few such trees, and we might argue (by the

same reasoning as above) that our a priori chance of finding one consistent with

an arbitrary set of data is therefore small.....

A second problem with the above argument for Occam's razor is that the size

of a hypothesis is determined by the particular representation used internally by

the learner. Two learners using different internal representations could therefore

anive at different hypotheses, both justifying their contradictory conclusions by

Occam's razor!

 ISSUES IN DECISION TREE LEARNING

Practical issues in learning decision trees include determining how deeply to

grow the decision tree, handling continuous attributes, choosing an appropriate

attribute selection measure, andling training data with missing attribute values,

handling attributes with differing costs, and improving computational efficiency.

Below we discuss each of these issues and extensions to the basic ID3 algorithm

that address them. ID3 has itself been extended to address most of these issues,

with the resulting system renamed C4.5 (Quinlan 1993).

41

 Avoiding Overfitting the Data

Definition: Given a hypothesis space H, a hypothesis h E H is said to overlit

the training data if there exists some alternative hypothesis h' E H, such that h

has smaller error than h' over the training examples, but h' has a smaller error

than h over the entire distribution of instances.

Random noise in the training examples can lead to overfitting. In fact,

overfitting is possible even when the training data are noise-free, especially when

small numbers of examples are associated with leaf nodes. In this case, it is quite

possible for coincidental regularities to occur, in which some attribute happens to

partition the examples very well, despite being unrelated to the actual target

function. Whenever such coincidental regularities exist, there is a risk of

overfitting.

There are several approaches to avoiding overfitting in decision tree learning.

These can be grouped into two classes: approaches that stop growing the tree

earlier, before it reaches the point where it perfectly classifies the training data;

approaches that allow the tree to overfit the data, and then post-prune the tree.

Although the first of these approaches might seem.more direct, the second

approach of post-pruning overfit trees has been found to be more successful in

practice. This is due to the difficulty in the first approach of estimating precisely

when to stop growing the tree.

A key question is what criterion is to be used to determine the correct final

tree size. Approaches include:

Use a separate set of examples, distinct from the training examples, to

evaluate the utility of post-pruning nodes from the tree.

Use all the available data for training, but apply a statistical test to estimate

whether expanding (or pruning) a particular node is likely to produce an

improvement beyond the training set.

Use an explicit measure of the complexity for encoding the training examples

and the decision tree, halting growth of the tree when this encoding size is

minimized. This approach, based on a heuristic called the Minimum Description

42

Length principle, is discussed further in Chapter 6, as well as in Quinlan and

Rivest (1989) and Mehta et al. (199.5).

The first of the above approaches is the most common and is often referred

to as a training and validation set approach. Of course, it is important that the

validation set be large enough to itself provide a statistically significant sample of

the instances. One common heuristic is to withhold one-third of the available

examples for the validation set, using the other two-thirds for training.

 REDUCED ERROR PRUNING

Nodes are removed only if the resulting pruned tree performs no worse than

the original over the validation set. This has the effect that any leaf node added

due to coincidental regularities in the training set is likely to be pruned because

these same coincidences are unlikely to occur in the validation set.

Using a separate set of data to guide pruning is an effective approach

provided a large amount of data is available. The major drawback of this approach

is that when data is limited, withholding part of it for the validation set reduces

even further the number of examples available for training.

 RULE POST-PRUNING

Rule post-pruning involves the following steps:

1. Infer the decision tree from the training set, growing the tree until the

training data is fit as well as possible and allowing overfitting to occur.

2. Convert the learned tree into an equivalent set of rules by creating one

rule for each path from the root node to a leaf node.

3. Prune (generalize) each rule by removing any preconditions that result in

improving its estimated accuracy.

4. Sort the pruned rules by their estimated accuracy, and consider them in

this sequence when classifying subsequent instances.

To illustrate, consider again the decision tree in Figure 3.1.............

Why convert the decision tree to rules before pruning? There are three main

advantages:

43

Converting to rules allows distinguishing among the different contexts in

which a decision node is used. Because each distinct path through the decision

tree node produces a distinct rule, the pruning decision regarding that attribute

test can be made differently for each path. In contrast, if the tree itself were

pruned, the only two choices would be to remove the decision node completely, or

to retain it in its original form.

Converting to rules removes the distinction between attribute tests that

occur near the root of the tree and those that occur near the leaves. Thus, we

avoid messy bookkeeping issues such as how to reorganize the tree if the root node

is pruned while retaining part of the subtree below this test.

Converting to rules improves readability. Rules are often easier for to

understand.

 Incorporating Continuous-Valued Attributes

This can be accomplished by dynamically defining new discrete- valued

attributes that partition the continuous attribute value into a discrete set of

intervals. In particular, for an attribute A that is continuous-valued, the algorithm

can dynamically create a new boolean attribute A, that is true if A < c and false

otherwise.

The only question is how to select the best value for the threshold

c. Clearly, we would like to pick a threshold, c, that produces the greatest

information gain. As an example, suppose we wish to include the continuous-

valued attribute Temperature in describing the training example days in the

learning task of Table 3.2.......

Alternative Measures for Selecting Attribute

information gain

gain ratio

An alternative to the GainRatio, designed to directly address the above

difficulty, is a distance-based measure introduced by Lopez de Mantaras (1991).

This measure is based on defining a distance metric between partitions of'the data.

Each attribute is evaluated based on the distance between the data partition it

44

creates and the perfect partition (i.e., the partition that perfectly classifies the

training data). The attribute whose partition is closest to the perfect partition is

chosen.

A variety of other selection measures have been proposed as well (e.g., see

Breiman et al. 1984; Mingers 1989a; Kearns and Mansour 1996; Dietterich et al.

1996).

 Handling Training Examples with Missing Attribute Values

One strategy for dealing with the missing attribute value is to assign it the

value that is most common among training examples at node n.

A second, more complex procedure is to assign a probability to each of the

possible values of A rather than simply assigning the most common value to A(x).

These probabilities can be estimated again based on the observed frequencies of

the various values for A among the examples at node n.

 Handling Attributes with Differing Costs

ID3 can be modified to take into account attribute costs by introducing a

cost term into the attribute selection measure. For example, we might divide the

Gain by the cost of the attribute, so that lower-cost attributes would be preferred.

While such cost-sensitive measures do not guarantee finding an optimal cost-

sensitive decision tree, they do bias the search in favor of low-cost attributes.

A large variety of extensions to the basic ID3 algorithm has been developed

by different researchers. These include methods for post-pruning trees, handling

real-valued attributes, accommodating training examples with missing attribute

values, incrementally refining decision trees as new training examples become

available, using attribute selection measures other than information gain, and

considering costs associated with instance attributes.

45

Unit-3
Bayesian Learning:

 INTRODUCTION

Bayesian learning methods are relevant to our study of machine learning

for two different reasons. First, Bayesian learning algorithms that calculate

explicit probabilities for hypotheses, such as the naive Bayes classifier, are

among the most practical approaches to certain types of learning

problems. The second reason that Bayesian methods are important to our

study of machine learning is that they provide a useful perspective for

understanding many learning algorithms that do not explicitly manipulate

probabilities.

One practical difficulty in applying Bayesian methods is that they

typically require initial knowledge of many probabilities. When these

probabilities are not known in advance they are often estimated based on

background knowledge, previously available data, and assumptions about the

form of the underlying distributions. A second practical difficulty is the

significant computational cost required to determine the Bayes optimal

hypothesis in the general case (linear in the number of candidate hypotheses).

 BAYES THEOREM

The most probable hypothesis h ∈ H given the observed data D (or at

least one of the maximally probable if there are several) is called a maximum a

posteriori (MAP) hypothesis.

46

We will assume that every hypothesis in H is equally probable a priori

(P(hi) = P(hj) for all hi and hj in H). In this case we can further simplify

Equation (6.2) and need only consider the term P(D|h) to find the most

probable hypothesis.

 BAYES THEOREM AND CONCEPT LEARNING

 Brute-Force Bayes Concept Learning

47

This algorithm may require significant computation, because it applies

Bayes theorem to each hypothesis in H to calculate P(hJ D). While this may

prove impractical for large hypothesis spaces, the algorithm is still of interest

because it provides a standard against which we may judge the performance of

other concept learning algorithms.

where

, because every hypothesis h in H has the

same prior probability;

, because we

assume noise-free training data, the probability of observing classification di

given h is just 1 if di = h(xi) and 0 if di != h(xi).

 MAP Hypotheses and Consistent Learners

We will say that a learning algorithm is a consistent learner provided it

outputs a hypothesis that commits zero errors over the training examples.

Given the above analysis, we can conclude that every consistent learner

outputs a MAP hypothesis, if we assume a uniform prior probability

48

distribution over H (i.e., P(hi) = P(hj) for all i, j), and ifwe assume deterministic,

noise free training data (i.e., P(D Ih) = 1 if D and h are consistent, and 0

otherwise).

To summarize, the Bayesian framework allows one way to characterize

the behavior of learning algorithms (e.g., FIND-S),e ven when the learning

algorithm does not explicitly manipulate probabilities. By identifying

probability distributions P(h) and P(Dlh) under which the algorithm outputs

optimal (i.e., MAP) hypotheses, we can characterize the implicit assumptions ,

under which this algorithm behaves optimally.

 MAXIMUM LIKELIHOOD AND LEAST-SQUARED ERROR

HYPOTHESES

A straightforward Bayesian analysis will show that under certain

assumptions any learning algorithm that minimizes the squared error between

the output hypothesis predictions and the training data will output a

maximum likelihood hypothesis.

P165-P166probability densities and Normal distributions：

.

Thus, Equation (6.6) shows that the maximum likelihood

hypothesis hML is the one that minimizes the sum of the squared errors

between the observed training values di and the hypothesis predictions h(xi).

This holds under the assumption that the observed training values di are

generated by adding random noise to the true target value, where this random

noise is drawn independently for each example from a Normal distribution with

zero mean.

Of course, the maximum likelihood hypothesis might not be the MAP

hypothesis, but if one assumes uniform prior probabilities over the hypotheses

then it is.

49

 MAXIMUM LIKELIHOOD HYPOTHESES FOR PREDICTING

PROBABILITIES

In this section we derive a weight-training rule for neural network

learning that seeks to maximize G(h, D) using gradient ascent.

