
 LECTURE NOTES

 ON

Digital Logic Design and Computer Organization

 Department of Information Technology

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

UNIT-1 PART-1

Basic Structure of Computers:

1.1.1Computer Types

1.1.2 Functional units
1.1.3 Basic operational concepts
1.1.4 Bus structures
1.1.5 Software
1.1.6 Performance
1.1.7 multiprocessors and multi computers
1.1.8 Computer Generations.

Data Representation: Binary Numbers, Fixed Point Representation .Floating

Point Representation. Number base conversions, Octal and Hexadecimal

Numbers, components, Signed binary numbers, Binary codes.

1.1.1 Computer types

A computer can be defined as a fast electronic calculating machine that accepts the

(data) digitized input information process it as per the list of internally stored instructions

and produces the resulting information.

List of instructions are called programs & internal storage is called computer memory.

The different types of computers are

1. Personal computers: - This is the most common type found in homes, schools, Business

offices etc., It is the most common type of desk top computers with processing and storage

units along with various input and output devices.

2. Note book computers: - These are compact and portable versions of PC

3. Work stations: - These have high resolution input/output (I/O) graphics capability, but with

same dimensions as that of desktop computer. These are used in engineering applications of

interactive design work.

4. Enterprise systems: - These are used for business data processing in medium to large

corporations that

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

require much more computing power and storage capacity than work stations. Internet

associated with

servers have become a dominant worldwide source of all types of information.

5. Super computers: - These are used for large scale numerical calculations required in the

applications like weather forecasting etc.,

1.1.2. Functional unit

A computer consists of five functionally independent main parts input, memory,

arithmetic logic unit (ALU), output and control unit.

I

n

p

u

t

A

L

U

I

/

O

P

r

o

c

e

s

s

o

r
M
e
m
o
r
y

O

u

t

p

u

t

C

o

n

t

r

o

l

U

n

i

t

Fig a : Functional units of computer

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Input device accepts the coded information as source program i.e. high level

language. This is either stored in the memory or immediately used by the processor to

perform the desired operations. The program stored in the memory determines the processing

steps. Basically the computer converts one source program to an object program. i.e. into

machine language.

Finally the results are sent to the outside world through output device. All of these

actions are coordinated by the control unit.

Input unit: -

The source program/high level language program/coded information/simply data is

fed to a computer through input devices keyboard is a most common type. Whenever a key is

pressed, one corresponding word or number is translated into its equivalent binary code over

a cable & fed either to memory or processor.

Joysticks, trackballs, mouse, scanners etc are other input devices.

Memory unit: -
Its function into store programs and data. It is basically to two types

6. Primary memory

7. Secondary memory

Primary memory: - Is the one exclusively associated with the processor and operates at the

electronics speeds

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

programs must be stored in this memory while they are being executed. The memory

contains a large number of semiconductors storage cells. Each capable of storing one bit of

information. These are processed in a group of fixed site called word.

To provide easy access to a word in memory, a distinct address is associated with

each word location. Addresses are numbers that identify memory location.

Number of bits in each word is called word length of the computer. Programs must

reside in the memory during execution. Instructions and data can be written into the memory

or read out under the control of processor.

Memory in which any location can be reached in a short and fixed amount of time

after specifying its address is called random-access memory (RAM).

The time required to access one word in called memory access time. Memory which

is only readable by the user and contents of which can’t be altered is called read only

memory (ROM) it contains operating system.

Caches are the small fast RAM units, which are coupled with the processor and are

aften contained on the same IC chip to achieve high performance. Although primary storage
is essential it tends to be expensive.

2 Secondary memory: - Is used where large amounts of data & programs have to be stored,

particularly information that is accessed infrequently.

Examples: - Magnetic disks & tapes, optical disks (ie CD-ROM’s), floppies etc.,

Arithmetic logic unit (ALU):-

Most of the computer operators are executed in ALU of the processor like addition,

subtraction, division, multiplication, etc. the operands are brought into the ALU from

memory and stored in high speed storage elements called register. Then according to the

instructions the operation is performed in the required sequence.

The control and the ALU are may times faster than other devices connected to a

computer system. This enables a single processor to control a number of external devices

such as key boards, displays, magnetic and optical disks, sensors and other mechanical

controllers.

Output unit:-

These actually are the counterparts of input unit. Its basic function is to send the

processed results to the outside world.

Examples:- Printer, speakers, monitor etc.

Control unit:-

It effectively is the nerve center that sends signals to other units and senses their

states. The actual timing signals that govern the transfer of data between input unit,

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

processor, memory and output unit are generated by the control unit.

1.1.3 Basic operational concepts

To perform a given task an appropriate program consisting of a list of instructions is

stored in the memory.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Individual instructions are brought from the memory into the processor, which executes the

specified operations. Data to be stored are also stored in the memory.

Examples: - Add LOCA, R0

This instruction adds the operand at memory location LOCA, to operand in register

R0 & places the sum into register. This instruction requires the performance of several steps,

1.First the instruction is fetched from the memory into the processor. 2.The operand at LOCA is

fetched and added to the contents of R0

3.Finally the resulting sum is stored in the register R0

The preceding add instruction combines a memory access operation with an ALU

Operations. In some other type of computers, these two types of operations are performed by

separate instructions for performance reasons.

Load LOCA, R1 Add R1, R0

Transfers between the memory and the processor are started by sending the address

of the memory location to be accessed to the memory unit and issuing the appropriate control

signals. The data are then transferred to or from the memory.

The fig shows how memory & the processor can be connected. In addition to the

ALU & the control circuitry, the processor contains a number of registers used for several

different purposes.

The instruction register (IR):- Holds the instructions that is currently being executed. Its

output is available for the control circuits which generates the timing signals that control the

various processing elements in one execution of instruction.

The program counter PC:-

This is another specialized register that keeps track of execution of a program. It
contains the memory address of the next instruction to be fetched and executed.

The other two registers which facilitate communication with memory are: -

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

1.MAR – (Memory Address Register):- It holds the address of the location to be accessed.

2.MDR – (Memory Data Register):- It contains the data to be written into or read out of the

address location.

Operating steps are

1.Programs reside in the memory & usually get these through the I/P unit.

2. Execution of the program starts when the PC is set to point at the first instruction of the

program. 3.Contents of PC are transferred to MAR and a Read Control Signal is sent to the

memory.

4. After the time required to access the memory elapses, the address word is read out of the
memory and loaded into the MDR.

2. Now contents of MDR are transferred to the IR & now the instruction is ready to be decoded

and executed.

3. If the instruction involves an operation by the ALU, it is necessary to obtain the required

operands.

4. An operand in the memory is fetched by sending its address to MAR & Initiating a read

cycle.

5. When the operand has been read from the memory to the MDR, it is transferred from MDR

to the ALU.

6. After one or two such repeated cycles, the ALU can perform the desired operation.

7. If the result of this operation is to be stored in the memory, the result is sent to MDR.

8. Address of location where the result is stored is sent to MAR & a write cycle is initiated.

9. The contents of PC are incremented so that PC points to the next instruction that is to be

executed.

Normal execution of a program may be preempted (temporarily interrupted) if some

devices require urgent servicing, to do this one device raises an Interrupt signal.

An interrupt is a request signal from an I/O device for service by the processor. The

processor provides the requested service by executing an appropriate interrupt service

routine.

The Diversion may change the internal stage of the processor its state must be saved in
the memory location before interruption. When the interrupt-routine service is
completed the state of the processor is restored so that the interrupted program may continue.

1.1.4 Bus structure

The simplest and most common way of interconnecting various parts of the

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

computer. To achieve a reasonable speed of operation, a computer must be organized so that

all its units can handle one full word of data at a given time.A group of lines that serve as a

connecting port for several devices is called a bus.

In addition to the lines that carry the data, the bus must have lines for address and

control purpose. Simplest way to interconnect is to use the single bus as shown

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Since the bus can be used for only actively use the bus at any given time. Bus requests for
use of one bus, one transfer at a time, only two units can control lines are used to arbitrate
multiple

Single bus structure is Low cost

Very flexible for attaching peripheral devices

Multiple bus structure certainly increases, the performance but also increases the cost

significantly.

All the interconnected devices are not of same speed & time, leads to a bit of a

problem. This is solved by using cache registers (ie buffer registers). These buffers are

electronic registers of small capacity when compared to the main memory but of comparable

speed.

The instructions from the processor at once are loaded into these buffers and then the

complete transfer of data at a fast rate will take place.

1.1.5 Performance

The most important measure of the performance of a computer is how quickly it can

execute programs. The speed with which a computer executes program is affected by the

design of its hardware. For best performance, it is necessary to design the compiles, the

machine instruction set, and the hardware in a coordinated way.

The total time required to execute the program is elapsed time is a measure of the

performance of the entire computer system. It is affected by the speed of the processor, the

disk and the printer. The time needed to execute a instruction is called the processor time.

Just as the elapsed time for the execution of a program depends on all units in a

computer system, the processor time depends on the hardware involved in the execution of

individual machine instructions. This hardware comprises the processor and the memory

which are usually connected by the bus as shown in the fig c.



C

a

c
h

e

P

r
o

c
e

s

s
o

r

M
a
i
n

M
e

m

o
r

y

M
e

m

o
r

y

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in



Fig d: The processor cache

Let us examine the flow of program instructions and data between the memory and

the processor. At the start of execution, all program instructions and the required data are

stored in the main memory. As the execution proceeds, instructions are fetched one by one

over the bus into the processor, and a copy is placed in the cache later if the same instruction

or data item is needed a second time, it is read directly from the cache.

The processor and relatively small cache memory can be fabricated on a single IC

chip. The internal speed of performing the basic steps of instruction processing on chip is

very high and is considerably faster than the speed at which the instruction and data can be

fetched from the main memory. A program will be executed faster if the

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

movement of instructions and data between the main memory and the processor is

minimized, which is achieved by using the cache.

For example:- Suppose a number of instructions are executed repeatedly over a short period

of time as happens in a program loop. If these instructions are available in the cache, they

can be fetched quickly during the period of repeated use. The same applies to the data that

are used repeatedly.

Processor clock: -

Processor circuits are controlled by a timing signal called clock. The clock designer

the regular time intervals called clock cycles. To execute a machine instruction the processor

divides the action to be performed into a sequence of basic steps that each step can be

completed in one clock cycle. The length P of one clock cycle is an important parameter that

affects the processor performance.

Processor used in today’s personal computer and work station have a clock rates

that range from a few hundred million to over a billion cycles per second.

1.1.6 Basic performance equation

We now focus our attention on the processor time component of the total elapsed

time. Let ‘T’ be the processor time required to execute a program that has been prepared in

some high-level language. The compiler generates a machine language object program that

corresponds to the source program. Assume that complete execution of the program requires

the execution of N machine cycle language instructions. The number N is the actual number

of instruction execution and is not necessarily equal to the number of machine cycle

instructions in the object program. Some instruction may be executed more than once, which

in the case for instructions inside a program loop others may not be executed all, depending

on the input data used

Suppose that the average number of basic steps needed to execute one machine

cycle instruction is S, where each basic step is completed in one clock cycle. If clock rate is

‘R’ cycles per second, the program execution time is given by

T

=

 N
×

 S

R

this is often referred to as the basic performance equation.

We must emphasize that N, S & R are not independent parameters changing one

may affect another. Introducing a new feature in the design of a processor will lead to

improved performance only if the overall result is to reduce the value of T.

Pipelining and super scalar operation: -

We assume that instructions are executed one after the other. Hence the value of S is

the total number of basic steps, or clock cycles, required to execute one instruction. A

substantial improvement in performance can be achieved by overlapping the execution of

successive instructions using a technique called pipelining.

Consider Add R1 R2 R3

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

This adds the contents of R1 & R2 and places the sum into R3.

The contents of R1 & R2 are first transferred to the inputs of ALU. After the addition
operation is

performed, the sum is transferred to R3. The processor can read the next instruction from the

memory, while the addition operation is being performed. Then of that instruction also uses,
the ALU, its operand can be transferred to the ALU inputs at the same time that the add

instructions is being transferred to R3.

In the ideal case if all instructions are overlapped to the maximum degree possible the

execution proceeds at

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

the rate of one instruction completed in each clock cycle. Individual instructions still require

several clock cycles to complete. But for the purpose of computing T, effective value of S is

1.

A higher degree of concurrency can be achieved if multiple instructions pipelines

are implemented in the processor. This means that multiple functional units are used creating

parallel paths through which different instructions can be executed in parallel with such an

arrangement, it becomes possible to start the execution of several instructions in every clock

cycle. This mode of operation is called superscalar execution. If it can be sustained for a

long time during program execution the effective value of S can be reduced to less than one.

But the parallel execution must preserve logical

correctness of programs, that is the results produced must be same as those produced by the

serial execution of program instructions. Now a days may processor are designed in this

manner.

1.1.7 Clock rate

These are two possibilities for increasing the clock rate ‘R’.

1. Improving the IC technology makes logical circuit faster, which reduces the time of

execution of basic steps. This allows the clock period P, to be reduced and the clock rate R

to be increased.

2. Reducing the amount of processing done in one basic step also makes it possible to

reduce the clock period P. however if the actions that have to be performed by an

instructions remain the same, the number of basic steps needed may increase.

Increase in the value ‘R’ that are entirely caused by improvements in IC technology affects

all aspects of the processor’s operation equally with the exception of the time it takes to

access the main memory. In the presence of cache the percentage of accesses to the main

memory is small. Hence much of the performance gain excepted from the use of faster

technology can be realized.

Instruction set CISC & RISC:-

Simple instructions require a small number of basic steps to execute. Complex instructions

involve a large number of steps. For a processor that has only simple instruction a large

number of instructions may be needed to perform a given programming task. This could lead

to a large value of ‘N’ and a small value of ‘S’ on the other hand if individual instructions

perform more complex operations, a fewer instructions will be needed, leading to a lower

value of N and a larger value of S. It is not obvious if one choice is better than the other.

But complex instructions combined with pipelining (effective value of S ¿ 1) would achieve

one best performance. However, it is much easier to implement efficient pipelining in

processors with simple instruction sets.

1.1.8 Performance measurements

It is very important to be able to access the performance of a computer, comp designers use

performance estimates to evaluate the effectiveness of new features.

The previous argument suggests that the performance of a computer is given by the

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

execution time T, for the program of interest.

Inspite of the performance equation being so simple, the evaluation of ‘T’ is highly complex.

Moreover the parameters like the clock speed and various architectural features are

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

not reliable indicators of the

expected performance.

Hence measurement of

computer performance using

bench mark programs is done to

make comparisons possible,

standardized programs must be

used.

The performance measure is the

time taken by the computer to

execute a given bench mark.

Initially some attempts were

made to create artificial

programs that could be used as

bench mark programs. But

synthetic programs do not

properly predict the

performance obtained when real

application programs are run.

A non profit organization called

SPEC- system performance

evaluation corporation selects

and publishes bench marks.

The program selected range

from game playing, compiler,

and data base applications to

numerically intensive programs

in astrophysics and quantum

chemistry. In each case, the

program is compiled under test,

and the running time on a real

computer is measured. The

same program is also compiled

and run on one computer

selected as reference.

The ‘SPEC’ rating is computed

as follows.

Running time on the reference

computer

SPEC rating =

Running time on the computer

under test If the SPEC rating =

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

50

Means that the computer under

test is 50 times as fast as the

ultra sparc 10. This is repeated

for all the programs in the SPEC

suit, and the geometric mean of

the result is computed.

Let SPECi be the rating for

program ‘i’ in the suite. The

overall SPEC rating for the

computer is given by

n 1

SPEC rating = π SP

ECi
n

(i=1)

Where ‘n’ = number of

programs in suite.

Since actual execution time is

measured the SPEC rating is a

measure of the combined effect

of all factors affecting

performance, including the

compiler, the OS, the processor,

the memory of comp being

tested.

1.1.9. Multiprocessor &

microprocessors:-
Large computers that contain a

number of processor units are

called multiprocessor system.




These systems either execute a

number of different application

tasks in parallel or execute

subtasks of a single large task in

parallel.


All processors usually have

access to all memory locations

in such system & hence they are
called shared memory multiprocessor systems.



The high performance of these systems comes with much

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

increased complexity and cost.




In contrast to multiprocessor

systems, it is also possible to

use an interconnected group of

complete computers to achieve

high total computational power.

These computers normally have

access to their own memory

units when the tasks they are

executing need to communicate

data they do so by exchanging

messages over a communication

network. This properly

distinguishes them from shared

memory multiprocessors,

leading to name message-

passing multi computer.

BIG-ENDIAN AND LITTLE-

ENDIAN ASIGNMENTS:-

There are two ways that byte

addresses can be assigned across

words, as shown in fig b. The

name big-endian is used when

lower byte addresses are used

for the more significant bytes

(the leftmost bytes) of the word.

The name little-endian is used

for the opposite ordering, where

the lower byte addresses are

used for the less significant

bytes (the rightmost bytes) of

the word.

In addition to specifying the

address ordering of bytes within

a word, it is also necessary to

specify the labeling of bits

within a byte or a word. The

same ordering is

also used for labeling bits within

a byte, that is, b7, b6, …., b0,

from left to right. Word

A

d

d

B

y

t

B

y

t

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

r

e

s

s

e

a

d

d

r

e

s

s

e

a

d

d

r

e

s

s

3 2 1 0

0

0 1

2 3 0

4
 4 5 6 7

4
7 6 5 4

…

.

…

.

…

.

…

.

…

.

…

.

2 k -4

2k -3

2 k -2

2 k -1

2
k

-

1

2
k

-

2

2
k

-

3

2
k

-

4

2
k

-

4

2
k

-

4

(a) Big-endian

assignment (b) Little-endian assignment

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Page 23



1.1.10. BUSES:

• There are a number of

possible interconnection

systems

• Single and multiple

BUS structures are most

common

• e.g.

Control/Address/Data bus (PC)

• e.g. Unibus (DEC-

PDP)

 WHAT IS A BUS

• A communication

pathway connecting two or

more devices

• Usually broadcast (all

components see signal)

• Often grouped

• A number of channels

in one bus

• e.g. 32 bit data bus is

32 separate single bit channels

• Power lines may not be

shown

•

BUS INTER CONNECTION

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

SCHEME

DATA BUS:

• Carries data

— Remember that there is no

difference between “data” and

“instruction” at this level

• Width is a key

determinant of performance

— 8, 16, 32, 64 bit

ADDRESS BUS:

• Identify the source or

destination of data

• e.g. CPU needs to read

an instruction (data) from a

given location in memory

• Bus width determines

maximum memory capacity of

system

— e.g. 8080 has 16 bit address

bus giving 64k address space

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

CONTROL BUS:

• Control and timing

information

— Memory read/write signal

— Interrupt request Clock

signals

What do buses look like?