To summarize section 6.4 and section 6.5, these two weight update rules

converge toward maximum likelihood hypotheses in two different settings. The

rule that minimizes sum of squared error seeks the maximum likelihood

hypothesis under the assumption that the training data can be modeled by

Normally distributed noise added to the target function value. The rule that

minimizes cross entropy seeks the maximum likelihood hypothesis under the

assumption that the observed boolean value is a probabilistic function of the

input instance.

 MINIMUM DESCRIPTION LENGTH PRINCIPLE

Clearly, to minimize the expected code length we should assign shorter

codes to messages that are more probable. Shannon and Weaver (1949)

showed that the optimal code (i.e., the code that minimizes the expected

message length) assigns -log2pi bits to encode message i. We will refer to the

number of bits required to encode message i using code C as the description

length of message i with respect to C, which we denote by Lc(i).

 BAYES OPTIMAL CLASSIFIER

50

No other classification method using the same hypothesis space and

same prior knowledge can outperform this method on average. This method

maximizes the probability that the new instance is classified correctly, given

the available data, hypothesis space, and prior probabilities over the

hypotheses.

Note one curious property of the Bayes optimal classifier is that the pre-

dictions it makes can correspond to a hypothesis not contained in H! One way

to view this situation is to think of the Bayes optimal classifier as effectively

considering a hypothesis space H' different from the space of hypotheses H to

which Bayes theorem is being applied. In particular, H' effectively includes

hypotheses that perform comparisons between linear combinations of

predictions from multiple hypotheses in H.

 GIBBS ALGORITHM

In particular, it implies that if the learner assumes a uniform prior over

H, and if target concepts are in fact drawn from such a distribution when

presented to the learner, then classifying the next instance according to a

hypothesis drawn at random from the current version space (according to a

uniform distribution), will have expected error at most twice that of the Bayes

optimal classijier. Again, we have an example where a Bayesian analysis of a non-

Bayesian algorithm yields insight into the performance of that algorithm.

 NAIVE BAYES CLASSIFIER

The naive Bayes classifier applies to learning tasks where each instance

x is described by a conjunction of attribute values and where the target

51

function f (x) can take on any value from some finite set V. A set of training

examples of the target function is provided, and a new instance is presented,

described by the tuple of attribute values (al, a2.. .a,). The learner is asked to

predict the target value, or classification, for this new instance.

The Bayesian approach:

The problem is that the number of these terms(different P(al, a2.. an | vj)

terms) is equal to the number of possible instances times the number of

possible target values. Therefore, we need to see every instance in the instance

space many times in order to obtain reliable estimates.

The naive Bayes classifier is based on the simplifying assumption that

the attribute values are conditionally independent(条件独立) given the target

value.

Whenever the naive Bayes assumption of conditional independence is

satisfied, this naive Bayes classification VNB is identical to the MAP

classification.

Notice that in a naive Bayes classifier the number of distinct P(ai l vj)

terms that must be estimated from the training data is just the number of

52

distinct attribute values times the number of distinct target values-a much

smaller number than if we were to estimate the P(a1, a2 . . . an l vj) terms as

first contemplated.

 BAYESIAN BELIEF NETWORKS

In this section we introduce the key concepts and the representation of

Bayesian belief networks.

Consider an arbitrary set of random variables Y1 . . . Yn, where each

variable Yi can take on the set of possible values V(Yi). We define the joint

space of the set of variables Y to be the cross product V(Y1) x V(Y2) x . . . V(Yn).

In other words, each item in the joint space corresponds to one of the possible

assignments of values to the tuple of variables (Y1 . . . Yn). The probability

distribution over this joint space is called the joint probability distribution. A

Bayesian belief network describes the joint probability distribution for a set of

variables.

 Conditional Independenc

 Representation

In general, a Bayesian network represents the joint probability

distribution by specifying a set of conditional independence assumptions,

represented by a directed acyclic graph), together with sets of local conditional

probabilities. Each variable in the joint space is represented by a node in the

Bayesian network. For each variable two types of information are specified, the

network arcs and a conditional probability table.

The joint probability for any desired assignment of values (y1, . . . , yn) to

the tuple of network variables (Y1 . . . Yn) can be computed by the formula

53

 Inference

In general, a Bayesian network can be used to compute the probability

distribution for any subset of network variables given the values or

distributions for any subset of the remaining variables.

Exact inference of probabilities in general for an arbitrary Bayesian

network is known to be NP-hard (Cooper 1990). Numerous methods have been

proposed for probabilistic inference in Bayesian networks, including exact

inference methods and approximate inference methods that sacrifice precision

to gain efficiency. For example, Monte Carlo methods provide approximate

solutions by randomly sampling the distributions of the unobserved variables

(Pradham and Dagum 1996).

 Learning Bayesian Belief Networks

In the case where the network structure is given in advance and the

variables are fully observable in the training examples, learning the conditional

54

probability tables is straightforward. We simply estimate the conditional

probability table entries just as we would for a naive Bayes classifier.

In the case where the network structure is given but only some of the

variable values are observable in the training data, the learning problem is

more difficult......6.11.5....

Gradient Ascent Training of Bayesian Networks P188-

P190

 Learning the Structure of Bayesian Networks

Learning Bayesian networks when the network structure is not known in

advance is also difficult.

 THE EM ALGORITHM

In this section we describe the EM algorithm (Dempster et al. 1977), a

widely used approach to learning in the presence of unobserved variables. The

EM algorithm can be used even for variables whose value is never directly

observed, provided the general form of the probability distribution governing

these variables is known.

 Estimating Means of k Gaussians

 General Statement of EM Algorithm

More generally, the EM algorithm can be applied in many settings where

we wish to estimate some set of parameters 8 that describe an underlying

probability distribution, given only the observed portion of the full data

produced by this distribution.

55

Derivation of the k Means Algorithm P195-

P196

 SUMMARY AND FURTHER READING

Bayesian methods provide the basis for probabilistic learning methods

that accommodate (and require) knowledge about the prior probabilities of

alternative hypotheses and about the probability of observing various data

given the hypothesis. Bayesian methods allow assigning a posterior probability

to each candidate hypothesis, based on these assumed priors and the observed

data.

Bayesian methods can be used to determine the most probable

hypothesis given the data-the maximum a posteriori (MAP) hypothesis. This is

the optimal hypothesis in the sense that no other hypothesis is more likely.

The Bayes optimal classifier combines the predictions of all alternative

hypotheses, weighted by their posterior probabilities, to calculate the most

probable classification of each new instance.

The naive Bayes classifier is a Bayesian learning method that has been

found to be useful in many practical applications. It is called "naive" because it

incorporates the simplifying assumption that attribute values are conditionally

independent, given the classification of the instance. When this assumption is

met, the naive Bayes classifier outputs the MAP classification. Even when this

assumption is not met, as in the case of learning to classify text, the naive

Bayes classifier is often quite effective. Bayesian belief networks provide a more

expressive representation for sets of conditional independence assumptions

among subsets of the attributes.

The framework of Bayesian reasoning can provide a useful basis for

analyzing certain learning methods that do not directly apply Bayes theorem.

For example, under certain conditions it can be shown that minimizing the

squared error when learning a real-valued target function corresponds to

computing the maximum likelihood hypothesis.

The Minimum Description Length principle recommends choosing the

hypothesis that minimizes the description length of the hypothesis plus the

56

description length of the data given the hypothesis. Bayes theorem and basic

results from information theory can be used to provide a rationale for this

principle.

In many practical learning tasks, some of the relevant instance variables

may be unobservable. The EM algorithm provides a quite general approach to

learning in the presence of unobservable variables. This algorithm begins with

an arbitrary initial hypothesis. It then repeatedly calculates the expected values

of the hidden variables (assuming the current hypothesis is correct), and then

recalculates the maximum likelihood hypothesis (assuming the hidden

variables have the expected values calculated by the first step). This procedure

converges to a local maximum likelihood hypothesis, along with estimated

values for the hidden variables.

Computational Learning Theory:

This theory seeks to answer questions such as "Under what conditions is

successful learning possible and impossible?" and "Under what conditions is a

particular learning algorithm assured of learning successfully?' Two specific

frameworks for analyzing learning algorithms are considered. Within the

probably approximately correct (PAC) framework, we identify classes of

hypotheses that can and cannot be learned from a polynomial number of

training examples and we define a natural measure of complexity for

hypothesis spaces that allows bounding the number of training examples

required for inductive learning. Within the mistake bound framework, we

examine the number of training errors that will be made by a learner before it

determines the correct hypothesis.

 INTRODUCTION

Our goal is to answer questions such as:

Sample complexity. How many training examples are needed for a learner

to converge (with high probability) to a successful hypothesis?

57

Computational complexity. How much computational effort is needed for a

learner to converge (with high probability) to a successful hypothesis?

Mistake bound. How many training examples will the learner misclassify

before converging to a successful hypothesis?

As we might expect, the answers to the above questions depend on the

particular setting, or learning model, we have in mind.

 PROBABLY LEARNING AN APPROXIMATELY CORRECT

HYPOTHESIS

In this section we consider a particular setting for the learning problem,

called the probably approximately correct (PAC) learning model. We begin by

specifying the problem setting that defines the PAC learning model, then

consider the questions of how many training examples and how much

computation are required in order to learn various classes of target functions

within this PAC model.

For the sake of simplicity, we restrict the discussion to the case of

learning boolean-valued concepts from noise-free training data. However, many

of the results can be extended to the more general scenario of learning real-

valued target functions (see, for example, Natarajan 1991), and some can be

extended to learning from certain types of noisy data (see, for example, Laird

1988; Kearns and Vazirani 1994).

 The Problem Setting

X refer to the set of all possible instances over which target functions

may be defined.

C refer to some set of target concepts that our learner might be called

upon to learn. Each target concept c in C corresponds to some subset of X, or

equivalently to some boolean-valued function c : X -> {0, 1}.

We assume instances are generated at random from X according to some

probability distribution D. In general, D may be any stationary

distribution(not change over time), and it will not generally be known to the

learner.

58

Training examples are generated by drawing an instance x at random

according to D, then presenting x along with its target value, c(x), to the

learner.

The learner L considers some set H of possible hypotheses when

attempting to learn the target concept. For example, H might be the set of all

hypotheses describable by conjunctions of the attributes age and height.

After observing a sequence of training examples of the target concept c, L

must output some hypothesis h from H, which is its estimate of c. To be fair,

we evaluate the success of L by the performance of h over new instances drawn

randomly from X according to D, the same probability distribution used to

generate the training data.

 Error of a Hypothesis

Note that error depends strongly on the unknown probability distribution

D.

We will use the term training error to refer to the fraction of training

examples misclassified by h, in contrast to the true error defined above. Much

of our analysis of the complexity of learning centers around the question "how

probable is it that the observed training error for h gives a misleading estimate

of the true errorv(h)?"

 PAC Learnability

In short, we require only that the learner probably learn a hypothesis

that is approximately correct-hence the term probably approximately correct

learning, or PAC learning for short.

59

Here, n is the size of instances in X. For example, if instances in X are

conjunctions of k boolean features, then n = k. The second space parameter,

size(c), is the encoding length of c in C, assuming some representation for C.

For example, if concepts in C are conjunctions of up to k boolean features,

each described by listing the indices of the features in the conjunction, then

size(c) is the number of boolean features actually used to describe c.

In fact, a typical approach to showing that some class C of target

concepts is PAC-learnable, is to first show that each target concept in C can be

learned from a polynomial number of training examples and then show that the

processing time per example is also polynomially bounded.

 SAMPLE COMPLEXITY FOR FINITE HYPOTHESIS SPACES

The growth in the number of required training examples with problem

size, called the sample complexity of the learning problem, is the

characteristic that is usually of greatest interest. The reason is that in most

practical settings the factor that most limits success of the learner is the

limited availability of training data.

Here we present a general bound on the sample complexity for a very

broad class of learners, called consistent learners. A learner is consistent if it

outputs hypotheses that perfectly fit the training data, whenever possible.

To accomplish this, it is useful to recall the definition of version space

from Chapter 2. There we defined the version space, VSH,D, to be the set of all

hypotheses h ∈ H that correctly classify the training examples D.

60

The version space is ∈-exhausted just in the case that all the hypotheses

consistent with the observed training examples (i.e., those with zero training

error) happen to have true error less than ∈.

We have just proved an upper bound on the probability that the version

space is not €-exhausted, based on the number of training examples m, the

allowed error E, and the size of H.

To summarize, the inequality shown in Equation (7.2) provides a general

bound on the number of training examples sufficient for any consistent learner

to successfully learn any target concept in H, for any desired values of 6 and E.

61

 Agnostic Learning and Inconsistent Hypotheses

A learner that makes no assumption that the target concept is

representable by H and that simply finds the hypothesis with minimum

training error, is often called an agnostic learner.

This question can be answered (see Exercise 7.3) using an argument

analo- gous to the proof of Theorem 7.1. It is useful here to invoke the general

Hoeffding bounds (sometimes called the additive Chernoff bounds).

This is the generalization of Equation (7.2) to the case in which the

learner still picks the best hypothesis h ∈ H, but where the best hypothesis

may have nonzero training error.

 Conjunctions of Boolean Literals Are PAC-Learnable

Consider the class C of target concepts described by conjunctions of

boolean literals. Is C PAC-learnable? We can show that the answer is yes by

first showing that any consistent learner will require only a polynomial number

62

of training examples to learn any c in C, and then suggesting a specific

algorithm that uses polynomial time per training example.

The size |H| of this hypothesis space is 3". To see this, consider the fact

that there are only three possibilities for each variable in any given hypothesis:

Include the variable as a literal in the hypothesis, include its negation as a

literal, or ignore it. Given n such variables, there are 3" distinct hypotheses.

Notice that m grows linearly in the number of literals n, linearly in 1/∈,

and logarithmically in 1/&.

It is the FIND-S algorithm, which incrementally computes the most

specific hypothesis consistent with the training examples. For each new

positive training example, this algorithm computes the intersection of the

literals shared by the current hypothesis and the new training example, using

time linear in n. Therefore, the FIND-S algorithm PAC-learns the concept class

of conjunctions of n boolean literals with negations.

 PAC-Learnability of Other Concept Classes

 UNBIASED LEARNERS:

Not all concept classes have polynomially bounded sample complexity,

that the sample complexity for the unbiased concept class is exponential in n.

 K-TERM DNF AND K-CNF CONCEPTS:

It is also possible to find concept classes that have polynomial sample

complexity, but nevertheless cannot be learned in polynomial time.

63

Although k-term DNF has polynomial sample complexity, it does not

have polynomial computational complexity for a learner using H = C.

Although k-CNF is more expressive than k-term DNF, it has both

polynomial sample complexity and polynomial time complexity. Hence, the

concept class k-term DNF is PAC learnable by an efficient algorithm using H =

k-CNF.

 SAMPLE COMPLEXITY FOR INFINITE HYPOTHESIS SPACES

Here we consider a second measure of the complexity of H, not |H|, but

the Vapnik-Chervonenkis dimension of H (VC dimension, or VC(H), for short).

 Shattering a Set of Instances

Given some instance set S, we say that H shatters S if every possible

dichotomy of S can be represented by some hypothesis from H.

The ability of H to shatter a set .of instances is thus a measure of its

capacity to represent target concepts defined over these instances.

 The Vapnik-Chervonenkis Dimension

Recall from Chapter 2 that an unbiased hypothesis space is one capable

of representing every possible concept (dichotomy) definable over the instance

space X. Put briefly, an unbiased hypothesis space H is one that shatters the

instance space X.

 ILLUSTRATIW EXAMPLES

To get started, suppose the instance space X is the set of real numbers X

= & (e.g., describing the height of people), and H the set of intervals on the real

number line, VC(H) = 2.

64

Next consider the set X of instances corresponding to points on the x, y

plane (see Figure 7.4). Let H be the set of all linear decision surfaces in the

plane. In other words, H is the hypothesis space corresponding to a single

perceptron unit with two inputs (see Chapter 4 for a general discussion of

perceptrons), VC(H) = 3. More generally, it can be shown that the VC

dimension of linear decision surfaces in an r dimensional space (i.e., the VC

dimension of a perceptron with r inputs) is r + 1.

As one final example, suppose each instance in X is described by the

conjunction of exactly three boolean literals, and suppose that each hypothesis

in H is described by the conjunction of up to three boolean literals. The VC

dimension for conjunctions of n boolean literals is at least n. In fact, it is

exactly n, though showing this is more difficult, because it requires

demonstrating that no set of n + 1 instances can be shattered.

 Sample Complexity and the VC Dimension

This theorem states that if the number of training examples is too few,

then no learner can PAC-learn every target concept in any nontrivial C. Thus,

this theorem provides a lower bound on the number of training examples

necessary for successful learning, complementing the earlier upper bound that

gives a suficient number. Notice this lower bound is determined by the

complexity of the concept class C, whereas our earlier upper bounds were

determined by H. (why?)

65

 VC Dimension for Neural Networks

Consider a network, G, of units, which forms a layered directed acyclic

graph.

 THE MISTAKE BOUND MODEL OF LEARNING

In this section we consider the mistake bound model of learning, in

which the learner is evaluated by the total number of mistakes it makes before

it converges to the correct hypothesis.

As in the PAC setting, we assume the learner receives a sequence of

training examples. However, here we demand that upon receiving each example

x, the learner must predict the target value c(x), before it is shown the correct

target value by the trainer. The question considered is "How many mistakes

will the learner make in its predictions before it learns the target concept?'

In the examples below, we consider instead the number of mistakes

made before learning the target concept exactly. Learning the target concept

exactly means converging to a hypothesis such that (Vx)h(x) = c(x).

66

 Mistake Bound for the FIND-S Algorithm

Recall the FIND-S algorithm from Chapter 2, which incrementally

computes the maximally specific hypothesis consistent with the training

examples. Can we prove a bound on the total number of mistakes that FIND-S

will make before exactly learning the target concept c? The answer is yes.

To see this, note first that if c ∈ H, then FIND-S can never mistakenly

classify a negative example as positive. The reason is that its current

hypothesis h is always at least as specific as the target concept c. Therefore, to

calculate the number of mistakes it will make, we need only count the number

of mistakes it will make misclassifying truly positive examples as negative.

Consider the first positive example encountered by FIND-S.T he learner

will certainly make a mistake classifying this example, because its initial

hypothesis labels every instance negative. However, the result will be that half

of the 2n terms in its initial hypothesis will be eliminated, leaving only n terms.

For each subsequent positive example that is mistakenly classified by the

current hypothesis, at least one more of the remaining n terms must be

eliminated from the hypothesis. Therefore, the total number of mistakes can

be at most n + 1. This number of mistakes will be required in the worst case,

corresponding to learning the most general possible target concept (Vx)c(x) = 1

and corresponding to a worst case sequence of instances that removes only one

literal per mistake.

 Mistake Bound for the HALVING Algorithm

If the majority of version space hypotheses classify the new instance as

positive, then this prediction is output by the learner. Otherwise a negative

prediction is output. This combination of learning the version space, together

with using a majority vote to make subsequent predictions, is often called the

HALVING algorithm. The CANDIDATE-ELIMINATlON algorithm and the LIST-

THEN-ELIMINATlON algorithm from Chapter 2 are examples of such

algorithms.

67

In this section we derive a worst-case bound on the number of mistakes

that will be made by such a learner, for any finite hypothesis space H,

assuming again that the target concept must be learned exactly.

 Optimal Mistake Bounds

It is interesting to ask what is the optimal mistake bound for an arbitrary

concept class C, assuming H = C. By optimal mistake bound we mean the

lowest worst-case mistake bound over all possible learning algorithms.

68

 WEIGHTED-MAJORITY Algorithm

The WEIGHTED-MAJORITY algorithm makes predictions by taking a

weighted vote among a pool of prediction algorithms and learns by altering the

weight associated with each prediction algorithm.

One interesting property of the WEIGHTED-MAJORITY algorithm is that

it is able to accommodate inconsistent training data. This is because it does

not eliminate a hypothesis that is found to be inconsistent with some training

example, but rather reduces its weight.

Whenever a pre- diction algorithm misclassifies a new training example

its weight is decreased by multiplying it by some number B, where 0 <= B <= 1.

The exact definition of the WEIGHTED-MAJORITY algorithm is given in Table

7.1.