— Parallel lines on circuit

boards

— Ribbon cables

— Strip connectors on mother

boards

– e.g. PCI Sets of wires

SINGLE BUS PROBLEMS:

• Lots of devices on one

bus leads to:

— Propagation delays

– Long data paths mean that

co-ordination of bus use can

adversely affect performance

– If aggregate data transfer

approaches bus capacity

• Most systems use

multiple buses to overcome

these problems

TRADITIONAL ISA WITH

CACHE:

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

HIGH PERFORMANCE

BUS:

BUS TYPES:

• Dedicated

— Separate data & address

lines

• Multiplexed

— Shared lines

— Address valid or data valid

control line

— Advantage - fewer lines

— Disadvantages

– More complex control

– Ultimate performance

BUS ARBITRATION:

• More than one module

controlling the bus

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

— e.g. CPU and DMA

controller

• Only one module may control

bus at one time

• Arbitration may be

centralised or distributed

CENTRALIZED

ARBITRTAION:

• Single hardware device

controlling bus access

— Bus Controller

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

— Arbiter

• May be part of CPU or separate

DISTRIBUTED ARBITRATION:

• Each module may claim the bus

• Control logic on all modules PCI BUS:

• Peripheral Component Interconnection (PCI)

• Intel released to public domain

• 32 or 64 bit

• 50 lines

PCI BUS LINES(REQUIRED)

• Systems lines

— Including clock and reset

• Address & Data

— 32 time mux lines for address/data

— Interrupt & validate lines

• Interface Control

• Arbitration

— Not shared

— Direct connection to PCI bus arbiter

• Error lines

PCI BUS LINES (OPTIONAL)

• Interrupt lines

— Not shared

• Cache support

• 64-bit Bus Extension

— Additional 32 lines

— Time multiplexed

— 2 lines to enable devices to agree to use 64-

bit transfer

• JTAG/Boundary Scan

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

For testing procedures

PCI COMMANDS:

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

• Transaction between initiator (master) and target

• Master claims bus

• Determine type of transaction

— e.g. I/O read/write

• Address phase

• One or more data phases

MULTIPROCESSOR AND MULTICOMPUTERS

Two categories of parallel computers are discussed below namely shared common memory or
unshared distributed

memory.

Shared memory multiprocessors

Shared memory parallel computers vary widely, but generally have in common the ability for all
processors to access all

memory as global address space.

• Multiple processors can operate independently but share the same memory resources.

• Changes in a memory location effected by one processor are visible to all other processors.

• Shared memory machines can be divided into two main classes based upon memory

access times: UMA , NUMA and COMA. Uniform Memory Access (UMA):

• Most commonly represented today by Symmetric Multiprocessor (SMP) machines

• Identical processors

• Equal access and access times to memory

• Sometimes called CC-UMA - Cache Coherent UMA. Cache coherent means if one

processor updates a location in shared memory, all the other processors know about the

update. Cache coherency is accomplished at the hardware level.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Figure 1.9 Shared Memory (UMA)

Non-Uniform Memory Access (NUMA):

• Often made by physically linking two or more SMPs

• One SMP can directly access memory of another SMP
• Not all processors have equal access time to all memories
• Memory access across link is slower

If cache coherency is maintained, then may also be called CC-NUMA - Cache Coherent
NUMA

figure 1.10 Shared Memory (NUMA)

The COMA model : The COMA model is a special case of NUMA machine in which the
distributed main memories are converted to caches. All caches form a global address
space and there is no memory hierarchy at each processor node.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Advantages:

• Global address space provides a user-friendly programming perspective to memory
• Data sharing between tasks is both fast and uniform due to the proximity of memory to

CPUs

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Disadvantages:

• Primary disadvantage is the lack of scalability between memory and CPUs.
Adding more CPUs can geometrically increases traffic on the shared memory CPU path,
and for cache coherent systems, geometrically increase traffic associated with
cache/memory management.

• Programmer responsibility for synchronization constructs that insure "correct" access of
global memory.

• Expense: it becomes increasingly difficult and expensive to design and produce
shared memory machines with ever increasing numbers of processors.

1.3.2 Distributed Memory

• Like shared memory systems, distributed memory systems vary widely but share a
common characteristic. Distributed memory systems require a communication network
to connect inter-processor memory.

Figure distributed memory systems

• Processors have their own local memory. Memory addresses in one processor do
not map to another processor, so there is no concept of global address space across all
processors.

• Because each processor has its own local memory, it operates independently.
Changes it makes to its local memory have no effect on the memory of other
processors. Hence, the concept of cache coherency does not apply.

• When a processor needs access to data in another processor, it is usually the
task of the programmer to explicitly define how and when data is communicated.

Synchronization between tasks is likewise the programmer's responsibility.

• Modern multicomputer use hardware routers to pass message. Based on the
interconnection and routers and channel used the multicomputers are divided into
generation

o 1st generation : based on board technology using hypercube architecture and software
controlled message switching.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

o 2nd Generation: implemented with mesh connected architecture, hardware message
routing and software environment for medium distributed – grained computing.
o 3rd Generation : fine grained multicomputer like MIT J-Machine.

• The network "fabric" used for data transfer varies widely, though it can be as simple as
Ethernet.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Advantages:

• Memory is scalable with number of processors. Increase the number of
processors and the size of memory increases proportionately.

• Each processor can rapidly access its own memory without interference and
without the overhead incurred with trying to maintain cache coherency.

• Cost effectiveness: can use commodity, off-the-shelf processors and networking.

Disadvantages:

• The programmer is responsible for many of the details associated with data
communication between processors.

• It may be difficult to map existing data structures, based on global memory, to this
memory organization.

• Non-uniform memory access (NUMA) times

1.2 The state of computing

Modern computers are equipped with powerful hardware technology at the same time

loaded with sophisticated software packages. To access the art of computing we firstly

review the history of computers then study the attributes used for analysis of

performance of computers.

1.2.1 Evolution of computer system

Presently the technology involved in designing of its hardware components of

computers and its overall architecture is changing very rapidly for example: processor

clock rate increase about 20% a year, its logic capacity improve at about 30% in a year;

memory speed at increase about 10% in a year and memory capacity at about 60%

increase a year also the disk capacity increase at a 60% a year and so overall cost per bit

improves about 25% a year.

But before we go further with design and organization issues of parallel

computer architecture it is necessary to understand how computers had evolved.

Initially, man used simple mechanical devices – abacus (about 500 BC) , knotted string,

and the slide rule for computation. Early computing was entirely mechanical like :

mechanical adder/subtracter (Pascal, 1642) difference engine design (Babbage, 1827)

binary mechanical computer (Zuse, 1941) electromechanical decimal machine (Aiken,

1944). Some of these machines used the idea of a stored program a famous example of

it is the Jacquard Loom and Babbage’s Analytical Engine which is also often considered

as the first real computer.

Mechanical and electromechanical machines have limited speed and reliability
because of the many moving parts. Modern machines use electronics for most
information transmission.

Computing is normally thought of as being divided into generations. Each successive

generation is marked by sharp changes in hardware and software technologies. With

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

some exceptions, most of the advances introduced in one generation are carried

through to later generations. We are currently in the fifth generation.

Ist generation of computers (1945-54)

The first generation computers where based on vacuum tube technology. The first large

electronic computer was ENIAC (Electronic Numerical Integrator and Calculator), which

used high speed vacuum tube technology and were designed primarily to calculate the

trajectories of missiles. They used separate memory block for program and data. Later in

1946 John Von Neumann introduced the concept of stored program, in which data and

program where stored in same memory block. Based on this concept EDVAC (Electronic

Discrete Variable

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Automatic Computer) was built in 1951. On this concept IAS (Institute of advance
studies, Princeton) computer was built whose main characteristic was CPU consist of
two units (Program flow control and execution unit).

In general key features of this generation of computers where

1) The switching device used where vacuum tube having switching time between 0.1 to 1
milliseconds.

2) One of major concern for computer manufacturer of this era was that each of

the computer designs had a unique design. As each computer has unique design one

cannot upgrade or replace one component with other computer. Programs that were

written for one machine could not execute on another machine, even though other

computer was also designed from the same company. This created a major concern for

designers as there were no upward-compatible machines or computer architectures

with multiple, differing implementations. And designers always tried to manufacture a

new machine that should be upward compatible with the older machines.

3) Concept of specialized registers where introduced for example index registers

were introduced in the Ferranti Mark I, concept of register that save the return-address

instruction was introduced in UNIVAC I, also concept of immediate operands in IBM 704

and the detection of invalid operations in IBM 650 were introduced.

4) Punch card or paper tape were the devices used at that time for storing the

program. By the end of the 1950s IBM 650 became one of popular computers of that

time and it used the drum memory on which programs were loaded from punch card or

paper tape. Some high-end machines also introduced the concept of core memory

which was able to provide higher speeds. Also hard disks started becoming popular.

5) In the early 1950s as said earlier were design specific hence most of them were

designed for some particular numerical processing tasks. Even many of them used

decimal numbers as their base number system for designing instruction set. In such

machine there were actually ten vacuum tubes per digit in each register.

6) Software used was machine level language and assembly language.

7) Mostly designed for scientific calculation and later some systems were
developed for simple business systems.

8) Architecture features Vacuum tubes and relay memories CPU driven by a
program counter (PC) and accumulator Machines had only fixed-point arithmetic

9) Software and Applications

Machine and assembly language Single user at a time

No subroutine linkage mechanisms Programmed I/O required continuous use of CPU

10) examples: ENIAC, Princeton IAS, IBM 701

IInd generation of computers (1954 – 64)

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

The transistors were invented by Bardeen, Brattain and Shockely in 1947 at Bell Labs

and by the 1950s these transistors made an electronic revolution as the transistor is

smaller, cheaper and dissipate less heat as compared to vacuum tube. Now the

transistors were used instead of a vacuum tube to construct computers. Another major

invention was invention of magnetic cores for storage. These cores where used to large

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

random access memories. These generation computers has better processing speed,
larger memory capacity, smaller size as compared to pervious generation computer.

The key features of this generation computers were

1) The IInd generation computer were designed using Germanium transistor, this
technology was much more reliable than vacuum tube technology.

2) Use of transistor technology reduced the switching time 1 to 10 microseconds
thus provide overall speed up.

2) Magnetic cores were used main memory with capacity of 100 KB. Tapes and disk
peripheral memory were used as secondary memory.

3) Introduction to computer concept of instruction sets so that same program can
be executed on different systems.

4) High level languages, FORTRAN, COBOL, Algol, BATCH operating system.

5) Computers were now used for extensive business applications, engineering
design, optimation using Linear programming, Scientific research

6) Binary number system very used.

7) Technology and Architecture

Discrete transistors and core memories I/O processors, multiplexed memory access

Floating-point arithmetic available

Register Transfer Language (RTL) developed 8) Software and Applications

High-level languages (HLL): FORTRAN, COBOL, ALGOL with compilers and subroutine
libraries Batch operating system was used although mostly single user at a time

9) Example : CDC 1604, UNIVAC LARC, IBM 7090

IIIrd Generation computers(1965 to 1974)

In 1950 and 1960 the discrete components (transistors, registers capacitors) were

manufactured packaged in a separate containers. To design a computer these discrete

unit were soldered or wired together on a circuit boards. Another revolution in

computer designing came when in the 1960s, the Apollo guidance computer and

Minuteman missile were able to develop an integrated circuit (commonly called ICs).

These ICs made the circuit designing more economical and practical. The IC based

computers are called third generation computers. As integrated circuits, consists of

transistors, resistors, capacitors on single chip eliminating wired interconnection, the

space required for the computer was greatly reduced. By the mid-1970s, the use of ICs

in computers became very common. Price of transistors reduced very greatly. Now it

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

was possible to put all components required for designing a CPU on a single printed

circuit board. This advancement of technology resulted in development of

minicomputers, usually with 16-bit words size these system have a memory of

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

range of 4k to 64K.This began a new era of microelectronics where it could be possible
design small identical chips (a thin wafer of silicon’s). Each chip has many gates plus
number of input output pins.

Key features of IIIrd Generation computers:

1) The use of silicon based ICs, led to major improvement of computer system.

Switching speed of transistor went by a factor of 10 and size was reduced by a factor of

10, reliability increased by a factor of 10, power dissipation reduced by a factor of 10.

This cumulative effect of this was the emergence of extremely powerful CPUS with the

capacity of carrying out 1 million instruction per second.

2) The size of main memory reached about 4MB by improving the design of
magnetic core memories also in hard disk of 100 MB become feasible.

3) On line system become feasible. In particular dynamic production control
systems, airline reservation systems, interactive query systems, and real time closed lop
process control systems were implemented.

4) Concept of Integrated database management systems were emerged.
5) 32 bit instruction formats
6) Time shared concept of operating system.
7) Technology and Architecture features

Integrated circuits (SSI/MSI) Microprogramming

Pipelining, cache memories, lookahead processing 8) Software and Applications

Multiprogramming and time-sharing operating systems Multi-user applications

9) Examples : IBM 360/370, CDC 6600, TI ASC, DEC PDP-82

IVth Generation computer ((1975 to 1990)

The microprocessor was invented as a single VLSI (Very large Scale Integrated circuit)

chip CPU. Main Memory chips of 1MB plus memory addresses were introduced as single

VLSI chip. The caches were invented and placed within the main memory and

microprocessor. These VLSIs and VVSLIs greatly reduced the space required in a

computer and increased significantly the computational speed.

1) Technology and Architecture feature semiconductor memory Multiprocessors,

vector supercomputers, multicomputers

Shared or distributed memory Vector processors

2) Software and Applications Multprocessor operating systems, languages,

compilers,

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

parallel software tools

Examples : VAX 9000, Cray X-MP, IBM 3090, BBN TC2000

Fifth Generation computers(1990 onwards)

In the mid-to-late 1980s, in order to further improve the performance of the system the

designers start using a technique known as “instruction pipelining”. The idea is to break

the program into small instructions and the processor works on these instructions in

different stages of completion. For example, the processor while calculating the result of

the current instruction also retrieves the operands for the next instruction. Based on

this concept later superscalar processor were designed, here to execute multiple

instructions in parallel we have multiple execution unit i.e., separate arithmetic-logic

units (ALUs).

Now instead executing single instruction at a time, the system divide program

into several independent instructions and now CPU will look for several similar

instructions that are not dependent on each other, and execute them in parallel. The

example of this design are VLIW and EPIC.

1) Technology and Architecture features ULSI/VHSIC processors, memory, and

switches High-density packaging

Scalable architecture Vector processors

2) Software and Applications

Massively parallel processing Grand challenge applications Heterogenous processing

3) Examples : Fujitsu VPP500, Cray MPP, TMC CM-5, Intel Paragon

UNIT-2

PART-2

Data Representation:

1.2.1 Binary Numbers,

1.2.2 Fixed Point Representation .
1.2.3 Floating Point Representation.

1.2.4 Number base conversions
1.2.5 Octal and Hexadecimal Numbers,
1.2.6 Signed binary numbers,
1.2.7 Binary codes.

DATA REPRESENTATION

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

1.2.1. Binary Numbers:

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

The ancient Indian writer Pingala developed advanced mathematical concepts for describing

prosody, and in doing so presented the first known description of a binary numeral system.A full

set of 8 trigrams and 64 hexagrams, analogous to the 3-bit and 6-bit binary numerals, were

known to the ancient Chinese in the classic text I Ching. An arrangement of the hexagrams of

the I Ching, ordered according to the values of the corresponding binary numbers (from 0 to 63),

and a method for generating thesame, was developed by the Chinese scholar and philosopher

Shao Yong in the 11th century.

In 1854, British mathematician George Boole published a landmark paper detailing an algebraic

system of logic that would become known as Boolean algebra. His logical calculus was to

become instrumental in the design of digital electronic circuitry. In 1937, Claude Shannon

produced his master's thesis at MIT that implemented Boolean algebra and binary arithmetic

using electronic relays and switches for the first time in history. Entitled A Symbolic Analysis of

Relay and Switching Circuits, Shannon's thesis essentially founded practical digital circuit design.

The radix (no of symbols in a number system is called radix) is 2. The positive binary

numbers are stored in binary notation of sign magnitude representation and negative

numbers are stored in sign magnitude or I’s complement form or 2’s complement form.

In I’s complement and sign magnitude representation we have +0 and -0,

In 2’s complement representation we have only one zero. Hence 2’s complement

representation is used in computers to store the data.

1.2.2. FIXED POINT REPRESENTATION:

It is used to represent integers either positive or negative. They are Sign Magnitude
representation, I’s complement representation and 2’s complement representation

1.2.3 FLOATING POINT REPRESENTATION:

It is used to represent real numbers. It consists of mantissa which is fraction i.e. the first

digit is a non zero digit for normalization condition and an exponent which is an integer.

If the number of bits allocated for mantissa increases the accuracy of the number is

increased, if the number of bits allocated for exponent increases the range of the number

is increased.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

1.2.4. NUMBER BASE CONVERSIONS

Any number in one base system can be converted into another base system Types

1) Decimal to any base

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

2) A
n
y

b
a
s
e

t
o

d
e
c
i
m
a
l

3) A

n
y

b
a
s
e

t
o

A
n
y

b
a
s
e

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

D
e
c
i
m
a
l

t
o

B
i
n
a
r
y

O
c
t
a
l

T
o

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

B
i
n
a
r
y

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

1.2.5. OCTAL AND HEXADECIMAL NUMBERS:

Octal is a 3-bit binary and Hexadecimal is a 4-bit binary.

1.2.7. SIGNED BINARY NUMBERS

Signed binary numbers are represented in three ways. They are

(a) Sign Magnitude representation

(b) I’s complement representation

(c) 2’s complement representation.

In first two representations zero is represented with two different binary numbers

whereas in third i.e. 2’s complement representation zero is represented with only one

binary number. Hence this representation is used in computer for storing the signed

binary numbers.

1.2.8. Binary codes

Binary codes are codes which are represented in binary system with modification from the
original ones. Weighted Binary codes

Non Weighted Codes

Weighted binary codes are those which obey the positional weighting principles, each
position of the number represents a specific weight. The binary counting sequence is an
example.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Reflective Code

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

A code is said to be reflective when code for 9 is complement for the code for 0, and so is
for 8 and 1 codes, 7 and 2, 6 and 3, 5 and 4. Codes 2421, 5211, and excess-3 are
reflective, whereas the 8421 code is not.

Sequential Codes

A code is said to be sequential when two subsequent codes, seen as numbers in

binary

representation, differ by one. This greatly aids mathematical manipulation of data.
The 8421 and Excess-3 codes are sequential, whereas the 2421 and 5211 codes are
not.
Non weighted codes

Non weighted codes are codes that are not positionally weighted. That is, each
position within the binary number is not assigned a fixed value. Ex: Excess-3 code
Excess-3 Code

Excess-3 is a non weighted code used to express decimal numbers. The code derives
its name from the fact that each binary code is the corresponding 8421 code plus
0011(3).
Gray Code

The gray code belongs to a class of codes called minimum change codes, in which only one
bit in the code changes when moving from one code to the next. The Gray code is non-
weighted code, as the position of bit does not contain any weight. The gray code is a
reflective digital code which has the special property that any two subsequent numbers
codes differ by only one bit. This is also called a unit- distance code. In digital Gray code has
got a special place.

Binary to Gray Conversion

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

 Gray Code MSB is binary code MSB. 



 Gray Code MSB-1 is the XOR of binary code MSB and MSB-1. 



 MSB-2 bit of gray code is XOR of MSB-1 and MSB-2 bit of binary code. 



 MSB-N bit of gray code is XOR of MSB-N-1 and MSB-N bit of binary code 

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

UNIT-2

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

PART-1

Digital Logic Circuits-I:

2.1.1 Basic Logic Functions,

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

2.1.2Logic gates, 2.1.3universal logic gates,

2.1.4Minimization of Logic expressions. 2.1.5Flip-flops,

2.1.1 Boolean algebra:

Boolean algebra, like any other deductive mathematical system, may be defined with

aset of elements, a set of operators, and a number of unproved axioms or postulates. A

set of elements is anycollection of objects having a common property. If S is a set and

x and y are certain objects, then x Î Sdenotes that x is a member of the set S, and y ÏS

denotes that y is not an element of S. A set with adenumerable number of elements is

specified by braces: A = {1,2,3,4}, i.e. the elements of set A are thenumbers 1, 2, 3,

and 4. A binary operator defined on a set S of elements is a rule that assigns to each

pair ofelements from S a unique element from S._ Example: In a*b=c, we say that * is

a binary operator if it specifies a rule for finding c from the pair (a,b)and also if a, b, c

Î S.

CLOSURE: The Boolean system is closed with respect to a binary operator if for

every pair of Boolean values,it produces a Boolean result. For example, logical AND

is closed in the Boolean system because it accepts only Boolean operands and

produces only Boolean results.

_ A set S is closed with respect to a binary operator if, for every pair of elements of S,

the binary operator specifies a rule for obtaining a unique element of S.

_ For example, the set of natural numbers N = {1, 2, 3, 4, … 9} is closed with respect

to the binary operator plus (+) by the rule of arithmetic addition, since for any a, b Î N

we obtain a unique c Î N by the operation a + b = c.

ASSOCIATIVE LAW:

A binary operator * on a set S is said to be associative whenever (x * y) * z = x * (y *

z) for all x, y, z Î S, forall Boolean values x, y and z.

COMMUTATIVE LAW:

A binary operator * on a set S is said to be commutative whenever x * y = y * x for all

x, y, z є S

IDENTITY ELEMENT:

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

A set S is said to have an identity element with respect to a binary operation * on S if

there exists an element e є S with the property e * x = x * e = x for every x є S

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

BASIC IDENTITIES OF BOOLEAN ALGEBRA

• Postulate 1 (Definition): A Boolean algebra is a closed algebraic system containing a

set K of two or more elements and the two operators · and + which refer to logical

AND and logical OR

• x + 0 = x

• x · 0 = 0

• x + 1 = 1

• x · 1 = 1

• x + x = x

• x · x = x

• x + x’ = x

• x · x’ = 0

• x + y = y + x

• xy = yx

• x + (y + z) = (x + y) + z

• x (yz) = (xy) z

• x (y + z) = xy + xz

• x + yz = (x + y)(x + z)

• (x + y)’ = x’ y’

• (xy)’ = x’ + y’

• (x’)’ = x

DeMorgan's Theorem

(a) (a + b)' = a'b' (b) (ab)' = a' + b'

Generalized DeMorgan's Theorem (a) (a + b +

… z)' = a'b' … z' (b) (a.b … z)' = a' + b' + … z‘

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

L

O

G

I

C

G

A

T

E

S

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Formal logic: In formal logic, a statement (proposition) is a declarative sentence that is

either true(1) or false (0). It is easier to communicate with computers using formal

logic.

• Boolean variable: Takes only two values – either true (1) or false (0). They are

used as basic units of formal logic.

• Boolean algebra: Deals with binary variables and logic operations operating on those

variables.

• Logic diagram: Composed of graphic symbols for logic gates. A simple circuit

sketch that represents inputs and outputs of Boolean functions.

2.1.1. UNIVERSAL GATES: NAND and NOR are universal gates.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

2.1.2. MINIMIZATION OF BOOLEAN FUNCTIONS

Minimization of switching functions is to obtain logic circuits with least circuit

complexity. This goal is very difficult since how a minimal function relates to the

implementation technology is important. For

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

example, If we are building a logic circuit that uses discrete logic made of small scale

Integration ICs(SSIs) like 7400 series, in which basic building block are constructed

and are available for use. The goal of minimization would be to reduce the number of

ICs and not the logic gates. For example, If we require two 6 and gates and 5 Or

gates,we would require 2 AND ICs(each has 4 AND gates) and one OR IC. (4 gates).

On the other hand if the same logic could be implemented with only 10 nand gates, we

require only 3 ICs. Similarly when we design logic on Programmable device, we may

implement the design with certain number of gates and remaining gates may not be

used. Whatever may be the criteria of minimization we would be guided by the

following:

 Boolean algebra helps us simplify expressions and circuits

 Karnaugh Map: A graphical technique for simplifying a Boolean expression into

either form:

o minimal sum of products (MSP)

o minimal product of sums (MPS)

 Goal of the simplification: There are a minimal number of product/sum terms and

Each term has a minimal number of literals

 Circuit-wise, this leads to a minimal two-level implementation

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

• A two-variable function has four possible minterms. We can re-arrange

these minterms into a

Karnaugh map

x y

m

i

n

t

e

r

m

0 0

x

’

y

’

0 1

x

’

y
Y

1 0

x

y

’

1 1

x

y

0

1

x
’
y
’

x
’
y

 0

 X

x

y

’

x

y

 1

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

• Now we can easily see which minterms contain common literals

– Minterms on the left and right sides contain y’ and y respectively

– Minterms in the top and bottom rows contain x’ and x respectively

 Y

0 1 Y

’

Y

0

 x

’

y

’

x

’

y

X

’

x

’

y

’

x

’

y

x

y

’

x

y

X

x
y
’

x
y

1 X

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

k-map Simplification

• Imagine a two-variable sum of minterms

x’y’ + x’y

• Both of these minterms appear in the top row of a Karnaugh map, which

means that they both contain the literal x’

 Y

x

’

y

’

x

’

y

X

x

y

’

x

y

• What happens if you simplify this expression using Boolean algebra?

•

x
’
y
’

+

x
’
y
=

x
’
(
y
’

+

y
)

[

D
i
s
t
r
i
b
u
t
i
v
e

]

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

•

=

x
’



1

[

y

+

y
’

=

1

]

•

=

x
’

[

x



1

=

x

]

A Three-Variable Karnaugh Map

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

K-maps
From
Truth
Tables

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Reading the
MSP from the
K-map

Grouping the
Minterms
Together

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

K-map Simplification
of SoP Expressions

Unsimplifying
Expressions

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Four-variable
K-maps –
f(W,X,Y,Z)

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Simplify
m0+m2+m5+m8+
m10+m13

Five-variable K-
maps –
f(V,W,X,Y,Z)

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Simplify
f(V,W,X,Y,Z)=Σm(0,1,4,5,6,11,12,14,16,20,22,
28,30,31)

PoS Optimization

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

PoS
Optimiz
ation
from
SoP

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

SoP
Optimiz
ation
from
PoS

Don’t
care

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

K-map Summary

• K-maps are an alternative to Boolean algebra for simplifying expressions

– The result is a MSP/MPS, which leads to a minimal two-level circuit

– It’s easy to handle don’t-care conditions

– K-maps are really only good for manual simplification of small expressions...

– Things to keep in mind:

– Remember the correct order of minterms/maxterms on the K-map

– When grouping, you can wrap around all sides of the K-map, and your groups

can overlap

– Make as few rectangles as possible, but make each of them as large as possible. This
leads to fewer, but simpler, product terms

– There may be more than one valid solution

2.1.3. Combinational Logic

• Logic circuits for digital systems may be combinational or sequential.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

• A combinational circuit consists of input variables, logic gates, and output variables.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Analysis procedure

To obtain the output Boolean functions from a logic diagram, proceed as follows:

1. Label all gate outputs that are a function of input variables with arbitrary

symbols. Determine the Boolean functions for each gate output.

2. Label the gates that are a function of input variables and previously labeled gates

with other arbitrary symbols. Find the Boolean functions for these gates.

3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained.

4. By repeated substitution of previously defined functions, obtain the output
Boolean functions in terms of input variables.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Derive truth table from logic diagram

We can derive the truth table by using the above circuit

2.1.4. FLIP FLOPS

There are a variety of flip-flops, all of which share two properties:

1. The flip-flop is a bistable device either 0 or 1. It exists in one of two states and, in the

absence of input, remains in that state. Thus, the flip-flop can function as a 1-bit memory.

2. The flip-flop has two outputs, which are always the complements of each other. These are

generally labeled

Q and Q.

Table 1 shows symbolic graphic and feature table for three types of flip-flop that are S-R,

J-K and D flip-flops. Flip-flop is a form of memory element used to construct sequential

circuits that are more complex, such as registers etc. Sequential circuits can be divided

into

1. Synchronous

2. Asynchronous

In synchronous sequential circuit, all flip-flops are moved by the same clock pulse so that

all flip-flops involved change simultaneously.

In asynchronous circuit, the change of flip-flop condition depends on the change that

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

occurs on the input and the late time that is in the circuit.

Name Graphical Symbol Feature Table

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

S

-

R

J

-

K

D

S R

Q
n

+

1

S

C
l
o
c
k

Q

0 0

Q

n

R
 –

 Q

 0 1 0

 1 0 1

 1 1 -

J Q

J K

Q
n

+

1

 C
l
o
c
k

K

–

0 0

Q

n

 Q

 0 1 0

 1 0 1

 1 1

C
h
a
n
g
e

c

o

n

d

i

t

i

o

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

n

D

Q
n

+

1

 D

C
l
o Q

 c
k

0 0

 –

 Q

 1 1

Table 1: A few basic Flip-flops

S

-

R

F

l

i

p

-

f

l

o

p

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

S-R flip-flop has 2 inputs, S (set) and R (reset) like Diagram 3 below. In the diagram

below, (also for JK and D flip-flops), there use another input called clock. It is to control

the movement of input that is input will only occur when given a clock pulse

(synchronous circuit)

The features of S-R flip-flop can be depicted in Table 2 below. It can be summarized

that:

1. If the value of both S and R are 0, the flip-flop will remain in its present condition (either

0 or 1).

2. If S = 0 and R = 1 (reset), then the flip-flop condition will change to 0 (its output, Q = 0).

3. If S = 1 (set) and R = 0, then the flip-flop condition will change to 1 (output, Q = 1).

4. This circuit does not allow combinational input of input S = 1 and R = 1.

S

Q

clock

–
Q
R

Diagram 3 : S-R Flip-flop

S R

Q

n

Q
n

+

1

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 -

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

1 1 1 -

Table 2 : Feature table of S-R Flip-flop

J-K Flip-flop

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

J-K flip-flop also has 2 inputs, J and K. The function of clock is same as S-R flip-flop.

Unlike S-R flip-flop, J-K flip-flop allows all combination of inputs. The logic circuit for

J-K flip-flop is shown in Diagram 2 below. Table 3 shows the features of J-K flip-flop.

From the table, it can be summarized that:

1. If J = 0 and K = 0, it will maintain the flip-flop condition like before

2. If J = 0 and K = 1, it will cause flip-flop to change to condition 0 (reset).

3. If J = 1 and K = 0, it will cause flip-flop to change to condition 1 (set).

4. If J = 1 and K = 1, it will change the flip-flop condition, that is it will become

complementary to the

initial or prior condition

It can be observed that J-K flip-flop is built to address the input problem of S = R = 1 in

S-R flip-flop. Features 1 till 3 are same as S-R flip-flop.

J

Q

Clock

 –

K
Q

Diagram 2: J-K Flip-flop

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

J K
Q
n

Q
n

+

1

0 0 0 0

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

Table 3: Features table of J-K flip-flop

D Flip-flop

Logic circuit for D flip-flop is shown in Diagram 5 below. This flip-flop only has one

input that is D. The clock function is same as S-R and J-K flip-flops. The features of D

flip-flop can be illustrated by Table 2. From the table, it can be seen that this flip-flop

produces the same output as its input regardless of the condition of the stated flip-flop.

This feature is very suitable to be used as memory element and this flip-flop is mostly

used to make registers and computer memory (RAM)

Q

clock

–
Q
D

Diagram 5 : D Flip-flop

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

D

Q

n

Q
n

+

1

0 0 0

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

0 1 0

1 0 1

1 1 1

Table 2 : Feature table of D Flip-flop

UNIT-2

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

PART-2

Combinational and Sequential Circuit

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Registers,

Shift Registers,

Binary counters

Decoders,

Multiplexers,

Programmable Logic Devices.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Combinational Circuit and Sequential
Circuit Criterions

Logic

Circuits can

be divided

into :

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

1. Combinational Logic Circuit

2. Sequential Logic Circuit

Combinational Logic Circuit

Combinational Logic circuit contains logic gates where its output is determined by the

combination of the current input, regardless of the output or the prior combination of input.

Basically, combinational circuit can be depicted by Diagram 1 below:

n

i
n
p
u
t

combin
ational

m

o
u
t
p
u
t

. circuit

Diagram 1

Examples of Combinational circuits in the computer system are decoder, parallel adder, and
multiplexer

(Note: Students are encouraged to obtain examples of combinational circuits stated

above)

Sequential Logic Circuit

Sequential Logic Circuit contains logic gates arranged in parallel and its output is not

only determined by the combination of the current input, but also the prior output. The

circuit also contains memory elements that enable it to store the information of the prior

output.

Examples of sequential circuits in the computer system are like registers, counters and

serial adders

Some Examples of Combinational Circuit: Parallel Adder, Decoder,
etc

The circuits learnt in chapter 3 are combinational circuits. The steps to design combinational
circuits are as the following:

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

1. Understand the problem

2. Determine the number of input and output variables that are needed

3. Give symbols for the stated input and output

4. Construct a truth table that defines the relationship between the input and output

5. Obtain the Boolean function or the logical expression from the truth table in (2) using Karnaugh

Map or other known methods.

6. Draw a logic circuit based on the expression obtained from (5) above.

Below are examples of designing combinational circuits that are in the computer system that is

the adder. Because computers use binary system for its data, its adder is based on the addition

of the binary system. There are 2 kinds of addition, which are identified to be half addition and

full addition.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Half addition is the addition of 2 bits data (doesn’t involve carry) that produces 2 bits output,

that is the result and the carrier. Full addition is the addition of 3 bits data (2 bits data and 1 bit

carry) that produces 2 bits output (sum and carry). Logic circuit for half addition is known as Half

Adder while the logic circuit for full addition is known as Full Adder

Designing a Circuit for Half Adder

The steps are as below:

Problem: to build a logic circuit for the addition of 2 bits data

1. Number of input : 2 Number of output : 2

2. Variables for input: x and y Variables for output : s (sum) and c (carry)
3. The Truth Table for the problem :

I
N
P
U
T

 1. OUTPUT

 x y S c

 0 0 0 0

 0 1 1 0

 1 0 1 0

 1 1 0 1

4. The expressions for r and c using
Karnaugh Map

F
o
r

s y

x 0 1

 1

 1

s

=

x

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

y

+

x

y

=

x

+

y

For c

x y

1

c

=

x
y

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

5. A logic circuits for Half Adder (HA)

x

s = xy + xy

y

c = xy

OR

x

x + y = s

y

xy = c

A Block
Diagram for
HA is as
below:

i
n
p
u
t

S

o
u
t
p
u

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

x

t

y
H
A c

Designing a Circuit for Full Adder (FA)

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

The same method used to design HA.

1. Problem: Build logic circuit for the addition of 3 bit data

2. Number of input : 3 Number of output : 2

3. Variables for input: x , y and ci

Variables for output : s (sum) and co (carry)

4. The truth table for the problem :

I
N
P
U
T

O
U
T
P
U
T

X y

c

i S

c

o

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

5. Obtain the expression for r and co using Karnaugh Map (Students are required to try

this out themselves):

w
i
l
l

o
b

s =
x y
pi +
x y
ci + c

i

+ x

y

c

i

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

t
a
i
n

x y

 = x + y + ci

a
n
d

co = x y + y

ci + x ci

6. Draw the circuit for FA (Students are required to try this out themselves):

Generally, the block diagram for FA is shown as below :

x

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

y r

c
i

F
A

c
o

To construct a 2-bit parallel adder, 3 FA and 1 HA are required like the diagram below with the

input as X = x3x2x1x0 and Y = y3y2y1y0 (X and Y are binary numbers 2-bit) and the output

(addition result) is r3r2r1r0.

I
N
P
U
T

x

3

y

3

x

2

y

2

x

1

y

1

x

0

y

0

F
A

F
A

F
A

H
A

c

2

c

1

c

0

O
U
T
P
U
T

c

3

s

3

s

2

s

1

s

0

O
R

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

I
N
P
U
T

x

3

y

3

x

2

y

2

x

1

y

1

x

0

y

0

0

F
A

F
A

F
A

F
A

c

2

c

1

c

0

O
U
T
P
U
T
c

3

s

3
s
2

s
1

s
0

Some Examples of Sequential Circuits: Flip-flop, Register,
Serial Adder, etc.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Sequential circuits are a kind of logic circuit where the current output not only depends on the

current input but also on the past history of inputs. Another and generally more useful way to

view it is that the current output of a sequential circuit depends on the current input and the

current state of that circuit. The simplest form of sequential circuit is the flip-flop. Flip-flop is a

kind of logic circuit that is capable of exhibiting 2 stable conditions. It is also known as 1-bit

memory element and is mostly used to make important computer components such as

registers, counters, memory etc.

A few examples of Flip-flop (Sequential Circuit) usage

As priory stated, flip-flop is an example of the simplest form of sequential circuit. It is also a form of

memory element where a flip-flop can store 1 bit of data. In this section, examples of sequential

circuits that use flip-flop will be given:

Register

Register is an important component in the computer. Generally, it can be categorized

into:

1. Storage Register (or Parallel Register)

2. Shift Register (or Serial Register)

Parallel register is made up of a set of 1-bit (flip-flop) that can be written on and read

simultaneously. This register is used to store data (output=input). The amount of flip-flop

used depends on the size of the register that is to be built. If a parallel register that can

store 8 bits of data is to be built, then 8 flip-flops are needed. Diagram 6 below is a 2 bit

parallel register that uses flip-flop D. (Note: all kinds of flip-flop can be used to build

storage register, but its circuit will differ because ever flip-flop has its own features)

I1 I2 I3 I2

D Q

D Q

D Q

D Q

C
l
o
c
k

–

C
l
o
c
k

–

C
l
o
c
k

–

C
l
o
c
k

–

Q

Q

Q

Q

C
l
o
c
k

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Q

1

Diagram 6: A 2-bit parallel register
that uses D Flip-flop

Q

2

Q

2

Q

3

In the above diagram, 2 bits of input is admitted simultaneously, that is I1, I2, I3 and I2,

whereas its output is also is simultaneous or parallel, that is Q1, Q2, Q3 and Q2.

In shift register, only one output is produced at a time. There are 2 types of shift register

that is shift to right and shift to left. Shift to right register means the rightmost bit of the

stated will be taken out first followed by the

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

following bits after a given clock beat. It’s vice versa for move to shift to left register.

Diagram 7 below is an example of 2-bit shift to right register that utilizes J-K flip-flop.

I
n
p
u
t

J

C
l
o
c
k

K

C
l
o
c
k

Q

J Q

J Q

J Q

 O
u
t
p
u
t

–

 C
l
o
c
k

–

 C
l
o
c
k

–

 C
l
o
c
k

–

K

K

K

Q Q Q Q

Diagram 7: Shift to Right Register Using J-K Flip-flop

Parallel Adder

In the computer environment, there are 2 types of adders:

1. Parallel Adder

2. Serial Adder

Parallel adder is an adder that performs addition concurrently for each bit involved. Adder in

section 2.2 is called a serial adder. Serial Adder performs addition bit by bit starting with the

rightmost bit, followed by the following bits. Diagram 8 below is an example of a serial 2-bit

adder. This adder uses two Shift to Right Registers, X and Y to hold operand 1 (A =

A3A2AIA0) and operand 2 (B = B3B2B1B0), a full adder (see section 2.2) and a flip-flop

(usually D flip-flop) to hold the carrier value.

The addition process in the adder are as below :

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

X = X + Y

that is the X and Y registers will hold operand 1 and operand 2 and the addition result will be

kept in the X register. Hence, in the addition, the value in the Y (Operand 2) register cannot

change while the X register holds the addition result (the value of operand 1 will be lost)

Note: observe and understand the data movement in the stated circuit after every clock pulse is

given.

X

R
e
g
i
s
t
e
r A

i
S
i

A
A
2

A
1

A
0

B
i

F
u
l
l

B
3

B
2

B
1

B
0

C

C
i

+

1

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Diagram 8 : 2-bit Serial Adder

UNIT-3 PART-1

3.1.1. Algorithms for fixed point and floating point addition

3.1.1.1. Algorithms for fixed point addition
3.1.1.2. Algorithms for floating point addition

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

3.1.2. Subtraction, multiplication and division operations.

3.1.3. Hardware Implementation of arithmetic and logic operations,

3.1.4. High Performance arithmetic

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

UNIT-3 PART-2

Instruction set & Addressing

3.2.1. Memory Locations and Addresses

Mainmemory is the second major subsystem in a computer. It consists of a collection

of storage locations, each with a unique identifier, called an address.