We now show that the number of mistakes committed by the

WEIGHTED- MAJORITY algorithm can be bounded in terms of the number of

mistakes made by the best prediction algorithm in the voting pool.

69

 SUMMARY AND FURTHER READING

70

71

Genetic Algorithms:

This chapter covers both genetic algorithms, in which hypotheses are

typically described by bit strings, and genetic programming, in which

hypotheses are described by computer programs.

 MOTIVATION

The popularity of GAS is motivated by a number of factors including:

Evolution is known to be a successful, robust method for adaptation

within biological systems.

72

GAS can search spaces of hypotheses containing complex interacting

parts, where the impact of each part on overall hypothesis fitness may be

difficult to model.

Genetic algorithms are easily parallelized and can take advantage of the

decreasing costs of powerful computer hardware.

 GENETIC ALGORITHMS

The problem addressed by GAS is to search a space of candidate

hypotheses to identify the best hypothesis. In GAS the "best hypothesis" is

defined as the one that optimizes a predefined numerical measure for the

problem at hand, called the hypothesis fitness.

Although different implementations of genetic algorithms vary in their

details, they typically share the following structure: The algorithm operates by

itera- tively updating a pool of hypotheses, called the population. On each

iteration, all members of the population are evaluated according to the fitness

function. A new population is then generated by probabilistically selecting the

most fit individuals from the current population. Some of these selected

individuals are carried forward into the next generation population intact.

Others are used as the basis for creating new offspring individuals by applying

genetic operations such as crossover and mutation.

A prototypical genetic algorithm is described in Table 9.1.

73

 Representing Hypotheses

Hypotheses in GAS are often represented by bit strings, so that they can

be easily manipulated by genetic operators such as mutation and crossover.

The hypotheses represented by these bit strings can be quite complex. For

example, sets of if-then rules can easily be represented in this way, by choosing

an encoding of rules that allocates specific substrings for each rule

74

precondition and postcondition. Placing a 1 in some position indicates that the

attribute is allowed to take on the corresponding value.

To pick an example, consider the attribute Outlook, which can take on

any of the three values Sunny, Overcast, or Rain; consider a second attribute,

Wind, that can take on the value Strong or Weak, then:

 Genetic Operators

75

The two most common operators are crossover and mutation.

 Fitness Function and Selection

fitness proportionate selection, or roulette wheel selection.

tournament selection

rank selection

 AN ILLUSTRATIVE EXAMPLE

Refer。P256-P258。

 HYPOTHESIS SPACE SEARCH

The GA search can move much more abruptly, replacing a parent

hypothesis by an offspring that may be radically different from the parent. And

76

the GA search is therefore less likely to fall into the same kind of local minima

that can plague gradient descent methods.

One practical difficulty in some GA applications is the problem of crowding.

Crowding is a phenomenon in which some individual that is more highly fit

than others in the population quickly reproduces, so that copies of this

individual and 1 very similar individuals take over a large fraction of the

population. The negative impact of crowding is that it reduces the diversity of

the population, thereby slow- ing further progress by the GA.

Several strategies have been explored for reducing crowding. One

approach is to alter the selection function, using criteria such as tournament

selection or rank selection in place of fitness proportionate roulette wheel

selection. A related strategy is "fitness sharing", in which the measured fitness

of an individual is reduced by the presence of other, similar individuals in the

population. A third approach is to restrict the kinds of individuals allowed to

recombine to form offspring. For example, by allowing only the most similar

individuals to recombine, we can encourage the formation of clusters of similar

individuals, or multiple "subspecies" within the population. A related approach

is to spatially distribute individuals and allow only nearby individuals to

recombine. Many of these techniques are inspired by the analogy to biological

evolution.

 Population Evolution and the Schema Theorem

It is interesting to ask whether one can mathematically characterize

the evolution over time of the population within a GA.

The schema theorem of Holland (1975) provides one such

characterization. It is based on the concept of schemas, or patterns that

describe sets of bit strings. To be precise, a schema is any string composed of

Os, Is, and *'s. Each schema represents the set of bit strings containing the

indicated 0s and Is, with each "*" interpreted as a "don't care." For example, the

schema 0*10 represents the set of bit strings that includes exactly 0010 and

0110.

77

The schema theorem characterizes the evolution of the population within

a GA in terms of the number of instances representing each schema. Let

m(s, t) denote the number of instances of schema s in the population at time t

(i.e., during the tth generation). The schema theorem describes the expected

value of m(s, t + 1) in terms of m(s, t) and other properties of the schema,

population, and GA algorithm parameters.

Let /f(t) denote the average fitness of all individuals in the population at time t

and let ^u(s, t) denote the average fitness of instances of schema s in the

population at time t. then:

If we view the GA as performing a virtual parallel search through the

space of possible schemas at the same time it performs its explicit parallel

search through the space of individuals, then Equation (9.3) indicates that

more fit schemas will grow in influence over time.

The schema theorem is perhaps the most widely cited characterization of

population evolution within a GA. One way in which it is incomplete is that it

fails to consider the (presumably) positive effects of crossover and mutation.

Numerous more recent theoretical analyses have been proposed, including

analyses based on Markov chain models and on statistical mechanics models.

See, for example, Whitley and Vose (1995) and Mitchell (1996).

 GENETIC PROGRAMMING

Genetic programming (GP) is a form of evolutionary computation in

which the in- dividuals in the evolving population are computer programs

rather than bit strings.

 Representing Programs

Programs manipulated by a GP are typically represented by trees

corresponding to the parse tree of the program. Each function call is

represented by a node in the tree, and the arguments to the function are given

78

by its descendant nodes. For example, Figure 9.1 illustrates this tree

representation for the function sin(x) + sqrt(x*x + y).

To apply genetic programming to a particular domain, the user must

define the primitive functions to be considered (e.g., sin, cos, +, -,

exponentials),a s well as the terminals (e.g., x, y, constants such as 2). The

genetic programming algorithm then uses an evolutionary search to explore the

vast space of programs that can be described using these primitives.

As in a genetic algorithm, the prototypical genetic programming

algorithm maintains a population of individuals (in this case, program trees).

On each iteration, it produces a new generation of individuals using selection,

crossover, and mutation. The fitness of a given individual program in the

population is typ- ically determined by executing the program on a set of

training data.

79

 Illustrative Example

As in most GP applications, the choice of problem representation has a

significant impact on the ease of solving the problem. In Koza's formulation,

80

the primitive functions used to compose programs for this task include the

following three terminal arguments:

CS (current stack), which refers to the name of the top block on the stack, or F

if there is no current stack.

TB (top correct block), which refers to the name of the topmost block on the

stack, such that it and those blocks beneath it are in the correct order.

NN (next necessary), which refers to the name of the next block needed above

TB in the stack, in order to spell the word "universal" or F if no more blocks are

needed.

 Remarks on Genetic Programming

Despite the huge size of the hypothesis space it must search, genetic

programming has been demonstrated to produce intriguing results in a

number of applications.

In most cases, the performance of genetic programming depends

crucially on the choice of representation and on the choice of fitness function.

For this reason, an active area of current research is aimed at the automatic

discovery and incorporation of subroutines that improve on the original set of

primitive functions, thereby allowing the system to dynamically alter the

primitives from which it constructs individuals. See, for example, Koza (1994).

 MODELS OF EVOLUTION AND LEARNING

One interesting question regarding evolutionary systems is "What is the

relationship between learning during the lifetime of a single individual, and the

longer time frame species-level learning afforded by evolution?'

 Lamarckian Evolution

 Baldwin Effect

 PARALLELIZING GENETIC ALGORITHMS

GAS are naturally suited to parallel implementation, and a number of

approaches to parallelization have been explored. Coarse grain approaches to

parallelization subdivide the population into somewhat distinct groups of

individuals, called demes. Each deme is assigned to a different computational

node, and a standard GA search is performed at each node. Communication

81

and cross-fertilizationbetween demes occurs on a less frequent basis than

within demes. In contrast to coarse-grained parallel implementations of GAS,

fine-grained implementations typically assign one processor per individual in

the population. Recombination then takes place among neighboring

individuals.

Instance Based Learning:

Instance-based learning methods such as nearest neighbor and locally

weighted regression are conceptually straightforward approaches to

approximating real-valued or discrete-valued target functions. Learning in

these algorithms consists of simply storing the presented training data. When a

new query instance is encountered, a set of similar related instances is

retrieved from memory and used to classify the new query instance.

One key difference between these approaches and the methods discussed

in other chapters is that instance-based approaches can construct a different

approximation to the target function for each distinct query instance that must

be classified. In fact, many techniques construct only a local approximation to

the target function that applies in the neighborhood of the new query instance,

and never construct an approximation designed to perform well over the entire

instance space. This has significant advantages when the target function is

very complex, but can still be described by a collection of less complex local

approximations.

 k-NEAREST NEIGHBOR LEARNING

82

In nearest-neighbor learning the target function may be either discrete-

valued or real-valued. Let us first consider learning discrete-valued target

functions of the form f : X -> V, where V is the finite set {v1, . . . vs}. The k-

NEARESNTE IGHBOR algorithm for approximating a discrete-valued target

function is given in Table 8.1.

 Distance-Weighted NEAREST NEIGHBOR Algorithm

One obvious refinement to the k-NEAREST NEIGHBOR algorithm is to

weight the contribution of each of the k neighbors according to their distance

to the query point xq, giving greater weight to closer neighbors.

83

 Remarks on k-NEARESTN EIGHBOR Algorithm

It is robust to noisy training data and quite effective when it is provided a

sufficiently large set of training data.

The inductive bias corresponds to an assumption that the classification

of an instance x, will be most similar to the classification of other instances

that are nearby in Euclidean distance.

One disadvantage of instance-based approaches is that the cost of

classifying new instances can be high. This is due to the fact that nearly all

computation takes place at classification time rather than when the training

examples are first encountered.

A second disadvantage to many instance-based approaches, especially

nearest neighbor approaches, is that they typically consider all attributes of the

instances when attempting to retrieve similar training examples from memory.

If the target concept depends on only a few of the many available attributes,

then the instances that are truly most "similar" may well be a large distance

apart. This difficulty, which arises when many irrelevant attributes are

84

present, is sometimes referred to as the curse of dimensionality. Nearest-

neighbor approaches are especially sensitive to this problem.

One interesting approach to overcoming this problem is to weight each

attribute differently when calculating the distance between two instances. This

corresponds to stretching the axes in the Euclidean space, shortening the axes

that correspond to less relevant attributes, and lengthening the axes that

correspond to more relevant attributes. The amount by which each axis should

be stretched can be determined automatically using a cross-validation

approach.

An even more drastic alternative is to completely eliminate the least

relevant attributes from the instance space. This is equivalent to setting some

of the zi scaling factors to zero.

 A Note on Terminolog

Much of the literature on nearest-neighbor methods and weighted local

regression uses a terminology that has arisen from the field of statistical

pattern recognition. In reading that literature, it is useful to know the following

terms:

Regression means approximating a real-valued target function.

Residual is the error ^f(x) - f (x) in approximating the target function.

Kernel function is the function of distance that is used to determine the

weight of each training example. In other words, the kernel function is the

function K such that wi = K(d(xi, x,)).

 LOCALLY WEIGHTED REGRESSION

The nearest-neighbor approaches described in the previous section can

be thought of as approximating the target function f (x) at the single query point

x = xq. Locally weighted regression is a generalization of this approach. It

constructs an explicit approximation to f over a local region surrounding xq.

85

 Locally Weighted Linear Regression

Recall that in Chapter 4 we discussed methods such as gradient descent

to find the coefficients w0 . . . wn to minimize the error in fitting such linear

functions to a given set of training examples. How shall we modify this

procedure to derive a local approximation rather than a global one? The simple

way is to redefine the error criterion E to emphasize fitting the local training

examples, as following:

In fact, if we are fitting a linear function to a fixed set of training

examples, then methods much more efficient than gradient descent are

available to directly solve for the desired coefficients w0 . . . wn. Atkeson et al.

(1997a) and Bishop (1995) survey several such methods.

86

 RADIAL BASIS FUNCTION

Several alternative methods have been proposed for choosing an

appropriate number of hidden units or, equivalently, kernel functions. One

approach is to allocate a Gaussian kernel function for each training example

(xi, f (xi)), centering this Gaussian at the point xi. Each of these kernels may be

assigned the same width &2. A second approach is to choose a set of kernel

functions: The set of kernel functions may be distributed with centers spaced

uniformly throughout the instance space X. Alternatively, we may wish to

distribute the centers nonuniformly, especially if the instances themselves are

87

found to be distributed nonuniformly over X. Alternatively, we may identify

prototypical clusters of instances, then add a kernel function centered at each

cluster.

To summarize, radial basis function networks provide a global

approximation to the target function, represented by a linear combination of

many local kernel functions. The value for any given kernel function is non-

negligible only when the input x falls into the region defined by its particular

center and width. Thus, the network can be viewed as a smooth linear

combination of many local approximations to the target function.

One key advantage to RBF networks is that they can be trained much

more efficiently than feedforward networks trained with BACKPROPAGATION.

This follows from the fact that the input layer and the output layer of an RBF

are trained separately.

 CASE-BASED REASONING

Instance-based methods such as k-NEAREST NEIGHBOaRn d locally

weighted regression share three key properties. First, they are lazy learning

methods in that they defer the decision of how to generalize beyond the

training data until a new query instance is observed. Second, they classify new

query instances by analyzing similar instances while ignoring instances that

are very different from the query. Third, they represent instances as real-

valued points in an n-dimensional Euclidean space. Case-based reasoning

(CBR) is a learning paradigm based on the first two of these principles, but not

the third. In CBR, instances are typically represented using more rich

symbolic descriptions, and the methods used to retrieve similar instances are

correspondingly more elaborate.

Let us consider a prototypical example of a case-based reasoning system

to ground our discussion. The CADET system (Sycara et al. 1992) employs case-

based reasoning to assist in the conceptual design of simple mechanical devices

such as water faucets.

Given this functional specification for the new design problem, CADET

searches its library for stored cases whose functional descriptions match the

88

design problem. If an exact match is found, indicating that some stored case

implements exactly the desired function, then this case can be returned as a

suggested solution to the design problem. If no exact match occurs, CADET

may find cases that match various subgraphs of the desired functional

specification.

It is instructive to examine the correspondence between the problem

setting of CADET and the general setting for instance-based methods such as k-

NEAREST NEIGHBORIn. CADET each stored training example describes a function

graph along with the structure that implements it. New queries correspond to new

function graphs. Thus, we can map the CADET problem into our standard

notation by defining the space of instances X to be the space of all function

graphs. The target function f maps function graphs to the structures that

implement them. Each stored training example (x, f (x)) is a pair that describes

some function graph x and the structure f (x) that implements x. The system

must learn from the training example cases to output the structure f (xq) that

successfully implements the input function graph query xq.

 REMARKS ON LAZY AND EAGER LEARNING

In this chapter we considered three lazy learning methods: the k-

NEAREST NEIGHBOR algorithm, locally weighted regression, and case-based

reasoning. We call these methods lazy because they defer the decision of how to

generalize beyond the training data until each new query instance is

encountered. We also discussed one eager learning method: the method for

learning radial basis function networks. We call this method eager because it

generalizes beyond the training data before observing the new query,

committing at training time to the network structure and weights that define

its approximation to the target function. In this same sense, every other

algorithm discussed elsewhere in this book (e.g., BACKPROPAGATION, C4.5) is

an eager learning algorithm.

Are there important differences in what can be achieved by lazy versus

eager learning? Differences in computation time and differences in the

classifications(or inductive bias) produced for new queries and differences in

89

generalization accuracy(related to the distinction between global and local

approximations to the target function). Inductive bias: Lazy methods may

consider the query instance x, when deciding how to generalize beyond the

training data D; Eager methods cannot. By the time they observe the query

instance x, they have already chosen their (global) approximation to the target

function.

Lazy methods have the option of selecting a different hypothesis or local

approximation to the target function for each query instance. Eager methods

using the same hypothesis space are more restricted because they must

commit to a single hypothesis that covers the entire instance space. Eager

methods can, of course, employ hypothesis spaces that combine multiple local

approximations, as in RBF networks. However, even these combined local

approximations do not give eager methods the full ability of lazy methods to

customize to unknown future query instances.

 SUMMARY AND FURTHER READING

Instance-based learning methods differ from other approaches to

function approximation because they delay processing of training examples

until they must label a new query instance. As a result, they need not form an

explicit hypothesis of the entire target function over the entire instance space,

independent of the query instance. Instead, they may form a different local

approximation to the target function for each query instance.

Advantages of instance-based methods include the ability to model

complex target functions by a collection of less complex local approximations

and the fact that information present in the training examples is never lost

(because the examples themselves are stored explicitly). The main practical

difficulties include efficiency of labeling new instances (all processing is done at

query time rather than in advance), difficulties in determining an appropriate

distance metric for retrieving "related" instances (especially when examples are

represented by complex symbolic descriptions), and the negative impact of

irrelevant features on the distance metric.

90

k-NEARESNTE IGHBOR is an instance-based algorithm for

approximating real-valued or discrete-valued target functions, assuming

instances correspond to points in an n-dimensional Euclidean space. The

target function value for a new query is estimated from the known values of the

k nearest training examples.

Locally weighted regression methods are a generalization of k-NEAREST

NEIGHBOiRn which an explicit local approximation to the target function is

constructed for each query instance. The local approximation to the target

function may be based on a variety of functional forms such as constant,

linear, or quadratic functions or on spatially localized kernel functions.

Radial basis function (RBF) networks are a type of artificial neural

network constructed from spatially localized kernel functions. These can be

seen as a blend of instance-based approaches (spatially localized influence of

each kernel function) and neural network approaches (a global approximation

to the target function is formed at training time rather than a local

approximation at query time). Radial basis function networks have been used

successfully in applications such as interpreting visual scenes, in which the

assumption of spatially local influences is well-justified.

Case-based reasoning is an instance-based approach in which instances

are represented by complex logical descriptions rather than points in a

Euclidean space. Given these complex symbolic descriptions of instances, a

rich variety of methods have been proposed for mapping from the training

examples to target function values for new instances. Case-based reasoning

methods have been used in applications such as modeling legal reasoning and

for guiding searches in complex manufacturing and transportation planning

problems.

91

Analytical Learning:

Unit-4

Inductive learning methods such as neural network and decision tree

learning require a certain number of training examples to achieve a given level

of generalization accuracy, as reflected in the theoretical bounds and

experimental results discussed in earlier chapters. Analytical learning uses

prior knowledge and deductive reasoning to augment the information provided

by the training examples, so that it is not subject to these same bounds. This

chapter considers an analytical learning method called explanation-based

learning (EBL). In explanation-based learning, prior knowledge is used to

analyze, or explain, how each observed training example satisfies the target

concept. This explanation is then used to distinguish the relevant features of

the training example from the irrelevant, so that examples can be generalized

based on logical rather than statistical reasoning.

 INTRODUCTION

Previous chapters have considered a variety of inductive learning

methods: that is, methods that generalize from observed training examples by

identifying features that empirically distinguish positive from negative training

examples. Decision tree learning, neural network learning, inductive logic

programming, and genetic algorithms are all examples of inductive methods

that operate in this fashion. The key practical limit on these inductive learners

is that they perform poorly when insufficient data is available. In fact, as

discussed in Chapter 7, theoretical analysis shows that there are fundamental

bounds on the accuracy that can be achieved when learning inductively from a

given number of training examples.

Can we develop learning methods that are not subject to these

fundamental bounds on learning accuracy imposed by the amount of training

data available? Yes, if we are willing to reconsider the formulation of the

learning problem itself. One way is to develop learning algorithms that accept

92

explicit prior knowledge as an input, in addition to the input training data.

Explanation-based learning is one such approach. It uses prior knowledge to

analyze, or explain, each training example in order to infer which example

features are relevant to the target function and which are irrelevant. These

explanations enable it to generalize more accurately than inductive systems

that rely on the data alone.

As we saw in the previous chapter, inductive logic programming systems

such as CIGOL also use prior background knowledge to guide learning.

However, they use their background knowledge to infer features that augment

the input descriptions of instances, thereby increasing the complexity of the

hypothesis space to be searched. In contrast, explanation-based learning uses

prior knowledge to reduce the complexity of the hypothesis space to be

searched, thereby reducing sample complexity and improving generalization

accuracy of the learner.