Data is transferred to and from memory in groups of bits called words. A word can be a

group of 8bits, 16bits, 32bits or 64bits (and growing).

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

•If the word is 8bits, it is referred to as a byte. The term “byte” is so common in computer

science that sometimes a 16-bit word is referred to as a 2-byte word, or a 32-bitword is

referred to as a 4 byteword.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Figure 5.3 Main memory

Address space

•To access a word in memory requires an identifier. Although programmers use a name
to identify a word (or a collection of words), at the hardware level each word is
identified by an address.

•The total number of uniquely identifiable locations in memory is called the
addressspace.

•For example, a memory with 64kilobytes (16address line required) and a wordsize of
1byte has an address space that ranges from 0 to 65,535

Assignment of byte addresses

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Little Endian (e.g., in DEC, Intel)

a) low order byte stored at lowest address
b) byte0 byte1 byte2 byte3

Big Endian

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Big Endian (e.g., in IBM, Motorolla, Sun, HP)

a) high order byte stored at lowest address
b) byte3 byte2 byte1 byte0

Programmers/protocols should be careful when transferring binary data between Big
Endian and Little Endian machines

In case of 16 bit data, aligned words begin at byte addresses of 0,2,4,………………………….

a) In case of 32 bit data, aligned words begin at byte address of 0,4,8,………………………….
b) In case of 64 bit data, aligned words begin at byte addresses of 0,8,16,………………………..

c) In some cases words can start at an arbitrary byte address also then, we say that word

locations are unaligned

MEMORY OPERATIONS

Today, general‐purpose computersuse a set of instructions called a programto process
data.

a) A computer executes the program to create output data from input data

b) Both program instructions and data operands are stored in memory

Two basic operations requires in memory accessLoad operation (Read or

Fetch)‐Contents of specified memory location are read by processor Store operation

(Write)‐Data from the processor is stored in specified memory location

INSTRUCTION SET ARCHITECTURE:‐Complete instruction set of the processor

BASIC 4 TYPES OF OPERATION:‐

i) Data transfer between memory and processor register

ii) Arithmetic and logic operation
iii) Program sequencing and control

iv) I/O transfer

Register transfer notation (RTN)

Transfer between processor registers & memory, between processor register & I/O

devices Memory locations, registers and I/O register names are identified by a symbolic

name in uppercase alphabets

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

LOC,PLACE,MEM are the address of memory location R1 , R2,… are processor registers

DATA_IN, DATA_OUT are I/O registers

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Contents of location is indicated by using square brackets [] RHS of RTN always
denotes a values, and is called Source

LHS of RTN always denotes a symbolic name where valueis to be storedand is called
destination not modified

ASSEMBLY LANGUAGE NOTATION (ALN)

RTN is easy to understand and but cannot be used to represent machine instructions

Mnemonics can be converted to machine language, which processor understands using
assembler

Eg:

1. MOVE LOCN, R2

2. ADD R3, R2, R4

3.2.2. Machine addresses and sequencing

Each machine instruction is executed through the application of a sequence of

microinstructions. Clearly, we must be able to sequence these; the collection of

microinstructions which implements a particular machine instruction is called a

routine.

The MCU typically determines the address of the first microinstruction which

implements a machine instruction based on that instruction's opcode. Upon machine

power-up, the CAR should contain the address of the first microinstruction to be

executed.

The MCU must be able to execute microinstructions sequentially (e.g., within routines),
but must also be able to ``branch'' to other microinstructions as required; hence, the
need for a sequencer.

The microinstructions executed in sequence can be found sequentially in the CM, or

can be found by branching to another location within the CM. Sequential retrieval of

microinstructions can be done by simply incrementing the current CAR contents;

branching requires determining the desired CW address, and loading that into the CAR.

Addressing Sequencing

CAR

Control Address Register

control ROM

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

control memory (CM); holds CWs

opcode

opcode field from machine instruction

mapping logic

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

hardware which maps opcode into microinstruction address

branch logic

determines how the next CAR value will be determined from all the various possibilities

multiplexors

implements choice of branch logic for next CAR value

incrementer

generates CAR + 1 as a possible next CAR value

SBR

used to hold return address for subroutine-call branch operations

Conditional branches are necessary in the microprogram. We must be able to perform

some sequences of micro-ops only when certain situations or conditions exist (e.g., for

conditional branching at the machine instruction level); to implement these, we need to

be able to conditional execute or avoid certain microinstructions within routines.

Subroutine branches are helpful to have at the microprogram level. Many routines contain

identical sequences of microinstructions; putting them into subroutines allows those

routines to be shorter, thus saving memory.

Mapping of opcodes to microinstruction addresses can be done very simply. When the

CM is designed, a ``required'' length is determine for the machine instruction routines

(i.e., the length of the longest one). This is rounded up to the next power of 2, yielding a

value k such that 2 k microinstructions will be sufficient to implement any routine.

The first instruction of each routine will be located in the CM at multiples of this

``required'' length. Say this is N. The first routine is at 0; the next, at N; the next, at 2*N;

etc. This can be accomplished very easily. For instance, with a four-bit opcode and

routine length of four microinstructions, k is two; generate the microinstruction address

by appending two zero bits to the opcode:

addressing

Alternately, the n-bit opcode value can be used as the ``address'' input of a 2n x M ROM;

the contents of the selected ``word'' in the ROM will be the desired M-bit CAR address

for the beginning of the routine implementing that instruction. (This technique allows

for variable-length routines in the CM.) >pp We choose between all the possible ways of

generating CAR values by feeding them all into a multiplexor bank, and implementing

special branch logic which will determine how the muxes will pass on the next address

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

to the CAR. As there are four possible ways of determining the next address, the

multiplexor bank is made up of N 4x1 muxes, where N is the number of bits in the

address of a CW. The branch logic is used to determine which of the four possible ``next

address'' values is to be passed on to the CAR; its two output lines are the select inputs

for the muxes

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

3.2.3. Addressing Modes

The term addressing modes refers to the way in which the operand of an instruction is
specified. Information contained in the instruction code is the value of the operand or the
address of the result/operand. Following are the main addressing modes that are used on
various platforms and architectures.

1) Immediate Mode

The operand is an immediate value is stored explicitly in the instruction:

Example: SPIM (opcode dest, source)

li $11, 3 // loads the immediate value of 3 into register $11

li $9, 8 // loads the immediate value of 8 into register $9

Example : (textbook uses instructions type like, opcode source, dest)

move #200, R0; // move immediate value 200 in register R0

2) Index Mode

The address of the operand is obtained by adding to the contents of the general register
(called index register) a constant value. The number of the index register and the
constant value are included in the instruction code. Index Mode is used to access an
array whose elements are in successive memory locations. The content of the
instruction code, represents the starting address of the array and the value of the index
register, and the index value of the current element. By incrementing or decrementing
index register different element of the array can be accessed.

Example: SPIM/SAL - Accessing Arrays

.data

array1: .byte 1,2,3,4,5,6
.text

__start:
move $3, $0 # $3 initialize index register with 0

add $3, $3,4 # compute the index value of the fifth element
sb $0, array1($3) # array1[4]=0

store byte 0 in the fifth element of the array
index addressing mode

done

3) Indirect Mode

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

The effective address of the operand is the contents of a register or main memory
location, location whose address appears in the instruction. Indirection is noted by
placing the name of the register or the memory address given in the instruction in
parentheses. The register or memory location that contains the address of the operand
is a pointer. When an execution takes place in such mode, instruction may be told to go
to a

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

specific address. Once it's there, instead of finding an operand, it finds an address
where the operand is located.

NOTE:

Two memory accesses are required in order to obtain the value of the operand
(fetch operand address and fetch operand value).

Example: (textbook) ADD (A), R0

(address A is embedded in the instruction code and (A) is the operand address =
pointer variable)

Example: SPIM - simulating pointers and indirect register addressing

The following "C" code:

int *alpha=0x00002004, q=5; *alpha = q;

could be translated into the following assembly code:

alpha: .word 0x00002004 # alpha is and address variable # address value is
0x00002004 q: .word 5
....
lw $10,q # load word value from address q in into $10

$10 is 5
lw $11,alpha # $11 gets the value 0x0002004

this is similar with a load immediate address value
sw $10,($11) # store value from register $10 at memory location

whose address is given by the contents of register $11

(store 5 at address 0x00002004)

Example: SPIM/SAL - - array pointers and indirect register addressing

.data
array1: .byte 1,2,3,4,5,6

.text
__start:

la $3, array1 # array1 is direct addressing mode
add $3, $3,4 # compute the address of the fifth element

sb $0, ($3) # array1[4]=0 , byte accessing
indirect addressing mode

done

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

4) Absolute (Direct) Mode

The address of the operand is embedded in the instruction code.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Example: (SPIM)

beta: .word 2000

lw $11, beta # load word (32 -bit quantity) at address beta into register $11

address of the word is embedded in the instruction code
(register $11 will receive value 2000)

5) Register Mode

The name (the number) of the CPU register is embedded in the instruction. The
register contains the value of the operand. The number of bits used to specify the
register depends on the total number of registers from the processor set.

Example (SPIM)

add $14,$14,$13 # add contents of register $13 plus contents of

register $14 and save the result in register $14

No memory access is required for the operand specified in register mode.

6) Displacement Mode

Similar to index mode, except instead of a index register a base register will be used.
Base register contains a pointer to a memory location. An integer (constant) is also
referred to as a displacement. The address of the operand is obtained by adding the
contents of the base register plus the constant. The difference between index mode
and displacement mode is in the number of bits used to represent the constant. When
the constant is represented a number of bits to access the memory, then we have
index mode. Index mode is more appropriate for array accessing; displacement mode
is more appropriate for structure (records) accessing.

Example: SPIM/SAL - Accessing fields in structures

.data

student: .word 10000 #field code
.ascii "Smith" #field name

.byte # field test

.byte 80,80,90,100 # fields hw1,hw2,hw3,hw4

.text __start:

la $3, student # load address of the structure in $3

$3 base register

add $17,$0,90 # value 90 in register $17
displacement of field "test" is 9 bytes

sb $17, 9($3) # store contents of register $17 in field "test"

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

displacement addressing mode

done

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

7) Autoincrement /Autodecrement Mode

A special case of indirect register mode. The register whose number is included in
the instruction code, contains the address of the operand. Autoincrement Mode =
after operand addressing , the contents of the register is incremented. Decrement
Mode = before operand addressing, the contents of the register is decrement.

Example: SPIM/SAL - - simulating autoincrement/autodecrement addressing mode

(MIPS has no autoincrement/autodecrement mode)

lw $3, array1($17) #load in reg. $3 word at address array1($17)

addi $17,$17,4 #increment address (32-bit words) after accessing

#operand this can be re-written in a "autoincrement like mode":
lw+ $3,array1($17) # lw+ is not a real MIPS instruction

subi $17,$17,4 # decrement address before accessing the operand
lw $3,array1($17)

NOTE: the above sequence can be re-rewritten proposing an "autodecrement
instruction", not real in MIPS architecture.

-lw $3, array1($17)

3.2.4. Instruction Formats

The most common fields found in instruction format are:-

(1) An operation code field that specified the operation to be performed
(2) An address field that designates a memory address or a processor registers.

(3) A mode field that specifies the way the operand or the effective address is

determined.

Computers may have instructions of several different lengths containing varying

number of addresses. The number of address field in the instruction format of a

computer depends on the internal organization of its registers. Most computers fall

into one of three types of CPU organization.

(1) Single Accumulator organization ADD X AC ® AC + M [×]

(2) General Register Organization ADD R1, R2, R3 R ® R2 + R3

(3) Stack Organization PUSH X

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Three address Instruction

Computer with three addresses instruction format can use each address field to
specify either processor register are memory operand.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

ADD R1, A, B A1 ® M [A] + M [B]

ADD R2, C, D R2 ® M [C] + M [B] X = (A + B) * (C + A)

MUL X, R1, R2 M [X] R1 * R2

The advantage of the three address formats is that it results in short program when

evaluating arithmetic expression. The disadvantage is that the binary-coded

instructions require too many bits to specify three addresses.

Two Address Instruction

Most common in commercial computers. Each address field can specify either a
processes register on a memory word.

M
O
V

R
1
,

A

R
1

®

M

[
A
]

A
D
D

R
1
,

B

R
1

®

R
1

+

M

[
B
]

M
O
V

R
2
,

C

R
2

®

X

=

(

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

M

[
C
]

A

+

B
)

*

(

C

+

D
)

A
D
D

R
2
,

D

R
2

®

R
2

+

M

[
D
]

M
U
L

R
1
,

R
2

R
1

®

R
1

*

R
2

M X M

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

O
V

1

R
1

[
X
]

®

R
1

One Address instruction

It used an implied accumulator (AC) register for all data manipulation. For
multiplication/division, there is a need for a second register.

L
O
A
D A

A
C

®

M

[
A
]

A
D
D B

A
C

®

A
C

+

M

[
B
]

S
T

M

X

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

O
R
E

T

[
T
]

®

A
C

=

(
A

+
B
)

×

(
C

+

A
)

All operations are done between the AC register and a memory operand. It’s the
address of a temporary memory location required for storing the intermediate
result.

L
O
A
D C

A
C

®

M

(
C
)

A
D
D D

A
C

®

A
C

+

M

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

(
D
)

M
L T

A
C

®

A
C

+

M

(
T
)

S
T
O
R
E

X

M

[
×
]
®

A
C

Zero – Address Instruction

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

A stack organized computer does not use an address field for the instruction ADD and

MUL. The PUSH & POP instruction, however, need an address field to specify the

operand that communicates with the stack (TOS ® top of the stack)

P
U
S
H A

T
O
S
®
A

P
U
S
H B

T
O
S
®
B

A
D
D

T
O
S
®
(A
+
B)

P
U
S
H C

T
O
S
®
C

P
U
S
H D

T
O
S
®
D

A
D
D

T
O
S
®
(C
+
D)

M
U
L

T
O
S
®
(C
+

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

D)
*
(A
+
B)

P
O
P X

M
[X
]
T
O
S

CISC Characteristics

A computer with large number of instructions is called complex instruction set

computer or CISC. Complex instruction set computer is mostly used in scientific

computing applications requiring lots of floating point arithmetic.

1. A large number of instructions - typically from 100 to 250 instructions.

2.Some instructions that perform specialized tasks and are used infrequently.

3.A large variety of addressing modes - typically 5 to 20 different modes.

4.Variable-length instruction formats

5.Instructions that manipulate operands in memory.

RISC Characteristics

A computer with few instructions and simple construction is called reduced
instruction set computer or RISC. RISC architecture is simple and efficient. The major
characteristics of RISC architecture are,

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

1. Relatively few instructions

2. Relatively few addressing modes

3. Memory access limited to load and store
instructions

4. All operations are done within the registers
of the CPU

5. Fixed-length and easily-decoded instruction
format.

6. Single cycle instruction execution

7. Hardwired and micro programmed control

3.2.5. Basic Machine Instructions IA-32
Pentium example.

Pentium Addressing Modes

Virtual or effective address is offset into
segment

—Starting address plus offset gives linear
address

—This goes through page translation if
paging is enabled

9 addressing modes available

—Immediate

—Register operand

—Displacement : offset in a segment

—Base : same as register indirect
addressing

—Base with displacement

—Scaled index with displacement : scale
factor is used

– scale factor of 2 can be used to index an

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

array of 16-bit integers

—Base with index and displacement

—Base scaled index with displacement

—Relative

– used in transfer-of-control instructions

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Pentium Instruction
Formats

• Instruction consists of

0-4 optional prefixes

1-2 byte opcode

Optional address specifier

Consists of ModR/m byte

and Scale Index byte

Optional displacement

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Optional immediate field

Pentium Instruction

Formats

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Prefix bytes Instruction prefixes

LOCK or one of repeat prefixes

LOCK is used to ensure exclusive use of shared

memory in multiprocessor environments

REP, REPE, REPZ, REPNE, and REPNZ Specify repeated

operation on strings

Repeat until counter in CX goes zero or

until the condition is met Segment override

Address size

Switches between 32-bit and 16-bit address

generation Operand size

Switches between 32-bit and 16-bit operands

Pentium Instruction Formats

Instruction

1. Opcode

2. ModR/m

Specify whether an operand is in a register or in
memory

3. SIB

Specify fully the addressing mode

4.Displacement

– When used, 8-, 16-, or 32-bit displacement

field is added 5.Immediate

When used, 8-, 16-, or 32-bit operand is provided

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Pentiu
m
Instruc
tion
Forma
ts

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

UNIT-4

Memory organization

4.1Concept Of Memory,

4.2RAM,ROM Memories

4.3Memory Hierarchy 4.4Cache

4.5Memories 4.6Virtual Memory,

4.7Secondary Storage,

Memory Management Requirements.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

4.1 MEMORY HIERARCHY

The memory unit is an essential component in any digital computer since it is

needed for storing programs and data. A very small computer with a limited

application may be able to fulfill its intended task without the need of additional

storage capacity. Most general-purpose computers would run more efficiently if

they were equipped with additional storage beyond the capacity of the main

memory. There is just not enough space in one memory unit to accommodate

all the programs used in a typical computer. Moreover, most computer users

accumulate and continue to accumulate large amounts of data-processing

software. Not all accumulated information is needed by the processor at the

same time. Therefore, it is more economical to use low-cost storage devices to

serve as a backup for storing the information that is not currently used by the

CPU. The memory unit that communicates directly with the CPU is called the

main memory. Devices that provide backup storage are called auxiliary

memory. The most common auxiliary memory devices used in computer

systems are magnetic disks and tapes. They are used for storing system

programs, large data files, and other backup information. Only programs and

data currently needed by the processor reside in main memory. All other

information is stored in auxiliary memory and transferred to main memory

when needed.

The total memory capacity of a computer can be visualized as being a hierarchy

of components. The memory hierarchy system consists of tall storage devices

employed in a computer system from the slow but high-capacity auxiliary

memory to a relatively faster main memory, to an even smaller and faster cache

memory accessible to the high-speed processing logic. Figure illustrates the

components in a typical memory hierarchy. At the bottom of the hierarchy are

the relatively slow magnetic tapes used to store removable files. Next are the

magnetic disks used as backup storage. The main memory occupies a central

position by being able to communicate directly with the CPU and with auxiliary

memory devices through an I/O processor. When programs not residing in main

memory are needed by the CPU, they are brought in from auxiliary memory.

Programs not currently needed in main memory are transferred into auxiliary

memory to provide space for currently used programs and data.

A special very-high speed memory called a cache is sometimes used to increase

the speed of processing by making current programs and data available to the

CPU at a rapid rate. The cache memory is employed in computer systems to

compensate for the speed differential between main memory access time and

processor logic. CPU logic is usually faster than main memory access time,

with the result that processing speed is limited primarily by the speed of main

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

memory. A technique used to compensate for the mismatch in operating speeds

is to employ in extremely fast, small cache between the CPU and main memory

whose access time is close to processor logic clock cycle time. The cache is

used for storing segments of programs currently being executed in the CPU and

temporary data frequently needed in the present calculations by

Figure - Memory hierarchy in a computer system.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Making programs and data available at a rapid rate, it is possible to increase the

performance rate of the computer.

While the I/O processor manages data transfers between auxiliary

memory and main memory, the cache organization is concerned with the transfer

of information between main memory and CPU. Thus each is involved with a

different level in the memory hierarchy system. The reason for having two or

three levels of memory hierarchy is economics. As the storage capacity of the

memory increases, the cost per bit for storing binary information decreases and

the access time of the memory becomes longer. The auxiliary memory has a

large storage capacity, is relatively inexpensive, but has low access speed

compared to main memory. The cache memory is very small, relatively

expensive, and has very high access speed. Thus as the memory access speed

increases, so does its relative cost. The overall goal of using a memory hierarchy

is to obtain the highest-possible average access speed while minimizing the total

cost of the entire memory system.

While the I/O processor manages data transfers between auxiliary

memory and main memory, the cache organization is concerned with the transfer

of information between main memory and CPU. Thus each is involved with a

different level in the memory hierarchy system. The reason for having two or

three levels of memory hierarchy is economics. As the storage capacity of the

memory increases, the cost per bit for storing binary information decreases and

the access time of the memory becomes longer. The auxiliary memory has a

large storage capacity, is relatively inexpensive, but has low access speed

compared to main memory. The cache memory is very small, relatively

expensive, and has very high access speed. Thus as the memory access speed

increases, so does its relative cost. The overall goal of using a memory hierarchy

is to obtain the highest-possible average access speed while minimizing the total

cost of the entire memory system.

Auxiliary and cache memories are used for different purposes. The

cache holds those parts of the program and data that are most heavily used, while

the auxiliary memory holds those parts that are not presently used by the CPU.

Moreover, the CPU has direct access to both cache and main memory but not to

auxiliary memory. The transfer from auxiliary to main memory is usually done

by means of direct memory access of large blocks of data. The typical access

time ratio between cache and main memory is about 1 to 7. For example, a

typical cache memory may have an access time of 100ns, while main memory

access time may be 700ns. Auxiliary memory average access time is usually

1000 times that of main memory. Block size in auxiliary memory typically

ranges from256 to 2048 words, while cache block size is typically from 1 to 16

words.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Many operating systems are designed to enable the CPU to process a

number of independent programs concurrently. This concept, called

multiprogramming, refers to the existence of two or more programs indifferent

parts of the memory hierarchy at the same time. In this way it is possible to keep

all parts of the computer busy by working with several programs in sequence.

For example, suppose that a program is being executed in the CPU and an I/O

transfer is required. The CPU initiates the I/O processor to start executing the

transfer. This leaves the CPU free to execute another program. In a

multiprogramming system, when one program is waiting for input or output

transfer, there is another program ready to utilize the CPU.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

MAIN MEMORY

The main memory is the central storage unit in a computer system. It is

a relatively large and fast memory used to store programs and data during the

computer operation. The principal technology used for the main memory is based

on semiconductor integrated circuits. Integrated circuit RAM chips are available in

two possible operating modes, static and dynamic. The static RAM consists

essentially of internal flip-flops that store the binary information. The stored

information remains valid as long as power is applied to unit. The dynamic RAM

stores the binary information in the form of electric charges that are applied to

capacitors. The capacitors are provided inside the chip by MOS transistors. The

stored charges on the capacitors tend to discharge with time and the capacitors

must be periodically recharged by refreshing the dynamic memory. Refreshing is

done by cycling through the words every few milliseconds to restore the decaying

charge. The dynamic RAM offers reduced power consumption and larger storage

capacity in a single memory chip. The static RAM is easier to use and has shorted

read and write cycles.

Most of the main memory in a general-purpose computer is made up of

RAM integrated circuit chips, but a portion of the memory may be constructed

with ROM chips. Originally, RAM was used to refer to a random-access memory,

but now it is used to designate a read/write memory to distinguish it from a read-

only memory, although ROM is also random access. RAM is used for storing the

bulk of the programs and data that are subject to change. ROM is used for storing

programs that are permanently resident in the computer and for tables of constants

that do not change in value one the production of the computer is completed.

Among other things, the ROM portion of main memory is needed for

storing an initial program called a bootstrap loader. The bootstrap loader is a

program whose function is to start the computer software operating when power is

turned on. Since RAM is volatile, its contents are destroyed when power is turned

off. The contents of ROM remain unchanged after power is turned off and on

again. The startup of a computer consists of turning the power on and starting the

execution of an initial program. Thus when power is turned on, the hardware of the

computer sets the program counter to the first address of the bootstrap loader. The

bootstrap program loads a portion of the operating system from disk to main

memory and control is then transferred to the operating system, which prepares the

computer from general use.

RAM and ROM chips are available in a variety of sizes. If the memory

needed for the computer is larger than the capacity of one chip, it is necessary to

combine a number of chips to form the required memory size. To demonstrate the

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

chip interconnection, we will show an example of a 1024 × 8 memory constructed

with 128 × 8 RAM chips and 512 × 8 ROM chips.

4.2RAM AND ROM CHIPS

A RAM chip is better suited for communication with the CPU if it has

one or more control inputs that select the chip only when needed. Another

common feature is a bidirectional data bus that allows the transfer of data either

from memory to CPU during a read operation or from CPU to memory during a

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

write operation. A bidirectional bus can be constructed with three-state buffers. A

three-state buffer output can be placed in one of three possible states: a signal

equivalent to logic 1, a signal equivalent to logic 0, or a high-impedance state. The

logic 1 and 0 are normal digital signals. The high-impedance state behaves like an

open circuit, which means that the output does not carry a signal and has no logic

significance. The block diagram of a RAM chip is shown in Fig. The capacity of

the memory is 128 words of eight bits (one byte) per word. This requires a 7-bit.

Figure- Typical RAM Chip.

Address and an 8-bit bidirectional data bus. The read and write inputs specify the

memory operation and the two chips select (CS) control inputs are for enabling the

chip only when it is selected by the microprocessor. The availability of more than

one control input to select the chip facilitates the decoding of the address lines

when multiple chips are used in the microcomputer. The read and write inputs are

sometimes combined into one line labeled R/W. When the chip is selected, the two

binary states in this line specify the two operations or read or write.

The function table listed in Fig. (b) Specifies the operation of the RAM

chip. The unitis in operation only when CSI = 1 and CS2 = 0. The bar on top of the

second select variable indicates that this input in enabled when it is equal to 0. If

the chip select inputs are not enabled, or if they are enabled but the read but the

read or write inputs are not enabled, the memory is inhibited and its data bus is in a

high-impedance state. When SC1 = 1 and CS2 = 0, the memory can be placed in a

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

write or read mode. When the WR input is enabled, the memory stores a byte from

the data bus into a location specified by the address input lines. When the RD input

is enabled, the content of the selected byte is placed into the data bus. The RD and

WR signals control the memory operation as well as the bus buffers associated

with the bidirectional data bus.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

A ROM chip is organized externally in a similar manner. However,

since a ROM can only read, the data bus can only be in an output mode. The

block diagram of a ROM chip is shown in below Fig. For the same-size chip, it

is possible to have more bits of ROM occupy less space than in RAM. For this

reason, the diagram specifies a 512-byte ROM, while the RAM has only 128

bytes.

The nine address lines in the ROM chip specify any one of the 512

bytes stored in it. Thetwo chip select inputs must be CS1 = 1 and CS2 = 0 for the

unit to operate. Otherwise, the data bus is in a high-impedance state. There is no

need for a read or write control because the unit can only read. Thus when the

chip is enabled by the two select inputs, the byte selected by the address lines

appears on the data bus.

4.2.1.1. MEMORY ADDRESS MAP

The designer of a computer system must calculate the amount of

memory required for the particular application and assign it to either RAM or

ROM. The interconnection between memory and processor is then established

form knowledge of the size of memory needed and the type of RAM and ROM

chips available. The addressing of memory can be established by means of a

table that specifies the memory address assigned to each chip. The table, called a

memory address map, is a pictorial representation of assigned address space for

each chip in the system.

To demonstrate with a particular example, assume that a computer

system needs 512 bytes of RAM and 512 bytes of ROM. The RAM and ROM

chips

Figure-Typical ROM chip.

To be used are specified in Fig Typical RAM chip and Typical ROM chip. The

memory address map for this configuration is shown in Table 7-1. The

component column specifies whether a RAM or a ROM chip is used. The

hexadecimal address column assigns a range of hexadecimal equivalent

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

addresses for each chip. The address bus lines are listed in the third column.

Although there are 16 lines in the address bus, the table shows only 10 lines

because the other 6 are not used in this example and are assumed to be zero.

The small x’s under the address bus lines designate those lines that must be

connected to the address inputs in each chip. The RAM chips have 128 bytes and

need seven address lines. The ROM chip has 512 bytes and needs 9 address

lines. The x’s are always assigned to the low-order bus lines: lines 1 through 7

for the RAM and lines 1 through 9 for the ROM. It is now necessary to

distinguish between four RAM chips by assigning to each a different address.

For this particular example we choose bus lines 8 and 9 to represent four distinct

binary combinations. Note that any other pair of unused bus lines can be chosen

for

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

this purpose. The table clearly shows that the nine low-order bus lines constitute

a memory space from RAM equal to 2
9

 = 512 bytes. The distinction between a

RAM and ROM address is done with another bus line. Here we choose line 10

for this purpose. When line 10 is 0, the CPU selects a RAM, and when this line

is equal to 1, it selects the ROM.

The equivalent hexadecimal address for each chip is obtained forms

the information under the address bus assignment. The address bus lines are

subdivided into groups of four bits each so

TABLE-Memory Address Map for Microprocomputer

That each group can be represented with a hexadecimal digit. The

first hexadecimal digit represents lines 13 to 16 and is always 0. The next

hexadecimal digit represents lines 9 to 12, but lines 11 and 12 are always 0. The

range of hexadecimal addresses for each component is determined from the x’s

associated with it. This x’s represent a binary number that can range from an all-

0’s to an all-1’s value.

4.2 MEMORY CONNECTION TO CPU

RAM and ROM chips are connected to a CPU through the data and

address buses. The low-order lines in the address bus select the byte within the

chips and other lines in the address bus select a particular chip through its chip

select inputs. The connection of memory chips to the CPU is shown in belowFig.

This configuration gives a memory capacity of 512 bytes of RAM and 512 bytes

of ROM. It implements the memory map of Table 7-1. Each RAM receives the

seven low-order bits of the address bus to select one of 128 possible bytes. The

particular RAM chip selected is determined from lines 8 and 9 in the address

bus. This is done through a 2 × 4 decoder whose outputs go to the SCI input in

each RAM chip. Thus, when address lines 8 and 9 are equal to 00, the first RAM

chip is selected. When 01, the second RAM chip is selected, and so on. The RD

and WR outputs from the microprocessor are applied to the inputs of each RAM

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

chip.

The selection between RAM and ROM is achieved through bus line

10. The RAMs are selected when the bit in this line is 0, and the ROM when the

bit is 1. The other chip select input in the ROM is connected to the RD control

line for the ROM chip to be enabled only during a read operation. Address bus

lines 1 to 9 are applied to the input address of ROM without going through the

decoder. This assigns addresses 0 to 511 to RAM and 512 to 1023 to ROM. The

data bus of the ROM has only an output capability, whereas the data bus

connected to the RAMs can transfer information in both directions.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

The example just shown gives an indication of the interconnection complexity

that can exist between memory chips and the CPU. The more chips that are

connected, the more external decoders are required for selection among the

chips. The designer must establish a memory map that assigns addresses to the

various chips from which the required connections are determined.

Figure -Memory connection to the CPU.

ASSOCIATIVE MEMORY

Many data-processing applications require the search of items in a

table stored in memory. An assembler program searches the symbol address

table in order to extract the symbol’s binary equivalent. An account number may

be searched in a file to determine the holder’s name and account status. The

established way to search a table is to store all items where they can be

addressed in sequence. The search procedure is a strategy for choosing a

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

sequence of addresses, reading the content of memory at each address, and

comparing the information read with the item being searched until a match

occurs. The number of accesses to memory depends on the location of the item

and the efficiency of the search algorithm. Many search algorithms have been

developed to minimize the number of accesses while searching for an item in a

random or sequential access memory.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

The time required to find an item stored in memory can be reduced

considerably if stored data can be identified for access by the content of the data

itself rather than by an address. A memory unit accessed by content is called an

associative memory or content addressable memory (CAM). This type of

memory is accessed simultaneously and in parallel on the basis of data content

rather than by specific address or location. When a word is written in an

associative memory, no address is given,. The memory is capable of finding an

empty unused location to store the word. When a word is to be read from an

associative memory, the content of the word, or part of the word, is specified.

The memory locaters all words which match the specified content and marks

them for reading.

Because of its organization, the associative memory is uniquely suited

to do parallel searches by data association. Moreover, searches can be done on

an entire word or on a specific field within a word. An associative memory is

more expensive then a random access memory because each cell must have

storage capability as well as logic circuits for matching its content with an

external argument. For this reason, associative memories are used in applications

where the search time is very critical and must be very short.

HARDWARE ORGANIZATION

The block diagram of an associative memory is shown in below Fig.

It consists of a memory array and logic from words with n bits per word. The

argument register A and key register K each have n bits, one for each bit of a

word. The match register M has m bits, one for each memory word. Each word

in memory is compared in parallel with the content of the argument register. The

words that match the bits of the argument register set a corresponding bit in the

match register. After the matching process, those bits in the match register that

have been set indicate the fact that their corresponding words have been

matched. Reading is accomplished by a sequential access to memory for those

words whose corresponding bits in the match register have been set.

The key register provides a mask for choosing a particular field or key in the

argument word.

The entire argument is compared with each memory word if the key register

contains all 1’s. Otherwise, only those bits in the argument that have 1’s in their

corresponding position of the key register are compared. Thus the key provides a

mask or identifying piece of information which specifies how the reference to

memory is made.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Figure- Block diagram of associative memory

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

To illustrate with a numerical example, suppose that the argument

register A and the key register K have the bit configuration shown below. Only

the three leftmost bits of A are compared with memory words because K has 1’s

in these positions.

A

1

0

1

1

1

1

1

0

0

K

1

1

1

0

0

0

0

0

0

W

o

r

d

1

1

0

0

1

1

1

1

0

0

n

o

m

a

t

c

h
W

o

r

d

2

1

0

1

0

0

0

0

0

1

m

a

t

c

h

Word 2 matches the unmasked argument field because the three leftmost bits of

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

the argument and the word are equal.

The relation between the memory array and external registers in an

associative memory is shown in below Fig. The cells in the array are marked by

the letter C with two subscripts. The first subscript gives the word number and

the second specifies the bit position in the word. Thus cell Cij is the cell for bit j

in word i. A bit A j in the argument register is compared with all the bits in

column j of the array provided that K j = 1. This is done for all columns j = 1,

2,…,n. If a matchoccurs between all the unmasked bits of the argument and the

bits in word i, the corresponding bit Mi in the match register is set to 1. If one or

more unmasked bits of the argument and the word do not match, Mi is cleared to

0.

Figure -Associative memory of m word, n cells per word

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

The internal organization of a typical cell Cij is shown in Fig.. It

consists of a flip-

Flop storage element Fij and the circuits for reading, writing, and matching the

cell. The input bit is transferred into the storage cell during a write operation.

The bit stored is read out during a read operation. The match logic compares

the content of the storage cell with the corresponding unmasked bit of the

argument and provides an output for the decision logic that sets the bit in Mi.

MATCH LOGIC

The match logic for each word can be derived from the comparison

algorithm for two binary numbers. First, we neglect the key bits and compare

the argument in A with the bits stored in the cells of the words. Word i is equal

to the argument in A if Aj = Fij for j = 1, 2,…, n. Two bits are equal if they

are both 1 or both 0. The equality of two bits can be expressed logically by the

Boolean function xj = AjFij + A
'
jFij

'

Wherexj = 1 if the pair of bits in position j are equal; otherwise, xj = 0.

For a word i to be equal to the argument in a we must have all xj variables

equal to 1. This is the condition for setting the corresponding match bit Mi to

1. The Boolean function for this condition is

Mi = x1 x2 x3 … xn

And constitutes the AND operation of all pairs of matched bits in a

word. FigureOne cell of associative memory.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Figure- One cell of associative memory.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

We now include the key bit Kj in the comparison logic. The requirement is

that if Kj = 0, the corresponding bits of Aj and Fij need no comparison. Only

when Kj = 1 must they be compared. This requirement is achieved by ORing

each term with Kj’ , thus:

x

i

f

K
=
1

 j j

x

j

+

K

’

j

=

1

i
f

K

=

0

j

When K j = 1, we have K j ’ = 0 and xj + 0 = xj. When Kj = 0, then

Kj’ = 1 xj + 1 = 1. A term (xj + Kj’) will be in the 1 state if its pair of bitsis

not compared. This is necessary because each term isANDed with all other

terms so that an output of 1 will have no effect. The comparison of the bits has

an effect only when Kj = 1.

The match logic for word i in an associative memory can now be expressed by

the following Boolean function:

Mi = (x1 + K
'
j) (x2 + K

'
j) (x3 + K

'
j) …. (xn + K

'
j)

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Each term in the expression will be equal to 1 if its corresponding K
'
j = 0.

ifKj = 1, the term willbe either 0 or 1 depending on the value of xj. A match

will occur and Mi will be equal to 1 if all terms are equal to 1.

If we substitute the original definition of xj. The Boolean function above can

be expressed as follows:

Mi = ∏ (AjFij + A
'
j F

'
j + K

'
j)

j=1

Where ∏ is a product symbol designating the AND operation of all n terms.

We need m such functions, one for each word i = 1, 2, 3, …., m.

The circuit for catching one word is shown in below Fig. Each cell

requires two AND gates and one OR gate. The inverters for Aj and Kj are

needed once for each column and are used for all bits in the column. The

output of all OR gates in the cells of the same word go to the input of a

common AND gate to generate the match signal for Mi.Mi will be logic 1 if a

catch occurs and 0 if no match occurs.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Note that if the key register contains all 0’s, output Mi will be a 1 irrespective

of the value of A or the word. This occurrence must be avoided during normal

operation.

READ OPERATION

If more than one word in memory matches the unmasked argument

field, all the matched words will have 1’s in the corresponding bit position of

the catch register. It is then necessary to scan the bits of the match register on

eat a time. The matched words are read in sequence by applying a read signal

to each word line whose corresponding Mi bit is a 1.

Figure -Match logic for one word of associative memory

In most applications, the associative memory stores a table with no two

identical items under a given key. In this case, only one word may match the

unmasked argument field. By connecting output Mi directly to the read line in

the same word position (instead of the M register), the content of the matched

word will be presented automatically at the output lines and no special read

command signal is needed. Furthermore, if we exclude words having zero

content, an all-zero output will indicate that no match occurred and that the

searched item is not available in memory.

WRITE OPERATION

An associative memory must have a write capability for

storing the information to be searched. Writing in an associative memory can

take different forms, depending on the application. If the entire memory is

loaded with new information at once prior to a search operation then the

writing can be done by addressing each location in sequence. This will make

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

the device a random-access memory for writing and a content addressable

memory for reading. The advantage here is that the address for input can be

decoded as in a random-access memory. Thus instead of having m address

lines, one for each word in memory, the number of address lines can be

reduced by the decoder to d lines, where m = 2
d

.

If unwanted words have to be deleted and new words inserted one at a time,

there is a need for a special

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

register to distinguish between active and inactive words. This register,

sometimes called a tag register, would have as many bits as there are words in

the memory. For every active word stored in memory, the corresponding bit in

the tag register is set to 1. A word is deleted from memory by clearing its tag

bit to 0. Words are stored in memory by scanning the tag register until the first

0 bit is encountered. This gives the first available inactive word and a position

for writing a new word. After the new word is stored in memory it is made

active by setting its tag bit to 1. An unwanted word when deleted from

memory can be cleared to all 0’s if this value is used to specify an empty

location. Moreover, the words that have a tag bit of 0 must be masked

(together with the Kj bits) with the argument word so that only active words

are compared.