 Inductive and Analytical Learning Problems

The full definition of this analytical learning task is given in Table 11 .1

93

 LEARNING WITH PERFECT DOMAIN THEORIES: PROLOG-EBG

As stated earlier, in this chapter we consider explanation-based learning

from domain theories that are perfect, that is, domain theories that are correct

and complete. A domain theory is said to be correct if each of its assertions is

a truthful statement about the world. A domain theory is said to be complete

with respect to a given target concept and instance space, if the domain theory

covers every positive example in the instance space.

94

95

EXPLAIN THE TRAINING EXAMPLE:

ANALYZE THE EXPLANATION:

By collecting just the features mentioned in the leaf nodes of the

explanation in Figure 11.2 and substituting variables x and y for Objl and

Obj2, we can form a general rule that is justified by the domain theory:

SafeToStack(x, y) <-- Volume(x, 2) ^ Density(x, 0.3) ^ Type(y, Endtable), The

body of the above rule includes each leaf node in the proof tree, except for the

leaf nodes "Equal(0.6, times(2,0.3)" and "LessThan(0.6,5)." We omit these two

because they are by definition always satisfied, independent of x and y.

96

Although this explanation was formed to cover the observed training example,

the same explanation will apply to any instance that matches this general rule.

The above rule constitutes a significant generalization of the training example,

because it omits many properties of the example (e.g., the Color of the two

objects) that are irrelevant to the target concept. However, an even more

general rule can be obtained by more careful analysis of the explanation.

PROLOG-EBG computes the most general rule that can be justified by the

explanation, by computing the weakest preimage of the explanation, defined as

follows: Definition: The weakest preimage of a conclusion C with respect to a

proof P is the most general set of initial assertions A, such that A entails C

according to P.

97

The heart of the regression procedure is the algorithm that at each step

regresses the current frontier of expressions through a single Horn clause from

the domain theory. This algorithm is described and illustrated in Table 11.3.

The final Horn clause rule output by PROLOG-EBGis formulated as follows:

The clause body is defined to be the weakest preconditions calculated by the

above procedure. The clause head is the target concept itself, with each

substitution from each regression step (i.e., the substitution Oh[in Table 11.3)

applied to it.

98

 REMARKS ON EXPLANATION-BASED LEARNING

 Discovering New Feature

One interesting capability of PROLOG-EBGis its ability to formulate new

features that are not explicit in the description of the training examples, but

that are needed to describe the general rule underlying the training example.

99

Notice this learned "feature" is similar in kind to the types of features

represented by the hidden units of neural networks; that is, this feature is one

of a very large set of potential features that can be computed from the available

instance attributes.

 Deductive Learning

It is interesting to compare the PROLOG-EBG learning setting to the setting for

inductive logic programming (ILP) discussed in Chapter 10. ILP is an inductive

learning system, whereas PROLOG-EBG is deductive.

 Inductive Bias in Explanation-Based Learning

100

Approximate inductive bias of PROLOG-EBG: The domain theory B, plus a

preference for small sets of maximally general Horn clauses.

 Knowledge Level Learning

deductive closure:

 EXPLANATION-BASED LEARNING OF SEARCH CONTROL KNOWLEDGE:

As noted above, the practical applicability of the PROLOG-EBG algorithm

is restricted by its requirement that the domain theory be correct and

complete. One important class of learning problems where this requirement is

easily satisfied is learning to speed up complex search programs. In fact, the

largest scale attempts to apply explanation-based learning have addressed the

problem of learning to control search, or what is sometimes called "speedup"

learning.

In such problems the definitions of the legal search operators, together

with the definition of the search objective, provide a complete and correct

domain theory for learning search control knowledge.

An example of a rule learned by PRODIGYfo r this target concept in a

simple block-stacking problem domain is

In fact, there are significant practical problems with applying EBL to

learning search control. First, in many cases the number of control rules that

must be learned is very large (e.g., many thousands of rules). As the system

learns more and more control rules to improve its search, it must pay a larger

101

and larger cost at each step to match this set of rules against the current

search state. Note this problem is not specific to explanation-based learning; it

will occur for any system that represents its learned knowledge by a growing

set of rules. A second practical problem with applying explanation-based

learning to learning search control is that in many cases it is intractable even

to construct the explanations for the desired target concept.

 SUMMARY AND FURTHER READING

In contrast to purely inductive learning methods that seek a hypothesis to fit

the training data, purely analytical learning methods seek a hypothesis that

fits the learner's prior knowledge and covers the training examples. Humans

often make use of prior knowledge to guide the formation of new hypotheses.

This chapter examines purely analytical learning methods. The next chapter

examines combined inductive-analytical learning.

Explanation-based learning is a form of analytical learning in which the learner

processes each novel training example by (1) explaining the observed target

value for this example in terms of the domain theory, (2) analyzing this

explanation to determine the general conditions under which the explanation

holds, and (3) refining its hypothesis to incorporate these general conditions.

PROLOG-EBG is an explanation-based learning algorithm that uses first-order

Horn clauses to represent both its domain theory and its learned hypotheses.

In PROLOG-EBG an explanation is a PROLOG proof, and the hypothesis

extracted from the explanation is the weakest preimage of this proof. As a

result, the hypotheses output by PROLOG-EBGfo llow deductively from its

domain theory.

Analytical learning methods such as PROLOG-EBG construct useful

intermediate features as a side effect of analyzing individual training examples.

This analytical approach to feature generation complements the statistically

based generation of intermediate features (eg., hidden unit features) in

inductive methods such as BACKPROPAGATION.

102

Although PROLOG-EBG does not produce hypotheses that extend the

deductive closure of its domain theory, other deductive learning procedures

can. For example, a domain theory containing determination assertions (e.g.,

"nationality determines language") can be used together with observed data to

deductively infer hypotheses that go beyond the deductive closure of the

domain theory.

One important class of problems for which a correct and complete

domain theory can be found is the class of large state-space search problems.

Systems such as PRODIGY and SOAR have demonstrated the utility of

explanation-based learning methods for automatically acquiring effective

search control knowledge that speeds up problem solving in subsequent cases.

Despite the apparent usefulness of explanation-based learning methods

in humans, purely deductive implementations such as PROLOG-EBG suffer the

disadvantage that the output hypothesis is only as correct as the domain

theory. In the next chapter we examine approaches that combine inductive and

analytical learning methods in order to learn effectively from imperfect domain

theories and limited training data.

Learning Sets of Rules:

One of the most expressive and human readable representations for learned

hypothe- ses is sets of if-then rules. This chapter explores several algorithms

for learning such sets of rules.

 INTRODUCTION

As shown in Chapter 3, one way to learn sets of rules is to first learn a decision

tree, then translate the tree into an equivalent set of rules-one rule for each leaf

node in the tree. A second method, illustrated in Chapter 9, is to use a genetic

algorithm that encodes each rule set as a bit string and uses genetic search

operators to explore this hypothesis space. In this chapter we explore a variety

of algorithms that directly learn rule sets and that differ from these algorithms

in two key respects. First, they are designed to learn sets of first-order

rulesthat contain variables. This is significant because first-order rules are

much more expressive than propositional rules. Second, the algorithms

103

discussed here use sequential covering algorithms that learn one rule at a time

to incrementally grow the final set of rules.

In this chapter we begin by considering algorithms that learn sets of

propositional rules; that is, rules without variables. Algorithms for searching

the hypothesis space to learn disjunctive sets of rules are most easily

understood in this setting. We then consider extensions of these algorithms to

learn first-order rules. Two general approaches to inductive logic programming

are then considered, and the fundamental relationship between inductive and

deductive inference is explored.

 SEQUENTIAL COVERING ALGORITHMS

Here we consider a family of algorithms for learning rule sets based on the

strategy of learning one rule, removing the data it covers, then iterating this

process. Such algorithms are called sequential covering algorithms. A

prototypical sequential covering algorithm is described in Table 10.1.

This sequential covering algorithm is one of the most widespread approaches to

learning disjunctive sets of rules. It reduces the problem of learning a

disjunctive set of rules to a sequence of simpler problems, each requiring that a

single conjunctive rule be learned. Because it performs a greedy search,

formulating a sequence of rules without backtracking, it is not guaranteed to

find the smallest or best set of rules that cover the training examples.

104

 General to Specific Beam Search

105

 LEARNING RULE SETS: SUMMARY

This section considers several key dimensionsin the design space of such rule

learning algorithms.

First, sequential covering algorithms learn one rule at a time, removing the

covered examples and repeating the process on the remaining examples. In

contrast, decision tree algorithms such as ID3 learn the entire set of disjuncts

simultaneously as part of the single search for an acceptable decision tree. We

might, therefore, call algorithms such as ID3 simultaneous covering

algorithms, in contrast to sequential covering algorithms such as CN2. Which

106

should we prefer? The key difference occurs in the choice made at the most

primitive step in the search. At each search step ID3 chooses among alternative

attributes by comparing the partitions of the data they generate. In contrast,

CN2 chooses among alternative attribute-value pairs, by comparing the

subsets of data they cover.

A second dimension along which approaches vary is the direction of the search

in LEARN-ONE-RUILn E. the algorithm described above, the search is from

general to specijic hypotheses. Other algorithms we have discussed (e.g., FIND-

S from Chapter 2) search from specijic to general.

A third dimension is whether the LEARN-ONE-RULE search is a generate then

test search through the syntactically legal hypotheses, as it is in our suggested

implementation, or whether it is example-driven so that individual training

examples constrain the generation of hypotheses. One important advantage of

the generate and test approach is that each choice in the search is based on

the hypothesis performance over many examples, so that the impact of noisy

data is minimized. In contrast, example-driven algorithms that refine the

hypothesis based on individual examples are more easily misled by a single

noisy training example and are therefore less robust to errors in the training

data.

A fourth dimension is whether and how rules are post-pruned.

A final dimension is the particular definition of rule PERFORMANCE used to

guide the search in LEARN-ONE-RULE.

Relative frequency: Nc / N

m-estimate of accuracy: (Nc + M*p) / (N + M)

(negative of) Entropy.

 LEARNING FIRST-ORDER RULES

In the previous sections we discussed algorithms for learning sets of

propositional (i.e., variable-free) rules. In this section, we consider learning

rules that contain variables-in particular, learning first-order Horn

theories. Our motivation for considering such rules is that they are much more

expressive than propositional rules.