4.5 CACHE MEMORY

Analysis of a large number of typical programs has shown

that the references, to memory at any given interval of time tend to be

confined within a few localized areas in memory. The phenomenon is known

as the property of locality of reference. The reason for this property may be

understood considering that a typical computer program flows in a straight-

line fashion with program loops and subroutine calls encountered frequently.

When a program loop is executed, the CPU repeatedly refers to the set of

instructions in memory that constitute the loop. Every time a given subroutine

is called, its set of instructions is fetched from memory. Thus loops and

subroutines tend to localize the references to memory for fetching instructions.

To a lesser degree, memory references to data also tend to be localized. Table-

lookup procedures repeatedly refer to that portion in memory where the table

is stored. Iterative procedures refer to common memory locations and array of

numbers are confined within a local portion of memory. The result of all these

observations is the locality of reference property, which states that over a short

interval of time, the addresses generated by a typical program refer to a few

localized areas of memory repeatedly, while the remainder of memory is

accessed relatively frequently.

If the active portions of the program and data are placed in a fast

small memory, the average memory access time can be reduced, thus reducing

the total execution time of the program. Such a fast small memory is referred

to as a cache memory. It is placed between theCPU and main memory as

illustrated in below Fig. The cache memory access time is less than the access

time of main memory by a factor of 5 to 10. The cache is the fastest

component in the memory hierarchy and approaches the speed of CPU

components.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

The fundamental idea of cache organization is that by keeping the

most frequently accessed instructions and data in the fast cache memory, the

average memory access time will approach the access time of the cache.

Although the cache is only a small fraction of the size of main memory, a

large fraction of memory requests will be found in the fast cache memory

because of the locality of reference property of programs.

The basic operation of the cache is as follows. When the CPU needs

to access memory, the cache is examined. If the word is found in the cache, it

is read from the fast memory. If the word addressed by the CPU is not found

in the cache, the main memory is accessed to read the word. A block

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

of words containing the one just accessed is then transferred from main

memory to cache memory. The block size may vary from one word (the one

just accessed) to about 16 words adjacent to the one just accessed. In this

manner, some data are transferred to cache so that future references to

memory find the required words in the fast cache memory.

The performance of cache memory is frequently measured in terms of

a quantity called hit ratio. When the CPU refers to memory and finds the word

in cache, it is said to produce a hit. If the word is not found in cache, it is in

main memory and it counts as a miss. The ratio of the number of hits divided

by the total CPU references to memory (hits plus misses) is the hit ratio. The

hit ratio is best measured experimentally by running representative programs

in the computer and measuring the number of hits and misses during a given

interval of time. Hit ratios of 0.9 and higher have been reported. This high

ratio verifies the validity of the locality of reference property.

The average memory access time of a computer system can be

improved considerably by use of a cache. If the hit ratio is high enough so that

most of the time the CPU accesses the cache instead of main memory, the

average access time is closer to the access time of the fast cache memory. For

example, a computer with cache access time of 100 ns, a main memory access

time of 1000 ns, and a hit ratio of 0.9 produces an average access time of 200

ns. This is a considerable improvement over a similar computer without a

cache memory, whose access time is 1000 ns.

The basic characteristic of cache memory is its fast access time.

Therefore, very little or no time must be wasted when searching for words in

the cache. The transformation of data from main memory to cache memory is

referred to as a mapping process. Three types of mapping procedures are of

practical interest when considering the organization of cache memory:

1. Associative mapping

2. Direct mapping

3. Set-associative mapping

To helping the discussion of these three mapping procedures we will

use a specific example of a memory organization as shown in below Fig. The

main memory can store 32K words of 12 bits each. The cache is capable of

storing 512 of these words at any given time. For every word stored in cache,

there is a duplicate copy in main memory.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

The CPU communicates with both memories. It first sends a 15-bit

address to cache. If there is a hit, the CPU accepts the 12 -bit data from cache.

If there is a miss, the CPU reads the word from main memory and the word is

then transferred to cache.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Figure - Example of cache memory

ASSOCIATIVE MAPPING

The fasters and most flexible cache organization use an associative

memory. This organization is illustrated in below Fig. The associative memory

stores both the address and content (data) of the memory word. This permits

any location in cache to store any word from main memory. The diagram

shows three words presently stored in the cache. The address value of 15 bits

is shown as a five-digit octal number and its corresponding 12-bit word is

shown as a four-digit octal number. A CPU address of 15 bits is placed in the

argument register and the associative memory is searched for a matching

address. If the address is found, the corresponding 12-bit data is read

Figure-Associative mapping cache (all numbers in octal) CPU address (15

bits)

Arg

ume

nt

regis

ter

A

d

d

r

e

s

s

D

a

t

a

0 1 0 0 0 3 4 5 0

0 2 7 7 7 6 7 1 0

2 2 3 4 5 1 2 3 4

And sent to the CPU. If no match occurs, the main memory is accessed for the

word. The address-data pair is then transferred to the associative cache

memory. If the cache is full, an address−data pair must be displaced to make

room for a pair that is needed and not presently in the cache. The decision as

to what pair is replaced is determined from the replacement algorithm that the

designer chooses for the cache. A simple procedure is to replace cells of the

cache in round-robin order whenever a new word is requested from main

memory. This constitutes a first-in first-out (FIFO) replacement policy.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

DIRECT MAPPING

Associative memories are expensive compared to random-access

memories because of the added logic associated with each cell. The possibility

of using a random-access memory for the cache is investigated in Fig. The

CPU address of 15 bits is divided into two fields. Thenine least significant bits

constitute the index field and the remaining six bits from the tag and the index

bits. The number of bits in the index field is equal to the number of address

bits required to access the cache memory.

In the general case, there are 2
k

 words in cache memory and 2
n

words in main memory. The n-bit memory address is divided into two fields: k

bits for the index field and n − k bits for the tag field. The direct mapping

cache organization uses the n-bit address to access the main memory and the

k-bit

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

index to access the cache. The internal organization of the words in the cache

memory is as shown in Fig. (b). Each word in cache consists of the data word

and its associated tag. When a new word is first brought into the cache, the tag

bits are stored alongside the data bits. When the CPU generates a memory

request, the index field is used for the address to access the cache.

The tag field of the CPU address is compared with the tag in the word

read from the cache. If the two tags match, there is a hit and the desired data

word is in cache. If the two tags match, there is a hit and the desired data word

is in cache. If there is no match, there is a miss and the required word is read

from main memory. It is then stored in the cache together with the new tag,

replacing the previous value. The disadvantage of direct mapping is that the

hit ratio can droop considerably if two or more words whose addresses have

the same index but different tags are accessed repeatedly. However, this

possibility is minimized by the fact that such words are relatively far apart in

the address range (multiples of 512 locations in this example).

To see how the direct-mapping organization operates, consider the

numerical example shown in Fig. The word at address zero is presently stored

in the cache (index = 000, tag = 00, data = 1220). Suppose that the CPU now

wants to access the word at address 02000. The index address is 000, so it is

sued to access the cache. The two tags are then compared. The cache tag is 00

but the address tag is 02, which does not produce a match. Therefore, the main

memory is accessed and the data word 5670 is transferred to the CPU. The

cache word at index address 000 is then replaced with a tag of 02 and data of

5670.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Fig-Direct mapping cache organization

The direct-mapping example just described uses a block size of one

word. The same

organization but using a block size of 8 words is shown in below Fig. The

index

I

n

d

e

x

T

a

g

D

a

t

a 6 6 3

0
0
0

0

1

3

4

5

0

T

a

g

B

l

o

c

k

W

o

r

d

B
l
o
c

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

k

0

0

0

7

0

1

6

5

7

8

0
1
0

I

n

d

e

x

B

l

o

c

k

1

0

1

7

7

7

0

0

2

B

l

o

c

k

6

3

7

7

7

0

2

6

7

1

0

Fig

Field is now divided into two parts: the block field and the word field.

In a 512-word cache there are 64 block of 8 words each, since 64 × 8 = 512.

The block number is specified with a 6-bit field

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

and the word within the block is specified with a 3-bit field. The tag field stored

within the cache is common to all eight words of the same block. Every time a

miss occurs, an entire block of eight words must be transferred from main memory

to cache memory. Although this takes extra time, the hit ratio will most likely

improve with a larger block size because of the sequential nature of computer

programs.

SET-ASSOCIATIVE MAPPING

It was mentioned previously that the disadvantage of direct mapping

is that two words with the same index in their address but with different tag

values cannot reside in cache memory at the same time. A third type of cache

organization, called set-associative mapping, is an improvement over the

direct-mapping organization in that each word of cache can store two or more

words ofmemory under the same index address. Each data word is stored

together with its tag and the number of tag-data items in one word of cache is

said to form a set. An example of a set-associative cache organization for a set

size of two is shown in Fig. Each index address refers to two data words and

their associated tags. Each tag requires six bits and each data word has 12 bits,

so the word length is 2(6 + 12) = 36 bits. An index address of nine bits can

accommodate 512 words. Thus the size of cache memory is 512 × 36. It can

accommodate 1024 words of main memory since each word of cache contains

two data words. In general, a set-associative cache of set size k will

accommodate k words of main memory in each word of cache.

I

n

d

e

x

T

a

g

D

a

t

a

T

a

g

D

a

t

a

0

0

0

0

1

3

4

5

0

0

2

5

6

7

0

7

7
6

0

2

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

7 7

1

0

0 3

4

0

Figure- Two-way set-associative mapping cache.

The octal numbers listed in above Fig.are with reference to the main

memory content illustrated in Fig.(a). The words stored at addresses 01000

and 02000 of main memory are stored in cache memory at index address 000.

Similarly, the words at addresses 02777 and 00777 are stored in cache at index

address 777. When the CPU generates a memory request, the index value of

the address is used to access the cache. The tag field of the CPU address is

then compared with both tags in the cache to determine if a catch occurs. The

comparison logic is done by an associative search of the tags in the set similar

to an associative memory search: thus the name “set-associative”. The hit ratio

will improve as the set size increases because more words with the same index

but different tag can reside in cache. However, an increase in the set size

increases the number of bit s in words of cache and requires more complex

comparison logic.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

When a miss occurs in a set-associative cache and the set is full, it is

necessary to replace one of the tag-data items with a new value. The most

common replacement algorithms used are: random replacement, first-in, first

out (FIFO), and least recently used (LRU). With the random replacement

policy the control chooses one tag-data item for replacement at random. The

FIFO procedure selects for replacement the item that has been in the set the

longest. The LRU algorithm selects for replacement the item that has been

least recently used by the CPU. Both FIFO and LRU can be implemented by

adding a few extra bits in each word of cache.

WRITING INTO CACHE

An important aspect of cache organization is concerned with memory

write requests. When the CPU finds a word in cache during read operation, the

main memory is not involved in the transfer. However, if the operation is a

write, there are two ways that the system can proceed.

The simplest and most commonly used procedure is to up data main

memory with every memory write operation, with cache memory being

updated in parallel if it contains the word at the specified address. This is

called the write-through method. This method has the advantage that main

memory always contains the same data as the cache,. This characteristic is

important in systems with direct memory access transfers. It ensures that the

data residing in main memory are valid at tall times so that an I/O device

communicating through DMA would receive the most recent updated data.

The second procedure is called the write-back method. In this method

only the cache location is updated during a write operation. The location is

then marked by a flag so that later when the words are removed from the

cache it is copied into main memory. The reason for the write-back method is

that during the time a word resides in the cache, it may be updated several

times; however, as long as the word remains in the cache, it does not matter

whether the copy in main memory is out of date, since requests from the word

are filled from the cache. It is only when the word is displaced from the cache

that an accurate copy need be rewritten into main memory. Analytical results

indicate that the number of memory writes in a typical program ranges

between 10 and 30 percent of the total references to memory.

CACHE INITIALIZATION

One more aspect of cache organization that must be taken into

consideration is the problem of initialization. The cache is initialized when

power is applied to the computer or when the main memory is loaded with a

complete set of programs from auxiliary memory. After initialization the

cache is considered to be empty, built in effect it contains some non-valid

data. It is customary to include with each word in cache a valid bit to indicate

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

whether or not the word contains valid data.

The cache is initialized by clearing all the valid bits to 0. The valid bit

of a particular cache word is set to 1 the first time this word is loaded from

main memory and stays set unless the cache has to be initialized again. The

introduction of the valid bit means that a word in cache is not replaced by

another word unless the valid bit is set to 1 and a mismatch of tags occurs. If

the valid bit happens to be 0, the new word automatically replaces the invalid

data. Thus the initialization condition has the effect of forcing misses from the

cache until it fills with valid data.

VIRTUAL MEMORY

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

In a memory hierarchy system, programs and data are brought into

main memory as they are needed by the CPU. Virtual memory is a concept

used in some large computer systems that permit the user to construct

programs as though a large memory space were available, equal to the totality

of auxiliary memory. Each address that is referenced by the CPU goes through

an address mapping from the so-called virtual address to a physical address in

main memory. Virtual memory is used to give programmers the illusion that

they have a very large memory at their disposal, even though the computer

actually has a relatively small main memory. A virtual memory system

provides a mechanism for translating program-generated addresses into correct

main memory locations. This is done dynamically, while programs are being

executed in the CPU. The translation or mapping is handled automatically by

the hardware by means of a mapping table.

ADDRESS SPACE AND MEMORY SPACE

An address used by a programmer will be called a virtual address, and

the set of such addresses the address space. An address in main memory is

called a location or physical address. The set of such locations is called the

memory space. Thus the address space is the set of addresses generated by

programs as they reference instructions and data; the memory space consists

of the actual main memory locations directly addressable for processing. In

most computers the address and memory spaces are identical. The address

space is allowed to be larger than the memory space in computers with virtual

memory.

As an illustration, consider a computer with a main -memory capacity

of 32K words (K = 1024). Fifteen bits are needed to specify a physical address

in memory since 32K = 2
15

. Suppose that the computer has available

auxiliary memory for storing 2
20

 = 1024K words. Thus auxiliary memory has

a capacity for storing information equivalent to the capacity of 32 main

memories. Denoting the address space by N and the memory space by M, we

then have for this example N = 1024K and M = 32K.

In a multiprogramming computer system, programs and data are

transferred to and from auxiliary memory and main memory based on

demands imposed by the CPU. Suppose that program 1 is currently being

executed in the CPU. Program 1 and a portion of its associated data re moved

from auxiliary memory into main memory as shown in Fig. Portions of

programs and data need not be in contiguous locations in memory since

information is being moved in and out, and empty spaces may be available in

scattered locations in memory.

In a virtual memory system, programmers are told that they have the

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

total address space at their disposal. Moreover, the address field of the

instruction code has a sufficient number of bits to specify all virtual addresses.

In our example, the address field of an instruction code will consist of 20 bits

but physical memory addresses must be specified with only 15 bits. Thus CPU

will reference instructions and data with a 20-bit address, but the information

at this address must be taken from physical memory because access to

auxiliary storage for individual words will be prohibitively long. (Remember

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Fig-Relation between address and memory space in a virtual memory system

That for efficient transfers, auxiliary storage moves an entire record to

the main memory). A table is then needed, as shown in Fig, to map a virtual

address of 20 bits to a physical address of 15 bits. The mapping is a dynamic

operation, which means that every address is translated immediately as a word

is referenced by CPU.

The mapping table may be stored in a separate memory as shown in

Fig. or in main memory. In the first case, an additional memory unit is

required as well as one extra memory access time. In the second case, the table

Figure - Memory table for mapping a virtual address.

V

i

r

t

u

a

l

a

d

d

r

e

s

s

M
a
i
n

m
e
m
o
r
y

V
i
r
t
u
a
l

M

e

m

o

r

y

M

a

i

n

a

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

a

d

d

r

e

s

s

d
d
r
e
s
s

m

a

p

p

i

n

g

r

e

g

i

s

t

e

r

e

d

m

e

m

o

r

y

r
e
g
i
s
t
e
r

(

2

0

b

i

t

s

)

t
a
b
l
e

(
1
5

b
i
t
s
)

 M

a

i

n

m

e

m

o

r

y

M
e
m
o
r
y

t
a
b
l
e

b

u

f

f

e

r

r

e

g

i

s

t

e

r

b

u

f

f

e

r

r

e

g

i

s

t

e

r

Takes space from main memory and two accesses to memory are required

with the program running at half speed. A third alternative is to use an

associative memory as explained below.

ADDRESS MAPPING USING PAGES

The table implementation of the address mapping is simplified if the

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

information in the address space and the memory space are each divided into

groups of fixed size. The physical memory is broken down into groups of

equal size called blocks, which may range from 64 to 4096 words each. The

term page refers to groups of address space of the same size. For example, if a

page or block consists of 1K words, then, using the previous example, address

space is divided into 1024 pages and main memory is divided into 32 blocks.

Although both a page and a block are split into groups of 1K words, a page

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

refers to the organization of address space, while a block refers to the

organization of memory space. The programs are also considered to be split

into pages. Portions of programs are moved from auxiliary memory to main

memory in records equal to the size of a page. The term “page frame” is

sometimes used to denote a block.

Consider a computer with an address space of 8K and a memory

space of 4K. If we split each into groups of 1K words we obtain eight pages

and four blocks as shown in Fig. At any given time, up to four pages of

address space may reside in main memory in any one of the four blocks.

The mapping from address space to memory space is facilitated if

each virtual address is considered to be represented by two numbers: a page

number address and a line within the page. In a computer with 2
p

 words per

page, p bits are used to specify a line address and the remaining high-order

bits of the virtual address specify the page number. In the example of Fig, a

virtual address has 13 bits. Since each page consists of 2
10

 = 1024 words, the

high-order three bits of a virtual address will specify one of the eight pages

and the low-order 10 bits give the line address within the page. Note that the

line address in address space and memory space is the same; the only mapping

required is from a page number to a block number.

Figure-Memory table in a paged system.

The word to the main memory buffer register ready to be used by the

CPU. If the presence bit in the word read from the page table is 0, it signifies

that the content of the word referenced by the virtual address does not reside in

main memory. A call to the operating system is then generated to fetch the

required page from auxiliary memory and place it into main memory before

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

resuming computation.

ASSOCIATIVE MEMORY PAGE TABLE

A random-access memory page table is inefficient with respect to

storage utilization. In the example of below Fig. we observe that eight words

of memory are needed, one for each page, but at least four words will always

be marked empty because main memory cannot accommodate more than

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

four blocks. In general, system with n pages and m blocks would require a

memory-page table of n locations of which up to m blocks will be marked

with block numbers and all others will be empty. As a second numerical

example, consider an address space of 1024K words and memory space of

32K words. If each page or block contains 1K words, the number of pages is

1024 and the number of blocks 32. The capacity of the memory-page table

must be 1024 words and only 32 locations may have a presence bit equal to 1.

At any given time, at least 992 locations will be empty and not in use.

A more efficient way to organize the page table would be to construct

it with a number of words equal to the number of blocks in main memory. In

this way the size of the memory is reduced and each location is fully utilized.

This method can be implemented by means of an associative memory with

each word in memory containing a page number together with its

corresponding block numberThe page field in each word is compared with the

page number in the virtual address. If a match occurs, the word is read from

memory and its corresponding block number is extracted.

Figure -An associative memory page table.

Virtual

address

P

a

g

e

n

o

.

1

0

1

L

i

n

e

n

u

m

b

e

r

A

r

g

u

m

e

n

t

r

e

g

i

s

t

e

r

1 1 1 0 0

K

e

y

r

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

e

g

i

s

t

e

r

0 0 1 1 1

0 1 0 0 0 Associative

memory

1 0 1

0 1

1 1 0 1 0

P

a

g

e

n

o

.
Block

no .

Consider again the case of eight pages and four blocks as in the

example of Fig. We replace the random access memory-page table with an

associative memory of four words as shown in Fig. Each entry in the

associative memory array consists of two fields. The first three bits specify a

field from storing the page number. The last two bits constitute a field for

storing the block number. The virtual address is placed in the argument

register. The page number bits in the argument are compared with all page

numbers in the page field of the associative memory. If the page number is

found, the 5-bit word is read out from memory. The corresponding block

number, being in the same word, is transferred to the main memory address

register. If no match occurs, a call to the operating system is generated to bring

the required page from auxiliary memory.

4.5.1.1 PAGE REPLACEMENT

A virtual memory system is a combination of hardware and software

techniques. The memory

management software system handles all the software operations for the

efficient utilization of memory space. It must decide (1) which page in main

memory ought to be removed to make room for a new page, (2) when a new

page is to be transferred from auxiliary memory to main memory, and (3)

where

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

the page is to be placed in main memory. The hardware mapping mechanism

and the memory management software together constitute the architecture of a

virtual memory.

When a program starts execution, one or more pages are transferred

into main memory and the page table is set to indicate their position. The

program is executed from main memory until it attempts to reference a page

that is still in auxiliary memory. This condition is called page fault. When

page fault occurs, the execution of the present program is suspended until the

required page is brought into main memory. Since loading a page from

auxiliary memory to main memory is basically an I/O operation, the operating

system assigns this task to the I/O processor. In the meantime, controls

transferred to the next program in memory that is waiting to be processed in

the CPU. Later, when the memory block has been assigned and the transfer

completed, the original program can resume its operation.

When a page fault occurs in a virtual memory system, it signifies that

the page referenced by the CPU is not in main memory. A new page is then

transferred from auxiliary memory to main memory. If main memory is full, it

would be necessary to remove a page from a memory block to make room for

the new page. The policy for choosing pages to remove is determined from the

replacement algorithm that is used. The goal of a replacement policy is to try

to remove the page least likely to be referenced in the immediate future.

Two of the most common replacement algorithms used are the first-in first-out

(FIFO) and the least recently used (LRU). The FIFO algorithm selects for

replacement the page the has been in memory the longest time. Each time a

page is loaded into memory, its identification number is pushed into a FIFO

stack. FIFO will be full whenever memory has no more empty blocks. When a

new page must be loaded, the page least recently brought in is removed. The

page to be removed is easily determined because its identification number is at

the top of the FIFO stack. The FIFO replacement policy has the advantage of

being easy to implement. It has the disadvantages that under certain circum-

stances pages are removed and loaded form memory too frequently.

The LRU policy is more difficult to implement but has been more

attractive on the assumption that the least recently used page is a better

candidate for removal than the least recently loaded pages in FIFO. The LRU

algorithm can be implemented by associating a counter with every page that is

in main memory. When a page is referenced, its associated counter is set to

zero. At fixed intervals of time, the counters associated with all pages

presently in memory are incremented by 1. The least recently used page is the

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

page with the highest count. The counters are often called aging registers, as

their count indicates their age, that is, how long ago their associated pages

have been reference.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

UNIT-5

Input / Output Organization:

5.1 Introduction To I/O

5.2 Interrupts- Hardware

5.3 Enabling And Disabling Interrupts

5.4 Device Control

5.5 Direct Memory Access

5.6 Buses

5.7 Interface Circuits

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

5.1 INTRODUCTION TO I/O DEVICES

A simple arrangement to connect I/O devices to a computer is to use a

single bus arrangement. The bus enables all the devices connected to it to

exchange information. Typically, it consists of three sets of lines used to carry

address, data, and control signals. Each I/O device is assigned a unique set of

addresses. When the processor places a particular address on the address line, the

device that recognizes this address responds to the commands issued on the

control lines. The processor requests either a read or a write operation, and the

requested data are transferred over the data lines, when I/O devices and the

memory share the same address space, the arrangement is called memory-

mapped I/O.

With memory-mapped I/O, any machine instruction that can access

memory can be used to transfer data to or from an I/O device. For example, if

DATAIN is the address of the input buffer associated with the keyboard, the

instruction

Move DATAIN, R0

Reads the data from DATAIN and stores them into processor register R0. Similarly, the instruction Move R0,

DATAOUT

Sends the contents of register R0 to location DATAOUT, which may be the

output data buffer of a display unit or a printer.

Most computer systems use memory-mapped I/O. some processors have

special In and Out instructions to perform I/O transfers. When building a

computer system based on these processors, the designer had the option of

connecting I/O devices to use the special I/O address space or simply

incorporating them as part of the memory address space. The I/O devices

examine the low-order bits of the address bus to determine whether they should

respond.

The hardware required to connect an I/O device to the bus. The address

decoder enables the device to recognize its address when this address appears on

the address lines. The data register holds the data being transferred to or from the

processor. The status register contains information relevant to the operation of

the I/O device. Both the data and status registers are connected to the data bus

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

and assigned unique addresses. The address decoder, the data and status registers,

and the control circuitry required to coordinate I/O transfers constitute the

device’s interface circuit.

I/O devices operate at speeds that are vastly different from that of the

processor. When a human operator is entering characters at a keyboard, the

processor is capable of executing millions of instructions between successive

character entries. An instruction that reads a character from the keyboard should

be executed only when a character is available in the input buffer of the keyboard

interface. Also, we must make sure that an input character is read only once.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

This example illustrates program-controlled I/O, in which the processor

repeatedly checks a status flag to achieve the required synchronization between

the processor and an input or output device. We say that the processor polls the

device. There are two other commonly used mechanisms for implementing I/O

operations: interrupts and direct memory access. In the case of interrupts,

synchronization is achieved by having the I/O device send a special signal over

the bus whenever it is ready for a data transfer operation. Direct memory access is

a technique used for high-speed I/O devices. It involves having the device

interface transfer data directly to or from the memory, without continuous

involvement by the processor.

The routine executed in response to an interrupt request is called the

interrupt-service routine, which is the PRINT routine in our example. Interrupts

bear considerable resemblance to subroutine calls. Assume that an interrupt

request arrives during execution of instruction i in figure 1

Figure 1. Transfer of control through the use of interrupts

The processor first completes execution of instruction i. Then, it loads

the program counter with the address of the first instruction of the interrupt-

service routine. For the time being, let us assume that this address is hardwired in

the processor. After execution of the interrupt-service routine, the processor has

to come back to instruction

i +1. Therefore, when an interrupt occurs, the current contents of the PC, which

point to instruction i+1, must be put in temporary storage in a known location. A

Return-from-interrupt instruction at the end of the interrupt-service routine

reloads the PC from the temporary storage location, causing execution to resume

at instruction i +1. In many processors, the return address is saved on the

processor stack.

We should note that as part of handling interrupts, the processor must inform the

device

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

that its request has been recognized so that it may remove its interrupt-request

signal. This may be accomplished by means of a special control signal on the bus.

An interrupt-acknowledge signal. The execution of an instruction in the interrupt-

service routine that accesses a status or data register in the device interface

implicitly informs that device that its interrupt request has been recognized.

So far, treatment of an interrupt-service routine is very similar to that of a

subroutine. An important departure from this similarity should be noted. A

subroutine performs a function required by the program from which it is called.

However, the interrupt-service routine may not have anything in

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

common with the program being executed at the time the interrupt request is

received. In fact, the two programs often belong to different users. Therefore,

before starting execution of the interrupt-service routine, any information that

may be altered during the execution of that routine must be saved. This

information must be restored before execution of the interrupt program is

resumed. In this way, the original program can continue execution without being

affected in any way by the interruption, except for the time delay. The

information that needs to be saved and restored typically includes the condition

code flags and the contents of any registers used by both the interrupted program

and the interrupt-service routine.

The task of saving and restoring information can be done automatically

by the processor or by program instructions. Most modern processors save only

the minimum amount of information needed to maintain the registers involves

memory transfers that increase the total execution time, and hence represent

execution overhead. Saving registers also increase the delay between the time an

interrupt request is received and the start of execution of the interrupt-service

routine. This delay is called interrupt latency.

5.2 INTERRUPT HARDWARE:

We pointed out that an I/O device requests an interrupt by activating a bus line

called interrupt-request. Most computers are likely to have several I/O devices

that can request an interrupt. A single interrupt-request line may be used to serve

n devices as depicted. All devices are connected to the line via switches to

ground. To request an interrupt, a device closes its associated switch. Thus, if all

interrupt-request signals INTR1 to INTRn are inactive, that is, if all switches are

open, the voltage on the interrupt-request line will be equal to Vdd. This is the

inactive state of the line. Since the closing of one or more switches will cause the

line voltage to drop to 0, the value of INTR is the logical OR of the requests from

individual devices, that is,

INTR = INTR1 + ………+INTRn

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

It is customary to use the complemented form,
INTR

 , to name the interrupt-

request signal on the common line, because this signal is active when in the low-
voltage state.

5.3 ENABLING AND DISABLING INTERRUPTS:

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

The facilities provided in a computer must give the programmer complete

control over the events that take place during program execution. The arrival of

an interrupt request from an external device causes the processor to suspend the

execution of one program and start the execution of another. Because interrupts

can arrive at any time, they may alter the sequence of events from the envisaged

by the programmer. Hence, the interruption of program execution must be

carefully controlled.

Let us consider in detail the specific case of a single interrupt request

from one device. When a device activates the interrupt-request signal, it keeps

this signal activated until it learns that the processor has accepted its request. This

means that the interrupt-request signal will be active during execution of the

interrupt-service routine, perhaps until an instruction is reached that accesses the

device in question.

The first possibility is to have the processor hardware ignore the

interrupt-request line until the execution of the first instruction of the interrupt-

service routine has been completed. Then, by using an Interrupt-disable

instruction as the first instruction in the interrupt-service routine, the programmer

can ensure that no further interruptions will occur until an Interrupt-enable

instruction is executed. Typically, the Interrupt-enable instruction will be the last

instruction in the interrupt-service routine before the Return-from-interrupt

instruction. The processor must guarantee that execution of the Return-from-

interrupt instruction is completed before further interruption can occur.

The second option, which is suitable for a simple processor with only one

interrupt-request line, is to have the processor automatically disable interrupts

before starting the execution of the interrupt-service routine. After saving the

contents of the PC

and the processor status register (PS) on the stack, the processor performs the

equivalent of executing an Interrupt-disable instruction. It is often the case that

one bit in the PS register, called Interrupt-enable, indicates whether interrupts are

enabled.

In the third option, the processor has a special interrupt-request line for

which the interrupt-handling circuit responds only to the leading edge of the

signal. Such a line is said to be edge-triggered.

Before proceeding to study more complex aspects of interrupts, let us

summarize the sequence of events involved in handling an interrupt request from

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

a single device. Assuming that interrupts are enabled, the following is a typical

scenario.

1. The device raises an interrupt request.

2. The processor interrupts the program currently being executed.

3. Interrupts are disabled by changing the control bits in the PS (except in the case

of edge-triggered interrupts).

4. The device is informed that its request has been recognized, and in response, it

deactivates the

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

interrupt-request signal.

5. The action requested by the interrupt is performed by the interrupt-service

routine.

6. Interrupts are enabled and execution of the interrupted program is resumed.

5.4. HANDLING MULTIPLE DEVICES:

Let us now consider the situation where a number of devices capable of

initiating interrupts are connected to the processor. Because these devices are

operationally independent, there is no definite order in which they will generate

interrupts. For example, device X may request in interrupt while an interrupt

caused by device Y is being serviced, or several devices may request interrupts at

exactly the same time. This gives rise to a number of questions

How can the processor recognize the device requesting an interrupts?

Given that different devices are likely to require different interrupt-service

routines, how can the processor obtain the starting address of the appropriate

routine in each case?

Should a device be allowed to interrupt the processor while another interrupt is

being serviced? How should two or more simultaneous interrupt requests be

handled?

The means by which these problems are resolved vary from one computer to

another, And the approach taken is an important consideration in determining the

computer’s suitability for a given application.

When a request is received over the common interrupt-request line,

additional information is needed to identify the particular device that activated the

line.

The information needed to determine whether a device is requesting an

interrupt is available in its status register. When a device raises an interrupt

request, it sets to 1 one of the bits in its status register, which we will call the IRQ

bit. For example, bits KIRQ and DIRQ are the interrupt request bits for the

keyboard and the display, respectively. The simplest way to identify the

interrupting device is to have the interrupt-service routine poll all the I/O devices

connected to the bus. The first device encountered with its IRQ bit set is the

device that should be serviced. An appropriate subroutine is called to provide the

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

requested service.

The polling scheme is easy to implement. Its main disadvantage is the

time spent interrogating the IRQ bits of all the devices that may not be requesting

any service. An alternative approach is to use vectored interrupts, which we

describe next.

Vectored Interrupts:-
To reduce the time involved in the polling process, a device requesting an
interrupt may identify

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

itself directly to the processor. Then, the processor can immediately start

executing the corresponding interrupt-service routine. The term vectored

interrupts refers to all interrupt-handling schemes based on this approach.

A device requesting an interrupt can identify itself by sending a special

code to the processor over the bus. This enables the processor to identify

individual devices even if they share a single interrupt-request line. The code

supplied by the device may represent the starting address of the interrupt-service

routine for that device. The code length is typically in the range of 4 to 8 bits.

The remainder of the address is supplied by the processor based on the area in its

memory where the addresses for interrupt-service routines are located.

This arrangement implies that the interrupt-service routine for a given

device must always start at the same location. The programmer can gain some

flexibility by storing in this location an instruction that causes a branch to the

appropriate routine.

Interrupt Nesting: -

Interrupts should be disabled during the execution of an interrupt-service

routine, to ensure that a request from one device will not cause more than one

interruption. The same arrangement is often used when several devices are

involved, in which case execution of a given interrupt-service routine, once

started, always continues to completion before the processor accepts an interrupt

request from a second device. Interrupt-service routines are typically short, and

the delay they may cause is acceptable for most simple devices.

For some devices, however, a long delay in responding to an interrupt

request may lead to erroneous operation. Consider, for example, a computer that

keeps track of the time of day using a real-time clock. This is a device that sends

interrupt requests to the processor at regular intervals. For each of these requests,

the processor executes a short interrupt-service routine to increment a set of

counters in the memory that keep track of time in seconds, minutes, and so on.

Proper operation requires that the delay in responding to an interrupt request

from the real-time clock be small in comparison with the interval between two

successive requests. To ensure that this requirement is satisfied in the presence of

other interrupting devices, it may be necessary to accept an interrupt request from

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

the clock during the execution of an interrupt-service routine for another device.

This example suggests that I/O devices should be organized in a priority

structure. An interrupt request from a high-priority device should be accepted

while the processor is servicing another request from a lower-priority device.

A multiple-level priority organization means that during execution of an

interrupt-service

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

routine, interrupt requests will be accepted from some devices but not from

others, depending upon the device’s priority. To implement this scheme, we can

assign a priority level to the processor that can be changed under program

control. The priority level of the processor is the priority of the program that is

currently being executed. The processor accepts interrupts only from devices that

have priorities higher than its own.

The processor’s priority is usually encoded in a few bits of the processor

status word. It can be changed by program instructions that write into the PS.

These are privileged instructions, which can be executed only while the

processor is running in the supervisor mode. The processor is in the supervisor

mode only when executing operating system routines. It switches to the user

mode before beginning to execute application programs. Thus, a user program

cannot accidentally, or intentionally, change the priority of the processor and

disrupt the system’s operation. An attempt to execute a privileged instruction

while in the user mode leads to a special type of interrupt called a privileged

instruction.

A multiple-priority scheme can be implemented easily by using separate

interrupt-request and interrupt-acknowledge lines for each device, as shown in

figure. Each of the interrupt-request lines is assigned a different priority level.

Interrupt requests received over these lines are sent to a priority arbitration circuit

in the processor. A request is accepted only if it has a higher priority level than

that currently assigned to the processor.

Priority arbitration Circuit

Figure2: Implementation of interrupt priority using individual interrupt-request

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

and acknowledge lines.

Simultaneous Requests:-

Let us now consider the problem of simultaneous arrivals of interrupt

requests from two or more devices. The processor must have some means of

deciding which requests to service first. Using a priority scheme such as that of

figure, the solution is straightforward. The processor simply accepts the

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

requests having the highest priority.

Polling the status registers of the I/O devices is the simplest such

mechanism. In this case, priority is determined by the order in which the devices

are polled. When vectored interrupts are used, we must ensure that only one

device is selected to send its interrupt vector code. A widely used scheme

is to connect the devices to form a daisy chain, as shown in figure 3a. The interrupt-

request line
INTR

 is

common to all devices. The interrupt-acknowledge line, INTA, is connected in a

daisy-chain fashion, such that the INTA signal propagates serially through the

devices.

5.5. DIRECT MEMORY ACCESS:

The discussion in the previous sections concentrates on data transfer

between the processor and I/O devices. Data are transferred by executing

instructions such as

Move DATAIN, R0

An instruction to transfer input or output data is executed only after the

processor determines that the I/O device is ready. To do this, the processor either

polls a status flag in the device interface or waits for the device to send an

interrupt request. In either case, considerable overhead is incurred, because

several program instructions must be executed for each data word transferred. In

addition to polling the status register of the device, instructions are needed for

incrementing the memory address and keeping track of the word count. When

interrupts are used, there is the additional overhead associated with saving and

restoring the program counter and other state information.

To transfer large blocks of data at high speed, an alternative approach is used. A

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

special control unit may be provided to allow transfer of a block of data directly

between an external device and the main memory, without continuous

intervention by the processor. This approach is called direct memory access, or

DMA.

DMA transfers are performed by a control circuit that is part of the I/O

device interface. We refer to this circuit as a DMA controller. The DMA

controller performs the functions that would

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

normally be carried out by the processor when accessing the main memory. For

each word transferred, it provides the memory address and all the bus signals that

control data transfer. Since it has to transfer blocks of data, the DMA controller

must increment the memory address for successive words and keep track of the

number of transfers.

Although a DMA controller can transfer data without intervention by the

processor, its operation must be under the control of a program executed by the

processor. To initiate the transfer of a block of words, the processor sends the

starting address, the number of words in the block, and the direction of the

transfer. On receiving this information, the DMA controller proceeds to perform

the requested operation. When the entire block has been transferred, the

controller informs the processor by raising an interrupt signal.

While a DMA transfer is taking place, the program that requested the

transfer cannot continue, and the processor can be used to execute another

program. After the DMA transfer is completed, the processor can return to the

program that requested the transfer.

I/O operations are always performed by the operating system of the computer in

response to a request from an application program. The OS is also responsible for

suspending the execution of one program and starting another. Thus, for an I/O

operation involving DMA, the OS puts the program that requested the transfer in

the Blocked state, initiates the DMA operation, and starts the execution of

another program. When the transfer is completed, the DMA controller informs

the processor by sending an interrupt request. In response, the OS puts the

suspended program in the Runnable state so that it can be selected by the

scheduler to continue execution.

Figure 4 shows an example of the DMA controller registers that are

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

accessed by the processor to initiate transfer operations. Two registers are used

for storing the

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

S

t

a

t

u

s

a

n

d

C

o

n

t

r

o

l
3

1
3

0 1 0

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

I

R

Q

 D

o

n

e

I

E

R

/

W

Starting address

Word count

Figure 4 Registers in DMA interface

Main memory

Processor

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

System bus

D
i

s
k

/

D
M

A

D

M

A

c

o

n

t
r

o
l

l

e
r

c

o

n

t
r

o
l

l

e
r

P

r

i
n

t

e
r

K

e
y

b
o

a

r
d

D

i

s

k

D

i

s

k

N

e

t

w

o

r

k

I

n

t

e

r

f

a

c

e

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Figure 5 Use of DMA controllers in a computer system

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Starting address and the word count. The third register contains status and control flags. The

R/W bit determines the direction of the transfer. When this bit is set to 1 by a program

instruction, the controller performs a read operation, that is, it transfers data from the

memory to the I/O device. Otherwise, it performs a write operation. When the controller has

completed transferring a block of data and is ready to receive another command, it sets the

Done flag to 1. Bit 30 is the Interrupt-enable flag, IE. When this flag is set to 1, it causes the

controller to raise an interrupt after it has completed transferring a block of data. Finally, the

controller sets the IRQ bit to 1 when it has requested an interrupt.

An example of a computer system is given in above figure, showing how DMA

controllers may be used. A DMA controller connects a high-speed network to the computer

bus. The disk controller, which controls two disks, also has DMA capability and provides

two DMA channels. It can perform two independent DMA operations, as if each disk had its

own DMA controller. The registers needed to store the memory address, the word count, and

so on are duplicated, so that one set can be used with each device.

To start a DMA transfer of a block of data from the main memory to one of the disks, a

program writes the address and word count information into the registers of the

corresponding channel of the disk controller. It also provides the disk controller with

information to identify the data for future retrieval. The DMA controller proceeds

independently to implement the specified operation when the DMA transfer is completed.

This fact is recorded in the status and control register of the DMA channel by setting the

Done bit. At the same time, if the IE bit is set, the controller sends an interrupt request to the

processor and sets the IRQ bit. The status register can also be used to record other

information, such as whether the transfer took place correctly or errors occurred.

Memory accesses by the processor and the DMA controller are interwoven.

Requests by DMA devices for using the bus are always given higher priority than processor

requests. Among different DMA devices, top priority is given to high-speed peripherals such

as a disk, a high-speed network interface, or a graphics display device. Since the processor

originates most memory access cycles, the DMA controller can be said to “steal” memory

cycles from the processor. Hence, the interweaving technique is usually called cycle stealing.

Alternatively, the DMA controller may be given exclusive access to the main memory to

transfer a block of data without interruption. This is known as block or burst mode.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Most DMA controllers incorporate a data storage buffer. In the case of the network

interface in figure 5 for example, the DMA controller reads a block of data from the main

memory and stores it into its input buffer. This transfer takes place using burst mode at a

speed appropriate to the memory and the computer bus. Then, the data in the buffer are

transmitted over the network at the speed of the network.

A conflict may arise if both the processor and a DMA controller or two DMA controllers try

to use the bus

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

at the same time to access the main memory. To resolve these conflicts, an arbitration

procedure is implemented on the bus to coordinate the activities of all devices requesting

memory transfers.

Bus Arbitration:-

The device that is allowed to initiate data transfers on the bus at any given time is called the

bus master. When the current master relinquishes control of the bus, another device can

acquire this status. Bus arbitration is the process by which the next device to become the bus

master is selected and bus mastership is transferred to it. The selection of the bus master must

take into account the needs of various devices by establishing a priority system for gaining

access to the bus.

There are two approaches to bus arbitration: centralized and distributed. In

centralized arbitration, a single bus arbiter performs the required arbitration. In distributed

arbitration, all devices participate in the selection of the next bus master.

Centralized Arbitration:-

The bus arbiter may be the processor or a separate unit connected to the bus. A basic

arrangement in which the processor contains the bus arbitration circuitry. In this case, the

processor is normally the bus master unless it grants bus mastership to one of the DMA

controllers. A DMA controller indicates that it needs to become the bus

master by activating the Bus-Request line,
BR

 . The signal on the Bus-Request line is the

logical OR of the bus

requests from all the devices connected to it. When Bus-Request is activated, the processor

activates the Bus-Grant signal, BG1, indicating to the DMA controllers that they may use the

bus when it becomes free. This signal is connected to all DMA controllers using a daisy-

chain arrangement. Thus, if DMA controller 1 is requesting the bus, it blocks the propagation

of the grant signal to other devices. Otherwise, it passes the grant downstream by asserting

BG2. The current bus master indicates to all device that it is using the bus by activating

another open-controller line

called Bus-Busy,
BBSY

 . Hence, after receiving the Bus-Grant signal, a DMA controller

waits for Bus-Busy to

become inactive, then assumes mastership of the bus. At this time, it activates Bus-Busy to

prevent other devices from using the bus at the same time.

5.6.BUSES

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Peripheral Component Interconnect (PCI) Bus:-

The PCI bus is a good example of a system bus that grew out of the need for

standardization. It supports the functions found on a processor bus bit in a standardized

format that is independent of any particular processor. Devices connected to the PCI bus

appear to the processor as if they were connected directly to the processor bus. They are

assigned addresses in the memory address space of the processor.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

The PCI follows a sequence of bus standards that were used primarily in IBM PCs. Early

PCs used the 8-bit XT bus, whose signals closely mimicked those of Intel’s 80x86

processors. Later, the 16-bit bus used on the PC At computers became known as the ISA bus.

Its extended 32-bit version is known as the EISA bus. Other buses developed in the eighties

with similar capabilities are the Microchannel used in IBM PCs and the NuBus used in

Macintosh computers.

The PCI was developed as a low-cost bus that is truly processor independent. Its

design anticipated a rapidly growing demand for bus bandwidth to support high-speed disks

and graphic and video devices, as well as the specialized needs of multiprocessor systems.

As a result, the PCI is still popular as an industry standard almost a decade after it was first

introduced in 1992.

An important feature that the PCI pioneered is a plug-and-play capability for

connecting I/O devices. To connect a new device, the user simply connects the device

interface board to the bus. The software takes care of the rest.

Data Transfer:-

In today’s computers, most memory transfers involve a burst of data rather than just

one word. The reason is that modern processors include a cache memory. Data are

transferred between the cache and the main memory in burst of several words each. The

words involved in such a transfer are stored at successive memory locations. When the

processor (actually the cache controller) specifies an address and requests a read operation

from the main memory, the memory responds by sending a sequence of data words starting

at that address. Similarly, during a write operation, the processor sends a memory address

followed by a sequence of data words, to be written in successive memory locations starting

at the address. The PCI is designed primarily to support this mode of operation. A read or

write operation involving a single word is simply treated as a burst of length one.

The bus supports three independent address spaces: memory, I/O, and configuration.

The first two are self explanatory. The I/O address space is intended for use with processors,
such as Pentium, that have a separate I/O address space. However, as noted , the system
designer may choose to use memory-mapped I/O even when a separate I/O address space is
available. In fact, this is the approach recommended by the PCI its plug-and-play capability.
A 4-bit command that accompanies the address identifies which of the three spaces is being
used in a given data transfer operation.

The signaling convention on the PCI bus is similar to the one used, we assumed that

the master maintains the address information on the bus until data transfer is completed. But,

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

this is not necessary. The address is needed only long enough for the slave to be selected.

The slave can store the address in its internal buffer. Thus, the address is needed on the bus

for one clock cycle only, freeing the address lines to be used for sending data in subsequent

clock cycles. The result is a significant cost reduction because the number of wires on a bus

is an important cost factor. This approach in used in the PCI bus.

At any given time, one device is the bus master. It has the right to initiate data transfers by

issuing read and

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

write commands. A master is called an initiator in PCI terminology. This is either a processor

or a DMA controller. The addressed device that responds to read and write commands is

called a target.

Device Configuration:-

When an I/O device is connected to a computer, several actions are needed to

configure both the device and the software that communicates with it.

The PCI simplifies this process by incorporating in each I/O device interface a small

configuration ROM memory that stores information about that device. The configuration

ROMs of all devices is accessible in the configuration address space. The PCI initialization

software reads these ROMs whenever the system is powered up or reset. In each case, it

determines whether the device is a printer, a keyboard, an Ethernet interface, or a disk

controller. It can further learn bout various device options and characteristics.

Devices are assigned addresses during the initialization process. This means that

during the bus configuration operation, devices cannot be accessed based on their address, as

they have not yet been assigned one. Hence, the configuration address space uses a different

mechanism. Each device has an input signal called Initialization Device Select, IDSEL#.

The PCI bus has gained great popularity in the PC word. It is also used in many

other computers, such as SUNs, to benefit from the wide range of I/O devices for which a

PCI interface is available. In the case of some processors, such as the Compaq Alpha, the

PCI-processor bridge circuit is built on the processor chip itself, further simplifying system

design and packaging.

SCSI Bus:-

The acronym SCSI stands for Small Computer System Interface. It refers to a

standard bus defined by the American National Standards Institute (ANSI) under the

designation X3.131 . In the original specifications of the standard, devices such as disks are

connected to a computer via a 50-wire cable, which can be up to 25 meters in length and can

transfer data at rates up to 5 megabytes/s.

The SCSI bus standard has undergone many revisions, and its data transfer

capability has increased very rapidly, almost doubling every two years. SCSI-2 and SCSI-3

have been defined, and each has several options. A SCSI bus may have eight data lines, in

which case it is called a narrow bus and transfers data one byte at a time. Alternatively, a

wide SCSI bus has 16 data lines and transfers data 16 bits at a time. There are also several

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

options for the electrical signaling scheme used.

Devices connected to the SCSI bus are not part of the address space of the processor in the

same way as devices connected to the processor bus. The SCSI bus is connected to the

processor bus through a SCSI controller. This controller uses DMA to transfer data packets

from the main memory to the device, or vice versa. A packet may contain a block of data,

commands from the processor to the device, or status information about the device.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

To illustrate the operation of the SCSI bus, let us consider how it may be used with a

disk drive. Communication with a disk drive differs substantially from communication with

the main memory.

A controller connected to a SCSI bus is one of two types – an initiator or a target. An

initiator has the ability to select a particular target and to send commands specifying the

operations to be performed. Clearly, the controller on the processor side, such as the SCSI

controller, must be able to operate as an initiator. The disk controller operates as a target. It

carries out the commands it receives from the initiator. The initiator establishes a logical

connection with the intended target. Once this connection has been established, it can be

suspended and restored as needed to transfer commands and bursts of data. While a particular

connection is suspended, other device can use the bus to transfer information. This ability to

overlap data transfer requests is one of the key features of the SCSI bus that leads to its high

performance.

Data transfers on the SCSI bus are always controlled by the target controller. To

send a command to a target, an initiator requests control of the bus and, after winning

arbitration, selects the controller it wants to communicate with and hands control of the bus

over to it. Then the controller starts a data transfer operation to receive a command from the

initiator.

The processor sends a command to the SCSI controller, which causes the following

sequence of event to take place:

1.The SCSI controller, acting as an initiator, contends for control of the bus.

2. When the initiator wins the arbitration process, it selects the target controller and hands

over control of the bus to it.

1. The target starts an output operation (from initiator to target); in response to this, the initiator

sends a command specifying the required read operation.

2. The target, realizing that it first needs to perform a disk seek operation, sends a message to

the initiator indicating that it will temporarily suspend the connection between them. Then it

releases the bus.

3. The target controller sends a command to the disk drive to move the read head to the first

sector involved in the requested read operation. Then, it reads the data stored in that sector

and stores them in a data buffer. When it is ready to begin transferring data to the initiator,

the target requests control of the bus. After it wins arbitration, it reselects the initiator

controller, thus restoring the suspended connection.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

4. The target transfers the contents of the data buffer to the initiator and then suspends the

connection again. Data are transferred either 8 or 16 bits in parallel, depending on the width

of the bus.

5. The target controller sends a command to the disk drive to perform another seek operation.

Then, it transfers the contents of the second disk sector to the initiator as before. At the end of

this transfers, the logical connection between the two controllers is terminated.

6. As the initiator controller receives the data, it stores them into the main memory using the

DMA approach.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

7. The SCSI controller sends as interrupt to the processor to inform it that the requested

operation has been completed

This scenario show that the messages exchanged over the SCSI bus are at a higher

level than those exchanged over the processor bus. In this context, a “higher level” means

that the messages refer to operations that may require several steps to complete, depending

on the device. Neither the processor nor the SCSI controller need be aware of the details of

operation of the particular device involved in a data transfer. In the preceding example, the

processor need not be involved in the disk seek operation.

UNIVERSAL SERIAL BUS (USB):-

The synergy between computers and communication is at the heart of today’s

information technology revolution. A modern computer system is likely to involve a wide

variety of devices such as keyboards, microphones, cameras, speakers, and display devices.

Most computers also have a wired or wireless connection to the Internet. A key requirement

is such an environment is the availability of a simple, low-cost mechanism to connect these

devices to the computer, and an important recent development in this regard is the

introduction of the Universal Serial Bus (USB). This is an industry standard developed

through a collaborative effort of several computer and communication companies, including

Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, Nortel Networks, and Philips.

The USB supports two speeds of operation, called low-speed (1.5 megabits/s) and

full-speed (12 megabits/s). The most recent revision of the bus specification (USB 2.0)

introduced a third speed of operation, called high-speed (480 megabits/s). The USB is

quickly gaining acceptance in the market place, and with the addition of the high-speed

capability it may well become the interconnection method of choice for most computer

devices.

The USB has been designed to meet several key objectives:

1.Provides a simple, low-cost and easy to use interconnection system that overcomes the

difficulties due to the limited number of I/O ports available on a computer.

2.Accommodate a wide range of data transfer characteristics for I/O devices, including

telephone and Internet connections.

3.Enhance user convenience through a “plug-and-play” mode of operation

5.7.INTERFACE CIRCUITS

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Parallel port

The hardware components needed for connecting a keyboard to a processor. A

typical keyboard consists of mechanical switches that are normally open. When a key is

pressed, its switch closes and establishes a path for an electrical signal. This signal is detected

by an encoder circuit that generates the ASCII

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

code for the corresponding
character.

Figure 11 Keyboard to

processor connection.

D
a
t
a

D
a
t
a

D

A

T

A

I

N

E

n

c
o

d

e
r

A
d

d

r
e

s

s

a

n

d

K

e
y

b

o
a

r

d

P

r
o

c

e
s

s
o

r

D

e

b

o

u

n

c

i

n

g

s
w

i

t
c

h
e

s

S

I

N

c

i
r

c
u

i

t

R

/

W

I

n
p

u

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

t

M

a

s

t

e

r

-

r

e

a

d

y

 i
n

t

e
r

f
a

c
e

V

a

l

i

d

Slave-ready

The output of the encoder consists of the bits that represent the encoded character and

one control signal called Valid, which indicates that a key is being pressed. This information

is sent to the interface circuit, which contains a data register, DATAIN, and a status flag,

SIN. When a key is pressed, the Valid signal changes from 0 to 1, causing the ASCII code to

be loaded into DATAIN and SIN to be set to 1. The status flag SIN is cleared to 0 when the

processor reads the contents of the DATAIN register. The interface circuit is connected to an

asynchronous bus on which transfers are controlled using the handshake signals Master-ready

and Slave-ready, as indicated in

figure 11. The third control line, R/
W

 distinguishes read and write transfers.

Figure 12 shows a suitable circuit for an input interface. The output lines of the

DATAIN register are connected to the data lines of the bus by means of three-state drivers,

which are turned on when the processor issues a read instruction with the address that selects

this register. The SIN signal is generated by a status flag circuit. This signal is also sent to the

bus through a three-state driver. It is connected to bit D0, which means it will appear as bit 0

of the status register. Other bits of this register do not contain valid information. An address

decoder is used to select the input interface when the high-order 31 bits of an address

correspond to any of the addresses assigned to this interface. Address bit A0 determines

whether the status or the data registers is to be read when the Master-ready signal is active.

The control handshake is accomplished by activating the Slave-ready signal when either

Read-status or Read-data is equal to 1.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Fig Printer to processor connection

Let us now consider an output interface that can be used to connect an output device,

such as a printer, to a processor, as shown in figure 13. The printer operates under control of

the handshake signals Valid and Idle in a manner similar to the handshake used on the bus

with the Master-ready and Slave-ready signals. When it is ready to accept a character, the

printer asserts its Idle signal. The interface circuit can then place a new character on the data

lines and activate the Valid signal. In response, the printer starts printing the new character

and negates the Idle signal, which in turn causes the interface to deactivate the Valid signal.

The circuit in figure 16 has separate input and output data lines for connection to an

I/O device. A more flexible parallel port is created if the data lines to I/O devices are

bidirectional. Figure 17 shows a general-purpose parallel interface circuit that can be

configured in a variety of ways. Data lines P7 through P0 can be used for either input or

output purposes. For increased flexibility, the circuit makes it possible for some lines to serve

as inputs and some lines to serve as outputs, under program control. The DATAOUT register

is connected to these lines via three-state drivers that are controlled by a data direction

register, DDR. The processor can write any 8-bit pattern into DDR. For a given bit, if the

DDR value is 1, the corresponding data line acts as an output line; otherwise, it acts as an

input line.

5.8. STANDARD I/O INTERFACES

The processor bus is the bus defied by the signals on the processor chip

itself. Devices that require a very high-speed connection to the processor, such as the main

memory, may be connected directly to this bus. For electrical reasons, only a few devices can

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

be connected in this manner. The motherboard usually provides another bus that can support

more devices. The two buses are interconnected by a circuit, which we will call a bridge, that

translates the signals and protocols of one bus into those of the other. Devices connected to

the expansion bus appear to the processor as if they were connected directly to the

processor’s own bus. The only difference is that the bridge circuit introduces a small delay in

data transfers between the processor and those devices.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

It is not possible to define a uniform standard for the processor bus. The structure of

this bus is closely tied to the architecture of the processor. It is also dependent on the

electrical characteristics of the processor chip, such as its clock speed. The expansion bus is

not subject to these limitations, and therefore it can use a standardized signaling scheme. A

number of standards have been developed. Some have evolved by default, when a particular

design became commercially successful. For example, IBM developed a bus they called ISA

(Industry Standard Architecture) for their personal computer known at the time as PC AT.

Some standards have been developed through industrial cooperative efforts, even

among competing companies driven by their common self-interest in having compatible

products. In some cases, organizations such as the IEEE (Institute of Electrical and

Electronics Engineers), ANSI (American National Standards Institute), or international

bodies such as ISO (International Standards Organization) have blessed these standards and

given them an official status.

A given computer may use more than one bus standards. A typical Pentium

computer has both a PCI bus and an ISA bus, thus providing the user with a wide range of

devices to choose from.

Figure 21 An example of a computer system using different interface standards

Main
Memory

Processor bus

P
r

o

c
e

s

B

r

i
d

g
e

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

s
o

r

PCI bus

A

d

d

i

t

i

o

n

a

l

S

C

S

I

E

t

h

e

r

n

e

t

U

S

B

I

S

A

m

e

m

o

r

y

c

o

n

t

r

o

l

l

e

r

i

n

t

e

r

f

a

c

e

c

o

n

t

r

o

l

l

e

r

i

n

t

e

r

f

a

c

e

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Port Limitation:-

The parallel and serial ports described in previous section provide a general-purpose

point of connection through which a variety of low-to medium-speed devices can be

connected to a computer. For practical reasons, only a few such ports are provided in a

typical computer.

Device Characteristics:-

The kinds of devices that may be connected to a computer cover a wide range of

functionality. The speed, volume, and timing constraints associated with data transfers to and

from such devices vary significantly.

A variety of simple devices that may be attached to a computer generate data of a

similar nature – low speed and asynchronous. Computer mice and the controls and

manipulators used with video games are good examples.

Plug-and-Play:-

As computers become part of everyday life, their existence should become

increasingly transparent. For example, when operating a home theater system, which

includes at least one computer, the user should not find it necessary to turn the computer off

or to restart the system to connect or disconnect a device.

The plug-and-play feature means that a new device, such as an additional speaker,

can be connected at any time while the system is operating. The system should detect the

existence of this new device automatically, identify the appropriate device-driver software

and any other facilities needed to service that device, and establish the appropriate addresses

and logical connections to enable them to communicate. The plug-and-play requirement has

many implications at all levels in the system, from the hardware to the operating system and

the applications software. One of the primary objectives of the design of the USB has been

to provide a plug-and-play capability.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