 First-Order Horn Clauses

The problem is that propositional representations offer no general way to

describe the essential relations among the values of the attributes.

First-order Horn clauses may also refer to variables in the preconditions that

do not occur in the postconditions.

It is also possible to use the same predicates in the rule postconditions and

preconditions, enabling the description of recursive rules.

 Terminology

107

 LEARNING SETS OF FIRST-ORDER RULES: FOIL

108

The FOIL algorithm is summarized in Table 10.4.

Notice the outer loop corresponds to a variant of the SEQUENTIAL-

COVERING algorithm discussed earlier; that is, it learns new rules one at a

time, removing the positive examples covered by the latest rule before

attempting to learn the next rule. The inner loop corresponds to a variant of

our earlier LEARN-ONE-RULE algorithm, extended to accommodate first-order

rules.

The hypothesis space search performed by FOIL is best understood by viewing

it hierarchically. Each iteration through FOIL'S outer loop adds a new rule to

its disjunctive hypothesis, Learned_rules. The effect of each new rule is to

generalize the current disjunctive hypothesis (i.e., to increase the number of

instances it classifies as positive), by adding a,new disjunct. Viewed at this

level, the search is a specific-to-general search through the space of

hypotheses, beginning with the most specific empty disjunction and

terminating when the hypothesis is sufficiently general to cover all positive

training examples. The inner loop of FOIL performs a finer-grained search to

determine the exact definition of each new rule. This inner loop searches a

second hypothesis space, consisting of conjunctions of literals, to find a

109

conjunction that will form the preconditions for the new rule. Within this

hypothesis space, it conducts a general-to-specific, hill-climbing search,

beginning with the most general preconditions possible (the empty

precondition), then adding literals one at a time to specialize the rule until it

avoids all negative examples.

 Generating Candidate Specializations in FOIL: Candidate_literals

The negation of either of the above forms of literals.

 Guiding the Search in FOIL: Foil_Gain(L, R)

110

 Summary of FOIL

In the case of noise-free training data, FOIL may continue adding new literals

to the rule until it covers no negative examples. To handle noisy data, the

search is continued until some tradeoff occurs between rule accuracy,

coverage, and complexity. FOIL uses a minimum description length approach

to halt the growth of rules, in which new literals are added only when their

description length is shorter than the description length of the training data

they explain. The details of this strategy are given in Quinlan (1990). In

addition, FOIL post-prunes each rule it learns, using the same rule post-

pruning strategy used for decision trees (Chapter 3).

 INDUCTION AS INVERTED DEDUCTION

each training instance xi follows deductively from the hypothesis h; X entails Y

Research on inductive logic programing following this formulation has

encountered several practical difficulties: noisy training data, the number of

111

hy- potheses is so large, the complexity of the hypothesis space search

increases as background knowledge B is increased.

In the following section, we examine one quite general inverse entailment

operator that constructs hypotheses by inverting a deductive inference rule.

INVERTING RESOLUTION Resolution

operator of propositional form:

Inverse resolution operator (propositional form).:

 First-Order Resolution

The resolution rule extends easily to first-order expressions. As in the

propositional case, it takes two clauses as input and produces a third clause as

output. The key difference from the propositional case is that the process is

now based on the notion of unifying substitutions.

112

 Inverting Resolution: First-Order Case

10.7.4 Generalization, 8-Subsumption, and Entailment

 SUMMARY AND FURTHER READING

113

The sequential covering algorithm learns a disjunctive set of rules by first

learning a single accurate rule, then removing the positive examples covered by

this rule and iterating the process over the remaining training examples. It

provides an efficient, greedy algorithm for learning rule sets, and an alternative

to top-down decision tree learning algorithms such as ID3, which can be

viewed as simultaneous, rather than sequential covering algorithms.

In the context of sequential covering algorithms, a variety of methods have

been explored for learning a single rule. These methods vary in the search

strategy they use for examining the space of possible rule preconditions. One

popular approach, exemplified by the CN2 program, is to conduct a general-to-

specific beam search, generating and testing progressively more specific rules

until a sufficiently accurate rule is found. Alternative approaches search from

specific to general hypotheses, use an example-driven search rather than

generate and test, and employ different statistical measures of rule accuracy to

guide the search.

Sets of first-order rules (i.e., rules containing variables) provide a highly

expressive representation. For example, the programming language PROLOG

represents general programs using collections of first-order Horn clauses. The

problem of learning first-order Horn clauses is therefore often referred to as the

problem of inductive logic programming.

One approach to learning sets of first-order rules is to extend the sequential

covering algorithm of CN2 from propositional to first-order representations.

This approach is exemplified by the FOIL program, which can learn sets of first-

order rules, including simple recursive rule sets.

Following the view of induction as the inverse of deduction, some programs

search for hypotheses by using operators that invert the well-known opera-

tors for deductive reasoning. For example, CIGOL uses inverse resolution, an

operation that is the inverse of the deductive resolution operator commonly

used for mechanical theorem proving. PROGOL combines an inverse entail-

ment strategy with a general-to-specific strategy for searching the hypothesis

space.

114

115

Unit 5

Combining Inductive and Analytical Learning:

Purely inductive learning methods formulate general hypotheses by finding

empirical regularities over the training examples. Purely analytical methods

use prior knowledge to derive general hypotheses deductively., This chapter

considers methods that combine inductive and analytical mechanisms to

obtain the benefits of both approaches: better generalization accuracy when

prior knowledge is available and reliance(rely) on observed training data to

overcome shortcomings in prior knowledge. The resulting combined methods

outperform both purely inductive and purely analyti- cal learning methods.

This chapter considers inductive-analytical learning methods based on both

symbolic and artificial neural network representations.

 MOTIVATION

What criteria should we use to compare alternative approaches to combining

inductive and analytical learning? Some specific properties we would like from

such a learning method include(Notice this list of desirable properties is quite

ambitious):

116

 INDUCTIVE-ANALYTICAL APPROACHES TO LEARNING

 The Learning Problem

What precisely shall we mean by "the hypothesis that best fits the training

examples and domain theory?'.

For example, we could require the hypothesis that minimizes some combined

measure of these errors, such as:

An alternative perspective on the question of how to weight prior knowl- edge

and data is the Bayesian perspective. Recall from Chapter 6 that Bayes

theorem describes how to compute the posterior probability P(h1D) of hypothe-

sis h given observed training data D. Unfortunately, Bayes theorem implicitly

assumes pe$ect knowledge about the probability distributions P(h), P(D), and

P(Dlh). When these quantities are only imperfectly known, Bayes theorem alone

does not prescribe how to combine them with the observed data.

117

We will revisit the question of what we mean by "best" fit to the hypothesis and

data as we examine specific algorithms. For now, we will simply say that the

learning problem is tominimize some combined measure of the error of the

hypothesis over the data and the domain theory.

 Hypothesis Space Search

One way to understand the range of possible approaches is to return to our

view of learning as a task of searching through the space of alternative

hypotheses. We can characterize most learning methods as search algorithms

by describing the hypothesis space H they search, the initial hypothesis ho at

which they begin their search, the set of search operators 0 that define

individual search steps, and the goal criterion G that specifies the search

objective.

In this chapter we explore three different methods for using prior knowledge to

alter the search performed by purely inductive methods:

Use prior knowledge to derive an initial hypothesis from which to begin the

search. In this approach the domain theory B is used to construct an initial

hypothesis ho that is consistent with B. A standard inductive method is then

applied, starting with the initial hypothesis ho.

Use prior knowledge to alter the objective of the hypothesis space search. In this

approach, the goal criterion G is modified to require that the output hypothesis

fits the domain theory as well as the training examples.

Use prior knowledge to alter the available search steps. In this approach, the set

of search operators 0 is altered by the domain theory.

 USING PRIOR KNOWLEDGE TO INITIALIZE THE HYPOTHESIS

It is easy to see the motivation for this technique: if the domain theory is

correct, the initial hypothesis will correctly classify all the training examples

and there will be no need to revise it. However, if the initial hypothesis is found

to imperfectly classify the training examples, then it will be refined inductively

to improve its fit to the training examples.

 The KBANN Algorithm

The two stages of the KBANN algorithm are first to create an artificial neural

network that perfectly fits the domain theory and second to use the

BACKPROPA-CATION algorithm to refine this initial network to fit the training

118

examples. The details of this algorithm, including the algorithm for creating the

initial network, are given in Table 12.2 and illustrated in Section 12.3.2.

 An Illustrative Example

119

120

 Remarks

The chief benefit of KBANN over purely inductive BACKPROPAGATION

(beginning with random initial weights) is that it typically generalizes more

accurately than BACKPROPAGATION when given an approximately correct

domain theory, es- pecially when training data is scarce.

Limitations of KBANN include the fact that it can accommodate only

propositional domain theories; that is, collections of variable-free Horn clauses.

It is also possible for KBANN to be misled when given highly inaccurate domain

theories, so that its generalization accuracy can deteriorate below the level of

BACKPROPA-GATION. Nevertheless, it and related algorithms have been shown

to be useful for several practical problems.

121

 USING PRIOR KNOWLEDGE TO ALTER THE SEARCH OBJECTIVE(使用先

验知识改变搜索目标)

An alternative way of using prior knowledge is to incorporate it into the error

criterion minimized by gradient descent, so that the network must fit a

combined function of the training data and domain theory. In this section, we

consider using prior knowledge in this fashion. In particular, we consider prior

knowledge in the form of known derivatives of the target function.

 The TANGENTPROP Algorithm

122

The modified error function is:

 Remarks

Although TANGENTPROP succeeds in combining prior knowledge with train-

ing data to guide learning of neural networks, it is not robust to errors in the

prior knowledge. Consider what will happen when prior knowledge is incorrect,

that is, when the training derivatives input to the learner do not correctly

reflect the derivatives of the true target function. In this case the algorithm will

attempt to fit incorrect derivatives. It may therefore generalize less accurately

than if it ignored this prior knowledge altogether and used the purely inductive

BACKPROPAGATION algorithm. If we knew in advance the degree of error in

the training derivatives, we might use this information to select the constant p

that determines the relative importance of fitting training values and fitting

training derivatives. However, this information is unlikely to be known in

advance.

123

It is interesting to compare the search through hypothesis space (weight space)

performed by TANGENTPROP, KBANN, and BACKPROPAGATION.

 The EBNN Algorithm

124

125

 Remarks

To summarize, the EBNN algorithm uses a domain theory expressed as a set of

previously learned neural networks, together with a set of training examples, to

train its output hypothesis (the target network). For each training example

126

EBNN uses its domain theory to explain the example, then extracts training

derivatives from this explanation. For each attribute of the instance, a training

derivative is computed that describes how the target function value is

influenced by a small change to this attribute value, according to the domain

theory. These training derivatives are provided to a variant of TANGENTPROP,

which fits the target network to these derivatives and to the training example

values. Fitting the derivatives constrains the learned network to fit

dependencies given by the domain theory, while fitting the training values

constrains it to fit the observed data itself. The weight pi placed on fitting the

derivatives is determined independently for each training example, based on

how accurately the domain theory predicts the training value for this example.

EBNN bears an interesting relation to other explanation-based learning

methods, such as PROLOG-EBGde scribed in Chapter 11.

There are several differences in capabilities between EBNN and the symbolic

explanation-based methods of Chapter 11. The main difference is that EBNN

accommodates imperfect domain theories, whereas PROLOG-EBGdo es not.

This difference follows from the fact that EBNN is built on the inductive

mechanism of fitting the observed training values and uses the domain theory

only as an additional constraint on the learned hypothesis. A second important

difference follows from the fact that PROLOG-EBGle arns a growing set of Horn

clauses, whereas EBNN learns a fixed-size neural network. As discussed in

Chapter 11, one difficulty in learning sets of Horn clauses is that the cost of

classifying a new instance grows as learning proceeds and new Horn clauses

are added. This problem is avoided in EBNN because the fixed-size target

network requires constant time to classify new instances. However, the fixed-

size neural network suffers the corresponding disadvantage that it may be

unable to represent sufficiently complex functions, whereas a growing set of

Horn clauses can represent increasingly complex functions.

 USING PRIOR KNOWLEDGE TO AUGMENT SEARCH OPERATORS

In this section we consider a third way of using prior knowledge to alter the

hypothesis space search: using it to alter the set of operators that define legal

steps in the search through the hypothesis space.

 The FOCL Algorithm

127

We will say a literal is operational if it is allowed to be used in describing an

output hypothesis. For example, in the Cup example of Figure 12.3 we allow

output hypotheses to refer only to the 12 attributes that describe the training

examples (e.g., HasHandle, HandleOnTop). Literals based on these 12

attributes are thus considered operational. In contrast, literals that occur only

as intermediate features in the domain theory, but not as primitive attributes

of the instances, are considered nonoperational. An example of a

nonoperational attribute in this case is the attribute Stable.

At each point in its general-to-specific search, FOCL expands its current

hypothesis h using the following two operators:

For each operational literal that is not part of h, create a specialization of h by

adding this single literal to the preconditio s. This is also the method used by

FOIL to generate candidate successors. he solid arrows in Figure 12.8 denote

this type of specialization.

Create an operational, logically sufficient condition for the target concept

according to the domain theory. Add this set of literals to the current precon-

ditions of h. Finally, prune the preconditions of h by removing any literals that

are unnecessary according to the training data. The dashed arrow in Figure

12.8 denotes this type of specialization.

128

Once candidate specializations of the current hypothesis have been generated,

using both of the two operations above, the candidate with highest informa-

tion gain is selected.

129

 Remarks

To summarize, FOCL uses both a syntactic generation of candidate

specializations and a domain theory driven generation of candidate

specializations at each step in the search. The algorithm chooses among these

candidates based solely on their empirical support over the training data.

Thus, the domain theory is used in a fashion that biases the learner, but leaves

final search choices to be made based on performance over the training data.

The bias introduced by the domain theory is a preference in favor of Horn

clauses most similar to operational, logically sufficient conditions entailed by

the domain theory. This bias is combined with the bias of the purely inductive

FOIL program, which is a preference for shorter hypotheses.

FOCL has been shown to generalize more accurately than the purely inductive

FOIL algorithm in a number of application domains in which an imperfect do-

main theory is available.

12.7 SUMMARY AND FURTHER READING

Approximate prior knowledge, or domain theories, are available in many

practical learning problems. Purely inductive methods such as decision tree

induction and neural network BACKPROPAGATION fail to utilize such domain

theories, and therefore perform poorly when data is scarce. Purely analytical

learning methods such as PROLOG-EBG utilize such domain theories, but

produce incorrect hypotheses when given imperfect prior knowledge. Methods

that blend inductive and analytical learning can gain the benefits of both

approaches: reduced sample complexity and the ability to overrule incorrect

prior knowledge.

One way to view algorithms for combining inductive and analytical learning is

to consider how the domain theory affects the hypothesis space search. In this

chapter we examined methods that use imperfect domain theories to (1) create

the initial hypothesis in the search, (2) expand the set of search operators that

generate revisions to the current hypothesis, and (3) alter the objective of the

search.

A system that uses the domain theory to initialize the hypothesis is KBANN.

This algorithm uses a domain theory encoded as propositional rules to

analytically construct an artificial neural network that is equivalent to the

domain theory. This network is then inductively refined using the

BACKPROPAGATION algorithm, to improve its performance over the training

130

data. The result is a network biased by the original domain theory, whose

weights are refined inductively based on the training data.

TANGENTPROP uses prior knowledge represented by desired derivatives of the

target function. In some domains, such as image processing, this is a natural

way to express prior knowledge. TANGENTPROP incorporates this knowledge

by altering the objective function minimized by gradient descent search

through the space of possible hypotheses.

EBNN uses the domain theory to alter the objective in searching the hypothesis

space of possible weights for an artificial neural network. It uses a domain

theory consisting of previously learned neural networks to perform a neural

network analog to symbolic explanation-based learning. As in symbolic

explanation-based learning, the domain theory is used to explain individual

examples, yielding information about the relevance of different example

features. With this neural network representation, however, information about

relevance is expressed in the form of derivatives of the target function value

with respect to instance features. The network hypothesis is trained using a

variant of the TANGENTPROP algorithm, in which the error to be minimized

includes both the error in network output values and the error in network

derivatives obtained from explanations.

FOCL uses the domain theory to expand the set of candidates considered at

each step in the search. It uses an approximate domain theory represented by

first order Horn clauses to learn a set of Horn clauses that approximate the

target function. FOCL employs a sequential covering algorithm, learning each

Horn clause by a general-to-specific search. The domain theory is used to

augment the set of next more specific candidate hypotheses considered at each

step of this search. Candidate hypotheses are then evaluated based on their

performance over the training data. In this way, FOCL combines the greedy,

general-to-specific inductive search strategy of FOIL with the rule-chaining,

analytical reasoning of analytical methods.

The question of how to best blend prior knowledge with new observations

remains one of the key open questions in machine learning.

Reinforcement Learning:

131

Reinforcement learning addresses the question of how an autonomous

agent(agent) that senses and acts in its environment can learn to choose

optimal actions to achieve its goals. Each time the agent performs an action in

its environment, a trainer may provide a reward or penalty to indicate the

desirability of the resulting state. The task of the agent is to learn from this

indirect, delayed reward, to choose sequences of actions that produce the

greatest cumulative reward. This chapter focuses on an algorithm called Q

learning that can acquire optimal control strategies from delayed rewards,

even when the agent has no prior knowledge of the effects of its actions on

the environment. Reinforcement learning algorithms are related to dynamic

programming algorithms frequently used to solve optimization problems.

132

 INTRODUCTION

This general setting for robot learning is summarized in Figure 13.1.

The problem of learning a control policy to choose actions is similar in some

respects to the function approximation problems discussed in other chapters.

The target function to be learned in this case is a control policy, π : S ->

A, that outputs an appropriate action a from the set A, given the current state

s from the set S. However, this reinforcement learning problem differs from

other function

approximation tasks in several important respects:

Delayed reward: the trainer provides only a sequence of immediate reward

values as the agent executes its sequence of actions. The agent, therefore, faces

the problem of temporal credit assignment: determining which of the actions

in its sequence are to be credited with producing the eventual rewards.

Exploration: The learner faces a tradeoff in choosing whether to favor

exploration of unknown states and actions (to gather new information), or

133

exploitation of states and actions that it has already learned will yield high

reward (to maximize its cumulative reward).

Partially observable states: In many practical situations sensors provide only

partial information. For example, a robot with a forward-pointing camera

cannot see what is behind it. In such cases, it may be necessary for

the agent to consider its previous observations together with its current

sensor data when choosing actions.

Life-long learning: Robot learning often requires that the robot learn several

related tasks within the same environment, using the same sensors. This

setting raises the possibility of using previously obtained experience or

knowledge to reduce sample complexity when learning new tasks.

 THE LEARNING TASK

Here we define one quite general formulation of the problem, based on Markov

decision processes. This formulation of the problem follows the

problem illustrated in Figure 13.1.

134

an example:

135

 Q LEARNING

 The Q Function

令

则

 An Algorithm for Learning Q

136

 An Illustrative Example

137

 Convergence

 NONDETERMINISTIC REWARDS AND ACTIONS

138

To summarize, we have simply redefined V and Q in the nondeterministic case

to be the expected value of

its previously defined quantity for the deterministic case.

 TEMPORAL DIFFERENCE LEARNING

139

13.8 SUMMARY AND FURTHER READING

	J.B. INSTITUTE OF ENGINEERING AND TECHNOLOGY
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

	Unit 1
	What is Machine learning?
	Some machine learning methods
	Well-Posed Learning Problems:
	Driverless car
	Designing a Learning System:
	Training Experience
	Target Function and Learned Function:
	Learning Algorithm:
	Designing of a Learning System:
	Design Cycle of a Learning System:
	Perspectives of Machine Learning:

	Concept Learning:
	Terminology and notation:
	Hypothesis Spaces and Inductive Learning
	Hypothesis Representation

	Artificial Neural Networks
	Decision Tree Learning:

	Unit-3
	Bayesian Learning:
	Computational Learning Theory:
	Genetic Algorithms:
	Instance Based Learning:
	Analytical Learning:
	Learning Sets of Rules:
	Combining Inductive and Analytical Learning:
	Reinforcement Learning:

