
PPS

Problem Solving through programming in C Page 1

Introduction To C

 In 1988, the American National Standards Institute (ANSI) had formalized the
C language.

 C was invented to write UNIX operating system.

 C is a successor of 'Basic Combined Programming Language' (BCPL)
called B language.

 Linux OS, PHP, and MySQL are written in C.

 C has been written in assembly language.

Uses of C Programming Language

In the beginning, C was used for developing system applications, e.g. :

 Database Systems

 Language Interpreters

 Compilers and Assemblers

 Operating Systems

 Network Drivers

 Word Processors

C Has Become Very Popular for Various Reasons

 One of the early programming languages.

 Still, the best programming language to learn quickly.

 C language is reliable, simple and easy to use.

 C language is a structured language.

 Modern programming concepts are based on C.

 It can be compiled on a variety of computer platforms.

 Universities preferred to add C programming in their courseware.

Features of C Programming Language

 C is a robust language with a rich set of built-in functions and operators.

 Programs written in C are efficient and fast.

https://www.w3schools.in/dbms/intro/
http://www.w3schools.in/what-is-compiler/
https://www.w3schools.in/operating-system-tutorial/intro/

PPS

Problem Solving through programming in C Page 2

 C is highly portable, programs once written in C can be run on other
machines with minor or no modification.

 C is a collection of C library functions; we can also create our function and
add it to the C library.

 C is easily extensible.

Advantages of C

 C is the building block for many other programming languages.

 Programs written in C are highly portable.

 Several standard functions are there (like in-built) that can be used to develop
programs.

 C programs are collections of C library functions, and it's also easy to add
own functions to the C library.

 The modular structure makes code debugging, maintenance and testing
easier.

Disadvantages of C

 C does not provide Object Oriented Programming (OOP) concepts.

 There are no concepts of Namespace in C.

 C does not provide binding or wrapping up of data in a single unit.

 C does not provide Constructor and Destructor.

The limitations of C programming languages are as follows:

 Difficult to debug.

 C allows a lot of freedom in writing code, and that is why you can put an
empty line or white space anywhere in the program. And because there is no
fixed place to start or end the line, so it is difficult to read and understand the
program.

 C compilers can only identify errors and are incapable of handling exceptions
(run-time errors).

 C provides no data protection.

 It also doesn't feature reusability of source code extensively.

 It does not provide strict data type checking (for example an integer value can
be passed for floating datatype).

C is imperative language and designed to compile in a relatively straightforward
manner which provides low-level access to the memory. With the gradual

PPS

Problem Solving through programming in C Page 3

increase in the popularity of the program, the language and its compiler have
become available on a wide range of platforms from embedded
microcontrollers to supercomputers.

With the introduction of K&R C language (which is a new edition of C published

in 1978 by Brian Kernighan and Denis Ritchie), several features have been

included in C language.

Some of these features are:

 Standard I/O (Input/Output) Library

 long int - data type

 unsigned int - data type

 Compound assignment operators

During the late 1980's, C was started to use for a wide variety of mainframe

computers, micro and mini computers which began to get famous. Gradually C

got its superset - i.e., C++ which has added features, but its developed from C

with all its initial concepts.

Compiler:

A compiler is a computer program that transforms human-readable

(programming language) source code into another computer language (binary)

code.

In simple terms, Compiler takes the code that you wrote and turned in to the

binary code that computer can understand.

C compiler is a software application that transforms human-readable C

program code to machine-readable code. The process of transforming the code

from High-Level Language to Machine Level Language is called "Compilation".

The human-readable code is the C program that consists of digits letters,

special symbols, etc. which is understood by human beings. On the other hand,

machine language is dependent on processor and processor understands

zeroes and ones (binary) only. All C program execution is based on a

processor which is available in the CPU; that is why entire C source code

needs to be converted to the binary system by the compiler.

PPS

Problem Solving through programming in C Page 4

\

List Of C compilers:

Since there are various compilers available into the online market, here are the

lists of some of the frequently used ones:

 CCS C Compiler

 Turbo C

 Minimalist GNU for Windows (MinGW)

 Portable C Compiler

 Clang C++

 Digital Mars C++ Compiler

 Intel C++

 IBM C++

 Visual C++ : Express Edition

 Oracle C++

All of these above compilers for C are free to download, but there are some

other paid C compilers also available, or programmers can get it for trial

version:

 Embarcadero C++

 Edison Design Group C++

 Green Hills C++

 HP C++ for Unix

 Intel C++ for Windows, Linux, and some embedded systems.

 Microsoft C++

 Paradigm C++

A C program involves the following sections:

 Documentations (Documentation Section)

 Preprocessor Statements (Link Section)

 Global Declarations (Definition Section)

 The main() function

o Local Declarations

PPS

Problem Solving through programming in C Page 5

o Program Statements & Expressions
 User Defined Functions

Let's begin with a simple C program code.

Sample Code of C "Hello World" Program

Example:

/* Author: www.w3schools.in

Date: 2018-04-28

Description:

Writes the words "Hello, World!" on the screen */

#include<stdio.h>

int main()

{

 printf("Hello, World!\n");

 return 0;

}

or in a different way

/* Author: www.w3schools.in

Date: 2013-11-15

Description:

Writes the words "Hello, World!" on the screen */

PPS

Problem Solving through programming in C Page 6

#include<stdio.h>

#include<conio.h>

void main()

{

 printf("Hello, World!\n");

 return;

}

Program Output:

The above example has been used to print Hello, World! Text on the screen.

Let's look into various parts of the above C program.

/* Comments */ Comments are a way of explaining what makes a program. The compiler

ignores comments and used by others to understand the code.

or

This is a comment block, which is ignored by the compiler. Comment

can be used anywhere in the program to add info about program or code

block, which will be helpful for developers to understand the existing

code in the future easily.

PPS

Problem Solving through programming in C Page 7

#include<stdio.h> stdio is standard for input / output, this allows us to use some commands

which includes a file called stdio.h.

or

This is a preprocessor command. That notifies the compiler to include

the header file stdio.h in the program before compiling the source-code.

int/void main() int/void is a return value, which will be explained in a while.

main() The main() is the main function where program execution begins. Every

C program must contain only one main function.

or

This is the main function, which is the default entry point for every C

program and the void in front of it indicates that it does not return a

value.

Braces Two curly brackets "{...}" are used to group all statements.

or

Curly braces which shows how much the main() function has its scope.

printf() It is a function in C, which prints text on the screen.

or

This is another pre-defined function of C which is used to be displayed

text string in the screen.

return 0 At the end of the main function returns value 0.

Basic Structure of C Program:

PPS

Problem Solving through programming in C Page 8

The example discussed above illustrates how a simple C program looks like

and how the program segment works. A C program may contain one or more

sections which are figured above.

The Documentation section usually contains the collection of comment lines

giving the name of the program, author's or programmer's name and few other

details. The second part is the link-section which instructs the compiler to

connect to the various functions from the system library. The Definition section

describes all the symbolic-constants. The global declaration section is used to

define those variables that are used globally within the entire program and is

used in more than one function. This section also declares all the user-defined

functions. Then comes the main(). All C programs must have a main() which

contains two parts:

 Declaration part

 Execution part

The declaration part is used to declare all variables that will be used within the

program. There needs to be at least one statement in the executable part, and

these two parts are declared within the opening and closing curly braces of the

main(). The execution of the program begins at the opening brace '{' and ends

with the closing brace '}'. Also, it has to be noted that all the statements of

these two parts need to be terminated with a semi-colon.

The sub-program section deals with all user-defined functions that are called

from the main(). These user-defined functions are declared and usually defined

after the main() function.

C input/output functions:

Majority of the programs take data as input, and then after processing the

processed data is being displayed which is called information. In C

programming you can use scanf() and printf() predefined function to read and

print data.

#include<stdio.h>

void main()

PPS

Problem Solving through programming in C Page 9

{

int a,b,c;

printf("Please enter any two numbers: \n");

scanf("%d %d", &a, &b);

c = a + b;

printf("The addition of two number is: %d", c);

}

Output:

Please enter any two numbers:

12

3

The addition of two number is:15

The above program scanf() is used to take input from the user, and respectively printf() is

used to display output result on the screen.

Managing Input/Output:

I/O operations are useful for a program to interact with users. stdlib is the

standard C library for input-output operations. While dealing with input-output

operations in C, there are two important streams that play their role. These are:

 Standard Input (stdin)

 Standard Output (stdout)

Standard input or stdin is used for taking input from devices such as the

keyboard as a data stream. Standard output or stdout is used for giving output

to a device such as a monitor. For using I/O functionality, programmers must

include stdio header-file within the program.

Reading character in C:

The easiest and simplest of all I/O operations are taking a character as input by

reading that character from standard input (keyboard). getchar() function can

be used to read a single character. This function is alternate to scanf() function.

var_name = getchar();

#include<stdio.h>

void main()

{

PPS

Problem Solving through programming in C Page 10

char title;

title = getchar();

}

There is another function to do that task for files: getc which is used to accept a

character from standard input.

int getc(FILE *stream);

Writing Character in C:

Similar to getchar() there is another function which is used to write characters,

but one at a time.

Syntax:

putchar(var_name);

#include<stdio.h>

void main()

{

char result = 'P';

putchar(result);

putchar('\n');

}

Similarly, there is another function putc which is used for sending a single

character to the standard output.

int putc(int c, FILE *stream);

Formated Input:

It refers to an input data which has been arranged in a specific format. This is

possible in C using scanf(). We have already encountered this and familiar with

this function.

Syntax:

scanf("control string", arg1, arg2, ..., argn);

PPS

Problem Solving through programming in C Page 11

The field specification for reading integer inputted number is:

%w sd

Here the % sign denotes the conversion specification; w signifies the integer

number that defines the field width of the number to be read. d defines the

number to be read in integer format.

#include<stdio.h>

void main()

{

int var1= 60;

int var1= 1234;

scanf("%2d %5d", &var1, &var2);

}

Input data items should have to be separated by spaces, tabs or new-line and

the punctuation marks are not counted as separators.

Reading and Writing Characters:

There are two popular library functions gets() and puts() provides to deal with

strings in C.

gets: The char *gets(char *str) reads a line from stdin and keeps the string

pointed to by the str and is terminated when the new line is read or EOF is

reached. The declaration of gets() function is:

syntax:

char *gets(char *str);

where str is a pointer to an array of characters where C strings are stored.

puts: The function - int puts(const char *str) is used to write a string to stdout,

but it does not include null characters. A new line character needs to be

appended to the output. The declaration is:

syntax:

int puts(const char *str)

PPS

Problem Solving through programming in C Page 12

where str is the string to be written in C.

C format specifiers:

Format specifiers can be defined as the operators which are used in

association with printf() function for printing the data that is referred by any

object or any variable. When a value is stored in a particular variable, then you

cannot print the value stored in the variable straightforwardly without using the

format specifiers. You can retrieve the data that are stored in the variables and

can print them onto the console screen by implementing these format specifiers

in a printf() function.

Format specifiers start with a percentage % operator and followed by a special

character for identifying the type of the data.

There are mostly six types of format specifiers that are available in C.

List of format specifiers in C

Format specifier Description

%d Integer Format Specifier

%f Float Format Specifier

%c Character Format Specifier

%s String Format Specifier

%u Unsigned Integer Format Specifier

%ld Long Int Format Specifier

PPS

Problem Solving through programming in C Page 13

Integer Format Specifier %d

The %d format specifier is implemented for representing integer values. This is

used with printf() function for printing the integer value stored in the variable.

Syntax:

printf("%d",<variable name>);

Float Format Specifier %f

The %f format specifier is implemented for representing fractional values. This

is implemented within printf() function for printing the fractional or floating value

stored in the variable. Whenever you need to print any fractional or floating

data, you have to use %f format specifier.

Syntax:

printf("%f", <variable name>);

Character Format Specifier %c

The %c format specifier is implemented for representing characters. This is

used with printf() function for printing the character stored in a variable. When

you want to print a character data, you should incorporate the %c format

specifier.

Syntax:

printf("%c",<variable name>);

String Format Specifier %s

The %s format specifier is implemented for representing strings. This is used in

printf() function for printing a string stored in the character array variable. When

you have to print a string, you should implement the %sformat specifier.

PPS

Problem Solving through programming in C Page 14

Syntax:

printf("%s",<variable name>);

Unsigned Integer Format Specifier %u

The %u format specifier is implemented for fetching values from the address of

a variable having unsigned decimal integer stored in the memory. This is used

within printf() function for printing the unsigned integer variable.

Syntax:

printf("%u",<variable name>);

Long Int Format Specifier %ld

The %ld format specifier is implemented for representing long integer values.

This is implemented with printf() function for printing the long integer value

stored in the variable.

Syntax:

printf("%ld",<variable name>);

In C programs, each individual word and punctuation is referred to as a token.
C Tokens are the smallest building block or smallest unit of a C program.

C Supports Six Types of Tokens:

 Identifiers

 Keywords

 Constants

 Strings

 Operators

 Special Symbols

http://www.w3schools.in/c-tutorial/identifiers/
http://www.w3schools.in/c-tutorial/keywords/
http://www.w3schools.in/c-tutorial/constants/
http://www.w3schools.in/c-tutorial/strings/
http://www.w3schools.in/c-tutorial/operators/

PPS

Problem Solving through programming in C Page 15

Identifiers are names given to different names given to entities such as

constants, variables, structures, functions etc.

Example:

int amount;

double totalbalance;

In the above example, amount and total balance are identifiers and int, and

double are keywords.

Rules for Naming Identifiers

 An identifier can only have alphanumeric characters (a-z , A-Z , 0-9) (i.e.
letters & digits) and underscore(_) symbol.

 Identifier names must be unique

 The first character must be an alphabet or underscore.

 You cannot use a keyword as identifiers.

 Only first thirty-one (31) characters are significant.

 Must not contain white spaces.

 Identifiers are case-sensitive.

C Keywords:

can't use a keyword as an identifier in your C programs, its reserved words in C

library and used to perform an internal operation. The meaning and working of

these keywords are already known to the compiler.

 C Keywords List

 A list of 32 reserved keywords in c language is given below:

auto double int struct

PPS

Problem Solving through programming in C Page 16

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Example Where and How Keywords are Used in the

Program

 Example:

 #include<stdio.h>

 main()

 {

 float a, b;

 printf("Showing how keywords are used.");

 return 0;

 }

PPS

Problem Solving through programming in C Page 17

 In the above program, float and return are keywords. The float is used to

declare variables, and return is used to return an integer type value in

this program.

Constants are like a variable, except that their value never changes during

execution once defined.

C Constants is a most fundamental and essential part of C programming

language. Constants in C are the fixed values that are used in a program, and

its value remains the same during the entire execution of the program.

 Constants are also called literals.

 Constants can be any of the data types.

 It is considered best practice to define constants using only upper-

case names.

Constant Definition in C

Syntax:

const type constant_name;

const keyword defines a constant in C.

Example:

#include<stdio.h>

main()

{

 const int SIDE = 10;

 int area;

 area = SIDE*SIDE;

 printf("The area of the square with side: %d is: %d sq. units"

 , SIDE, area);

http://www.w3schools.in/c-tutorial/data-types/

PPS

Problem Solving through programming in C Page 18

}

Program Output:

Putting const either before or after the type is possible.

int const SIDE = 10;

or

const int SIDE = 10;

Constant Types in C

Constants are categorized into two basic types, and each of these types has

own subtypes/categories. These are:

Primary Constants

1. Numeric Constants

o Integer Constants

o Real Constants
2. Character Constants

o Single Character Constants

o String Constants

o Backslash Character Constants

PPS

Problem Solving through programming in C Page 19

Integer Constant

It's referring to a sequence of digits. Integers are of three types viz:

1. Decimal Integer

2. Octal Integer

3. Hexadecimal Integer

Example:

15, -265, 0, 99818, +25, 045, 0X6

Real constant

The numbers containing fractional parts like 99.25 are called real or floating

points constant.

Single Character Constants

It simply contains a single character enclosed within ' and ' (a pair of single

quote). It is to be noted that the character '8' is not the same as 8. Character

constants have a specific set of integer values known as ASCII values

(American Standard Code for Information Interchange).

Example:

'X', '5', ';'

String Constants

These are a sequence of characters enclosed in double quotes, and they may

include letters, digits, special characters, and blank spaces. It is again to be

noted that "G" and 'G' are different - because "G" represents a string as it is

enclosed within a pair of double quotes whereas 'G' represents a single

character.

Example:

"Hello!", "2015", "2+1"

PPS

Problem Solving through programming in C Page 20

Backslash character constant

C supports some character constants having a backslash in front of it. The lists

of backslash characters have a specific meaning which is known to the

compiler. They are also termed as "Escape Sequence".

For Example:

\t is used to give a tab

\n is used to give a new line

Constants Meaning

\a beep sound

\b backspace

\f form feed

\n new line

\r carriage return

\t horizontal tab

\v vertical tab

\' single quote

\" double quote

PPS

Problem Solving through programming in C Page 21

\\ backslash

\0 null

Secondary Constant

 Array

 Pointer

 Structure

 Union

 Enum

C Operators:

C operators are symbols that are used to perform mathematical or logical

manipulations. The C programming language is rich with built-in operators.

Operators take part in a program for manipulating data and variables and form

a part of the mathematical or logical expressions.

C offers various types of operators having different functioning capabilities.

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Assignment Operators

 Increment and Decrement Operators

 Conditional Operator

 Bitwise Operators

 Special Operators

Arithmetic Operators

Arithmetic Operators are used to performing mathematical calculations like

addition (+), subtraction (-), multiplication (*), division (/) and modulus (%).

Operator Description

https://www.w3schools.in/c-tutorial/arrays/
https://www.w3schools.in/c-tutorial/pointers/
https://www.w3schools.in/c-tutorial/structures/
https://www.w3schools.in/c-tutorial/unions/

PPS

Problem Solving through programming in C Page 22

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

C Program to Add Two Numbers

Example:

#include <stdio.h>

void main()

{

 int i=3,j=7,k; /* Variables Defining and Assign values */ k=i+j;

 printf("sum of two numbers is %d\n", k);

}

Program Output:

Increment and Decrement Operators

PPS

Problem Solving through programming in C Page 23

Increment and Decrement Operators are useful operators generally used to

minimize the calculation, i.e. ++x and x++ means x=x+1 or -x and x−−means

x=x-1. But there is a slight difference between ++ or −− written before or after

the operand. Applying the pre-increment first add one to the operand and then

the result is assigned to the variable on the left whereas post-increment first

assigns the value to the variable on the left and then increment the operand.

Operator Description

++ Increment

−− Decrement

Example: To Demonstrate prefix and postfix modes.

#include <stdio.h>

//stdio.h is a header file used for input.output purpose.

void main()

{

 //set a and b both equal to 5.

 int a=5, b=5;

 //Print them and decrementing each time.

 //Use postfix mode for a and prefix mode for b.

 printf("\n%d %d",a--,--b);

 printf("\n%d %d",a--,--b);

 printf("\n%d %d",a--,--b);

 printf("\n%d %d",a--,--b);

PPS

Problem Solving through programming in C Page 24

 printf("\n%d %d",a--,--b);

}

Program Output:

5 4

4 3

3 2

2 1

1 0

Relational Operators

Relational operators are used to compare two quantities or values.

Operator Description

== Is equal to

!= Is not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

PPS

Problem Solving through programming in C Page 25

Logical Operators

C provides three logical operators when we test more than one condition to

make decisions. These are: && (meaning logical AND), || (meaning logical OR)

and ! (meaning logical NOT).

Operator Description

&& And operator. It performs a logical conjunction of two expressions. (if both expressions

evaluate to True, result is True. If either expression evaluates to False, the result is False)

|| Or operator. It performs a logical disjunction on two expressions. (if either or both expressions

evaluate to True, the result is True)

! Not operator. It performs logical negation on an expression.

Bitwise Operators

C provides a special operator for bit operation between two variables.

Operator Description

<< Binary Left Shift Operator

>> Binary Right Shift Operator

~ Binary One's Complement Operator

& Binary AND Operator

^ Binary XOR Operator

PPS

Problem Solving through programming in C Page 26

| Binary OR Operator

Assignment Operators

Assignment operators applied to assign the result of an expression to a

variable. C has a collection of shorthand assignment operators.

Operator Description

= Assign

+= Increments then assign

-= Decrements then assign

*= Multiplies then assign

/= Divides then assign

%= Modulus then assign

<<= Left shift and assign

>>= Right shift and assign

&= Bitwise AND assign

^= Bitwise exclusive OR and assign

PPS

Problem Solving through programming in C Page 27

|= Bitwise inclusive OR and assign

Conditional Operator

C offers a ternary operator which is the conditional operator (?: in combination)

to construct conditional expressions.

Operator Description

? : Conditional Expression

Special Operators

C supports some special operators

Operator Description

sizeof() Returns the size of a memory location.

& Returns the address of a memory location.

* Pointer to a variable.

Program to demonstrate the use of sizeof operator

Example:

#include <stdio.h>

void main()

{

PPS

Problem Solving through programming in C Page 28

 int i=10; /* Variables Defining and Assign values */

printf("integer: %d\n", sizeof(i));

}

Program Output:

C Data Types:

A data-type in C programming is a set of values and is determined to act on

those values. C provides various types of data-types which allow the

programmer to select the appropriate type for the variable to set its value.

The data-type in a programming language is the collection of data with values

having fixed meaning as well as characteristics. Some of them are an integer,

floating point, character, etc. Usually, programming languages specify the

range values for given data-type.

C Data Types are used to:

 Identify the type of a variable when it declared.

 Identify the type of the return value of a function.

 Identify the type of a parameter expected by a function.

ANSI C provides three types of data types:

1. Primary(Built-in) Data Types:

void, int, char, double and float.

2. Derived Data Types:

Array, References, and Pointers.

3. User Defined Data Types:

Structure, Union, and Enumeration.

Primary Data Types

PPS

Problem Solving through programming in C Page 29

Every C compiler supports five primary data types:

void As the name suggests it holds no value and is generally used for specifying the type

of function or what it returns. If the function has a void type, it means that the function

will not return any value.

int Used to denote an integer type.

char Used to denote a character type.

float, double Used to denote a floating point type.

int *, float *, char * Used to denote a pointer type.

Three more data types have been added in C99:

 _Bool

 _Complex

 _Imaginary

Declaration of Primary Data Types with Variable

Names

After taking suitable variable names, they need to be assigned with a data type.

This is how the data types are used along with variables:

Example:

int age;

char letter;

float height, width;

Derived Data Types

PPS

Problem Solving through programming in C Page 30

C supports three derived data types:

Data Types Description

Arrays Arrays are sequences of data items having homogeneous values. They

have adjacent memory locations to store values.

References Function pointers allow referencing functions with a particular signature.

Pointers These are powerful C features which are used to access the memory

and deal with their addresses.

User Defined Data Types

C allows the feature called type definition which allows programmers to define

their identifier that would represent an existing data type. There are three such

types:

Data Types Description

Structure It is a package of variables of different types under a single name. This

is done to handle data efficiently. "struct" keyword is used to define a

structure.

Union These allow storing various data types in the same memory location.

Programmers can define a union with different members, but only a

single member can contain a value at given time. It is used for

Enum Enumeration is a special data type that consists of integral constants,

and each of them is assigned with a specific name. "enum" keyword is

used to define the enumerated data type.

PPS

Problem Solving through programming in C Page 31

Data Types and Variable Declarations in C

Example:

#include <stdio.h>

int main()

{

 int a = 4000; // positive integer data type

 float b = 5.2324; // float data type

 char c = 'Z'; // char data type

 long d = 41657; // long positive integer data type

 long e = -21556; // long -ve integer data type

 int f = -185; // -ve integer data type

 short g = 130; // short +ve integer data type

 short h = -130; // short -ve integer data type

 double i = 4.1234567890; // double float data type

 float j = -3.55; // float data type

}

The storage representation and machine instructions differ from machine to

machine. sizeofoperator can use to get the exact size of a type or a variable on

a particular platform.

Example:

#include <stdio.h>

#include <limits.h>

int main()

{

PPS

Problem Solving through programming in C Page 32

 printf("Storage size for int is: %d \n", sizeof(int));

 printf("Storage size for char is: %d \n", sizeof(char));

 return 0;

}

Program Output:

C Variables:

Variables are memory locations(storage area) in C programming language.

The primary purpose of variables is to store data in memory for later use.

Unlike constants which do not change during the program execution, variables

value may change during execution. If you declare a variable in C, that means

you are asking to the operating system for reserve a piece of memory with that

variable name.

Variable Definition in C

Syntax:

type variable_name;

or

type variable_name, variable_name, variable_name;

Variable Definition and Initialization

http://www.w3schools.in/c-tutorial/constants/

PPS

Problem Solving through programming in C Page 33

Example:

int width, height=5;

char letter='A';

float age, area;

double d;

/* actual initialization */width = 10;

age = 26.5;

Variable Assignment

Variable assignment is a process of assigning a value to a variable.

Example:

int width = 60;

int age = 31;

There are some rules on choosing variable names

 A variable name can consist of Capital letters A-Z, lowercase letters a-z,
digits 0-9, and the underscore character.

 The first character must be a letter or underscore.

 Blank spaces cannot be used in variable names.

 Special characters like #, $ are not allowed.

 C keywords cannot be used as variable names.

 Variable names are case sensitive.

 Values of the variables can be numeric or alphabetic.

 Variable type can be char, int, float, double or void.

PPS

Problem Solving through programming in C Page 34

C Program to Print Value of a Variable

Example:

#include<stdio.h>

void main()

{

 /* c program to print value of a variable */ int age = 33;

 printf("I am %d years old.\n", age);

}

Program Output:

I am 33 years old.

Storage Classes:

Storage Classes are associated with variables for describing the features of

any variable or function in C program. These storage classes deal with features

such as scope, lifetime and visibility which helps programmers to define a

particular variable during program's runtime. These storage classes are

preceded by the data type which they had to modify.

There are four storage classes types in C:

 auto

 register

 static

 extern

auto Storage Class

auto comes by default with all local variables as its storage class. The keyword

auto is used to define this storage class explicitly

PPS

Problem Solving through programming in C Page 35

Syntax:

int roll; // contains auto by default

is same as:

auto int roll; // in addition, we can use auto keyword

The above example has a variable name roll with auto as a storage class. This

storage class can only be implemented with the local variables.

register Storage Class

This storage class is implemented for classifying local variables whose value

needs to be saved in a register in place of RAM (Random Access Memory).

This is implemented when you want your variable the maximum size equivalent

to the size of register. It uses the keyword register.

Syntax:

register int counter;

Register variables are used when implementing looping in counter variables to

make program execution fast. Register variables work faster than variables

stored in RAM (primary memory).

Example:

for(register int counter=0; counter<=9; counter++)

{

// loop body

}

PPS

Problem Solving through programming in C Page 36

static storage class

This storage class uses static variables that are used popularly for writing

programs in C language. Static variables preserve the value of a variable even

when the scope limit exceeds. Static storage class has its scope local to the

function in which it is defined. On the other hand, global static variables can be

accessed in any part of your program. The default value assigned is '0' by the

C compiler. The keyword used to define this storage class is static.

Example:

static int var = 6;

extern Storage class

The extern storage class is used to feature a variable to be used from within

different blocks of the same program. Mainly, a value is set to that variable

which is in a different block or function and can be overwritten or altered from

within another block as well. Hence it can be said that an extern variable is a

global variable which is assigned with a value that can be accessed and used

within the entire program. Moreover, a global variable can be explicitly made an

extern variable by implementing the keyword 'extern' preceded the variable

name.

Here are some examples of extern:

Example:

#include <stdio.h>

int val;

extern void funcExtern();

main()

PPS

Problem Solving through programming in C Page 37

{

 val = 10;

 funcExtern();

}

Another example:

Example:

#include <stdio.h>

extern int val; // now the variable val can be accessed and used from

anywhere

// within the program

void funcExtern()

{

 printf("Value is: %d\n", val);

}

C Preprocessors:

The preprocessor is a program invoked by the compiler that modifies the

source code before the actual composition takes place.

To use any preprocessor directives, first, we have to prefix them with pound

symbol #.

PPS

Problem Solving through programming in C Page 38

The following section lists all preprocessor directives:

Category Directive Description

Macro substitution
division

#include File include

#define
#undif

Macro define, Macro undefine

#ifdef
#ifndef

If macro defined, If macro not defined

File inclusion division #if
#elif
#else
#endif

If, Else, ifElse, End if

Compiler control division #line
#error
#pragma

Set line number, Abort compilation, Set compiler
option

C Preprocessors Examples

Syntax:

#include <stdio.h>

/* #define macro_name character_sequence */

#define LIMIT 10

int main()

{

 int counter;

PPS

Problem Solving through programming in C Page 39

 for(counter =1; counter <=LIMIT; counter++)

 {

 printf("%d\n",counter);

 }

return 0;

}

In above example for loop will run 10 times.

#include <stdio.h>

#include "header.h"

#include <stdio.h> tell the compiler to add stdio.h file from System Libraries to

the current source file, and #include "header.h" tells compiler to get header.h

from the local directory.

#undef LIMIT

#define LIMIT 20

This tells the compiler to undefine existing LIMIT and set it as 20.

#ifndef LIMIT

 #define LIMIT 50

#endif

This tells the compiler to define LIMIT, only if LIMIT isn't already defined.

#ifdef LIMIT

 /* Your statements here */#endif

PPS

Problem Solving through programming in C Page 40

C Header Files:

C language is famous for its different libraries and the predefined functions pre-

written within it. These make programmer's effort a lot easier. In this tutorial,

you will be learning about C header files and how these header files can be

included in your C program and how it works within your C language.

Header files are helping file of your C program which holds the definitions of

various functions and their associated variables that needs to be imported into

your C program with the help of pre-processor #includestatement. All the

header file have a '.h' an extension that contains C function declaration and

macro definitions. In other words, the header files can be requested using the

preprocessor directive#include. The default header file that comes with the C

compiler is the stdio.h.

Including a header file means that using the content of header file in your

source program. A straightforward practice while programming in C or C++

programs is that you can keep every macro, global variables, constants, and

other function prototypes in the header files. The basic syntax of using these

header files is:

Syntax:

#include <file>

or

#include "file"

This kind of file inclusion is implemented for including system oriented header

files. This technique (with angular braces) searches for your file-name in the

standard list of system directories or within the compiler's directory of header

files. Whereas, the second kind of header file is used for user defined header

files or other external files for your program. This technique is used to search

for the file(s) within the directory that contains the current file.

PPS

Problem Solving through programming in C Page 41

How include Works

The C's #include preprocessor directive statement exertions by going through

the C preprocessors for scanning any specific file like that of input before

abiding by the rest of your existing source file. Let us take an example where

you may think of having a header file karl.h having the following statement:

Example:

char *example (void);

then, you have a main C source program which seems something like this:

Example:

#include<stdio.h>

int x;

#include "karl.h"

int main ()

{

 printf("Program done");

 return 0;

}

So, the compiler will see the entire C program and token stream as:

Example:

#include<stdio.h>

int x;

char * example (void);

PPS

Problem Solving through programming in C Page 42

int main ()

{

 printf("Program done");

 return 0;

}

Writing of Single and Multiple uses of Header files

You can use various header files based on some conditions. In case, when a

header file needs to be included twice within your program, your compiler will

be going to process the contents inside it - twice which will eventually lead to

an error in your program. So to eliminate this, you have to use conditional

preprocessor directives. Here's the syntax:

Syntax:

#ifndef HEADER_FILE_NAME

#define HEADER_FILE_NAME

 the entire header file

#endif

Again, sometimes it's essential for selecting several diverse header files based

on some requirement to be incorporated into your program. For this also

multiple conditional preprocessors can be used like this:

Syntax:

#if FIRST_SYSTEM

 #include "sys.h"

#elif SEC_SYSTEM

 #include "sys2.h"

PPS

Problem Solving through programming in C Page 43

#elif THRID_SYSTEM

#endif

C Type Casting:

Type Casting in C is used to convert a variable from one data type to another

data type, and after type casting compiler treats the variable as of the new data

type.

Syntax:

(type_name) expression

Without Type Casting

Example:

#include <stdio.h>

main ()

{

 int a;

 a = 15/6;

 printf("%d",a);

}

Program Output:

In the above C program, 15/6 alone will produce integer

value as 2.

PPS

Problem Solving through programming in C Page 44

After Type Casting

#include <stdio.h>

main ()

{

 float a;

 a = (float) 15/6;

 printf("%f",a);

}

Program Output:

After type cast is done before division to retain float

value 2.500000.

C Conditional Statements:

C conditional statements allow you to make a decision, based upon the result

of a condition. These statements are called as Decision Making

Statements or Conditional Statements.

PPS

Problem Solving through programming in C Page 45

So far, we have seen that all set of statements in a C program gets executed

sequentially in the order in which they are written and appear. This occurs

when there is no jump based statements or repetitions of certain calculations.

But some situations may arise where we may have to change the order of

execution of statements depending on some specific conditions. This involves

a kind of decision making from a set of calculations. It is to be noted that C

language assumes any non-zero or non-null value as true and if zero or null,

treated as false.

This type of structure requires that the programmers indicate several conditions

for evaluation within a program. The statement(s) will get executed only if the

condition becomes true and optionally, alternative statement or set of

statements will get executed if the condition becomes false.

The flowchart of Decision-making technique in C can be expressed as:

C languages have such decision-making capabilities within its program by the

use of following the decision making statements:

Conditional Statements in C

 If statement

o if statement

https://www.w3schools.in/c-tutorial/decision-making/if/

PPS

Problem Solving through programming in C Page 46

o if-else statement

o Nested if-else statement

o else if-statement

 goto statement

 switch statement

 Conditional Operator

C If statements:

If statements in C is used to control the program flow based on some condition,

it's used to execute some statement code block if the expression is evaluated

to true. Otherwise, it will get skipped. This is the simplest way to modify the

control flow of the program.

The if statement in C can be used in various forms depending on the situation

and complexity.

There are four different types of if statement in C. These are:

 Simple if Statement

 if-else Statement

 Nested if-else Statement

 else-if Ladder

The basic format of if statement is:

Syntax:

if(test_expression)

{

 statement 1;

 statement 2;

 ...

}

https://www.w3schools.in/c-tutorial/decision-making/if-else/
http://www.w3schools.in/c-tutorial/decision-making/nested-if-else/
https://www.w3schools.in/c-tutorial/decision-making/else-if/
http://www.w3schools.in/c-tutorial/decision-making/goto/
https://www.w3schools.in/c-tutorial/decision-making/switch/

PPS

Problem Solving through programming in C Page 47

'Statement n' can be a statement or a set of statements, and if the test

expression is evaluated to true, the statement block will get executed, or it will

get skipped.

Figure - Flowchart of if Statement:

Example of a C Program to Demonstrate if Statement

 Example:

#include<stdio.h>

main()

{

 int a = 15, b = 20;

 if (b & gt; a) {

 printf("b is greater");

 }

PPS

Problem Solving through programming in C Page 48

}

Program Output:

Example:

#include<stdio.h>

main()

{

 int number;

 printf(& quot; Type a number: & quot;);

 scanf(& quot; % d & quot;, & amp; number);

 /* check whether the number is negative number */ if (number & lt; 0)

{

 /* If it is a negative then convert it into positive. */

 number = -number;

 printf(& quot; The absolute value is % d\ n & quot;, number);

 }

 grtch();

}

PPS

Problem Solving through programming in C Page 49

Program Output:

If-Else Statements:

If else statements in C is also used to control the program flow based on some

condition, only the difference is: it's used to execute some statement code

block if the expression is evaluated to true, otherwise executes else statement

code block.

The basic format of if else statement is:

Syntax:

if(test_expression)

{

 //execute your code

}

else

{

 //execute your code

}

Figure - Flowchart of if-else Statement:

PPS

Problem Solving through programming in C Page 50

Example of a C Program to Demonstrate if-else

Statement

 Example:

#include<stdio.h>

main()

{

 int a, b;

 printf("Please enter the value for a:");

 scanf("%d", & amp; a);

 printf("\nPlease the value for b:");

 scanf("%d", & amp; b);

PPS

Problem Solving through programming in C Page 51

 if (a & gt; b) {

 printf("\n a is greater");

 } else {

 printf("\n b is greater");

 }

}

Program Output:

Example:

#include<stdio.h>

main() {

 int num;

 printf("Enter the number:");

 scanf("%d", num);

 /* check whether the number is negative number */ if (num < 0)

 printf("The number is negative.");

 else

 printf("The number is positive.");

PPS

Problem Solving through programming in C Page 52

}

Program Output:

Nested If-Else Statements:

Nested if else statements play an important role in C programming, it means

you can use conditional statements inside another conditional statement.

The basic format of Nested if else statement is:

Syntax:

if(test_expression one)

{

 if(test_expression two) {

 //Statement block Executes when the boolean test expression two is

true.

 }

}

else

{

 //else statement block

}

PPS

Problem Solving through programming in C Page 53

Example of a C Program to Demonstrate Nested if-

else Statement

Example:

#include<stdio.h>

main()

{

int x=20,y=30;

 if(x==20)

 {

 if(y==30)

 {

 printf("value of x is 20, and value of y is 30.");

 }

 }

}

Execution of the above code produces the following result.

Output:

value of x is 20, and value of y is 30.

Else-if statements:

else-if statements in C is like another if condition, it's used in a program when if

statement having multiple decisions.

The basic format of else if statement is:

PPS

Problem Solving through programming in C Page 54

Syntax:

if(test_expression)

{

 //execute your code

}

else if(test_expression n)

{

 //execute your code

}

else

{

 //execute your code

}

Example of a C Program to Demonstrate else if

Statement

Example:

#include<stdio.h>

main()

{

 int a, b;

 printf("Please enter the value for a:");

 scanf("%d", & amp; a);

PPS

Problem Solving through programming in C Page 55

 printf("\nPlease enter the value for b:");

 scanf("%d", & amp; b);

 if (a & gt; b)

 {

 printf("\n a is greater than b");

 }

 else if (b & gt; a)

 {

 printf("\n b is greater than a");

 }

 else

 {

 printf("\n Both are equal");

 }

}

Program Output:

PPS

Problem Solving through programming in C Page 56

Goto statements:

So far we have discussed the if statements and how it is used in C to control

statement execution based on some decisions or conditions. The flow of

execution also depends on other statements which are not based on conditions

that can control the flow.

C supports a unique form of a statement that is the goto Statement which is

used to branch unconditionally within a program from one point to another.

Although it is not a good habit to use goto statement in C, there may be some

situations where the use of goto statement might be desirable.

The goto statement is used by programmers to change the sequence of

execution of a C program by shifting the control to a different part of the same

program.

The general form of the goto statement is:

Syntax:

goto label;

A label is an identifier required for goto statement to a place where the branch

is to be made. A label is a valid variable name which is followed by a colon and

is put immediately before the statement where the control needs to be

jumped/transferred unconditionally.

Syntax:

goto label;

PPS

Problem Solving through programming in C Page 57

 - - -- - -

 - - - - - - - -

label:

statement - X;

/* This the forward jump of goto statement */

or

label:

 - - -- - -

 - - - - - - - -

goto label;

/*This is the backward jump of goto statement */

An Example of a C Program to Demonstrate goto

Statement

Example:

#include<stdio.h>

void main()

{

PPS

Problem Solving through programming in C Page 58

 int age;

 g: //label name

 printf("you are Eligible\n");

 s: //label name

 printf("you are not Eligible");

 printf("Enter you age:");

 scanf("%d", &age);

 if(age>=18)

 goto g; //goto label g

 else

 goto s; //goto label s

getch();

}

Switch statements:

C switch statement is used when you have multiple possibilities for the if

statement.

The basic format of the switch statement is:

Syntax:

switch(variable)

{

case 1:

 //execute your code

PPS

Problem Solving through programming in C Page 59

break;

case n:

 //execute your code

break;

default:

 //execute your code

break;

}

After the end of each block it is necessary to insert a break statement because

if the programmers do not use the break statement, all consecutive blocks of

codes will get executed from every case onwards after matching the case

block.

Example of a C Program to Demonstrate

Switch Statement

Example:

#include<stdio.h>

main()

{

 int a;

 printf("Please enter a no between 1 and 5: ");

 scanf("%d",&a);

PPS

Problem Solving through programming in C Page 60

 switch(a)

 {

 case 1:

 printf("You chose One");

 break;

 case 2:

 printf("You chose Two");

 break;

 case 3:

 printf("You chose Three");

 break;

 case 4:

 printf("You chose Four");

 break;

 case 5:

 printf("You chose Five.");

 break;

 default :

 printf("Invalid Choice. Enter a no between 1 and 5");

PPS

Problem Solving through programming in C Page 61

 break;

 }

}

Program Output:

When none of the cases is evaluated to true, the default case will be executed,

and break statement is not required for default statement.

Loops:

Sometimes it is necessary for the program to execute the statement several

times, and C loops execute a block of commands a specified number of times

until a condition is met. In this chapter, you will learn about all the looping

statements of C programming along with their use.

A computer is the most suitable machine to perform repetitive tasks and can

tirelessly do a task tens of thousands of times. Every programming language

has the feature to instruct to do such repetitive tasks with the help of certain

form of statements. The process of repeatedly executing a collection of

statement is called looping. The statements get executed many numbers of

times based on the condition. But if the condition is given in such logic that the

repetition continues any number of times with no fixed condition to stop looping

those statements, then this type of looping is called infinite looping.

C supports following types of loops:

 while loops

 do while loops

https://www.w3schools.in/c/loops/while/
https://www.w3schools.in/c/loops/do-while/

PPS

Problem Solving through programming in C Page 62

 for loops

All are slightly different and provides loops for different situations.

Figure - Flowchart of Looping:

C Loop Control Statements

Loop control statements are used to change the normal sequence of execution

of the loop.

Statement Syntax Description

break
statement

break; Is used to terminate loop or switch
statements.

continue
statement

continue; Is used to suspend the execution of
current loop iteration and transfer control
to the loop for the next iteration.

goto
statement

goto labelName;

labelName: statement;

It transfers current program execution
sequence to some other part of the
program.

https://www.w3schools.in/c/loops/for/

PPS

Problem Solving through programming in C Page 63

While loops:

C while loops statement allows to repeatedly run the same block of code until a

condition is met.

while loop is a most basic loop in C programming. while loop has one control condition,

and executes as long the condition is true. The condition of the loop is tested before the

body of the loop is executed, hence it is called an entry-controlled loop.

The basic format of while loop statement is:

Syntax:

While (condition)

{

 statement(s);

 Incrementation;

}

Figure - Flowchart of while loop:

PPS

Problem Solving through programming in C Page 64

Example of a C Program to Demonstrate while loop

Example:

#include<stdio.h>

int main ()

{

 /* local variable Initialization */ int n = 1,times=5;

 /* while loops execution */ while(n <= times)

 { printf("C while loops: %d\n", n);

 n++;

 }

 return 0;

}

Program Output:

Do while loops:

C do while loops are very similar to the while loops, but it always executes the

code block at least once and furthermore as long as the condition remains true.

This is an exit-controlled loop.

PPS

Problem Solving through programming in C Page 65

The basic format of do while loop statement is:

Syntax:

do

{

 statement(s);

}while(condition);

Figure - Flowchart of do while loop:

Example of a C Program to Demonstrate do while

loop

Example:

#include<stdio.h>

 int main ()

PPS

Problem Solving through programming in C Page 66

{

 /* local variable Initialization */ int n = 1,times=5;

 /* do loops execution */ do

 {

 printf("C do while loops: %d\n", n);

 n = n + 1;

 }while(n <= times);

 return 0;

}

Program Output:

For loops:

C for loops is very similar to a while loops in that it continues to process a block

of code until a statement becomes false, and everything is defined in a single

line. The for loop is also entry-controlled loop.

The basic format of for loop statement is:

Syntax:

for (init; condition; increment)

{

 statement(s);

}

PPS

Problem Solving through programming in C Page 67

Figure - Flowchart of for loop:

Example of a C Program to Demonstrate for loop

Example:

#include<stdio.h>

 int main ()

{

 /* local variable Initialization */ int n,times=5;;

 /* for loops execution */ for(n = 1; n <= times; n = n + 1)

 {

 printf("C for loops: %d\n", n);

 }

 return 0;

}

PPS

Problem Solving through programming in C Page 68

Program Output:

Functions:

C function is a self-contained block of statements that can be executed

repeatedly whenever we need it.

Benefits of using function in C

 The function provides modularity.

 The function provides reusable code.

 In large programs, debugging and editing tasks is easy with the use of
functions.

 The program can be modularized into smaller parts.

 Separate function independently can be developed according to the needs.

There are two types of functions in C

 Built-in(Library) Functions

o The system provided these functions and stored in the library. Therefore it is

also called Library Functions.

e.g. scanf(), printf(), strcpy, strlwr, strcmp, strlen, strcat etc.

o To use these functions, you just need to include the appropriate C header
files.

 User Defined Functions These functions are defined by the user at the time of
writing the program.

Parts of Function

1. Function Prototype (function declaration)

2. Function Definition

https://www.w3schools.in/c-tutorial/library-functions/

PPS

Problem Solving through programming in C Page 69

3. Function Call

1. Function Prototype

Syntax:

dataType functionName (Parameter List)

Example:

int addition();

2. Function Definition

Syntax:

returnType functionName(Function arguments){

 //body of the function

}

Example:

int addition()

{

}

3. Calling a function in C

Program to illustrate Addition of Two Numbers using

User Defined Function

Example:

#include<stdio.h>

PPS

Problem Solving through programming in C Page 70

/* function declaration */int addition();

int main()

{

 /* local variable definition */ int answer;

 /* calling a function to get addition value */ answer =

addition();

 printf("The addition of two numbers is: %d\n",answer);

 return 0;

}

/* function returning the addition of two numbers */int addition()

{

 /* local variable definition */ int num1 = 10, num2 = 5;

 return num1+num2;

}

Program Output:

The addition of two numbers is: 15

Function arguments:

While calling a function, the arguments can be passed to a function in two

ways, Call by value and call by reference.

Type Description

PPS

Problem Solving through programming in C Page 71

Call by Value The actual parameter is passed to a function.

 New memory area created for the passed parameters, can be used only within the
function.

 The actual parameters cannot be modified here.

Call by Reference Instead of copying variable; an address is passed to function as parameters.

 Address operator(&) is used in the parameter of the called function.

 Changes in function reflect the change of the original variables.

Call by Value

Example:

#include<stdio.h>

/* function declaration */int addition(int num1, int num2);

int main()

{

 /* local variable definition */ int answer;

 int num1 = 10;

 int num2 = 5;

 /* calling a function to get addition value */ answer =

addition(num1,num2);

 printf("The addition of two numbers is: %d\n",answer);

 return 0;

}

https://www.w3schools.in/c-tutorial/function-arguments/#call_by_value
https://www.w3schools.in/c-tutorial/function-arguments/#call_by_reference

PPS

Problem Solving through programming in C Page 72

/* function returning the addition of two numbers */int addition(int

a,int b)

{

 return a + b;

}

Program Output:

The addition of two numbers is: 15

Call by Reference

Example:

#include<stdio.h>

/* function declaration */int addition(int *num1, int *num2);

int main()

{

 /* local variable definition */ int answer;

 int num1 = 10;

 int num2 = 5;

 /* calling a function to get addition value */ answer =

addition(&num1,&num2);

 printf("The addition of two numbers is: %d\n",answer);

 return 0;

PPS

Problem Solving through programming in C Page 73

}

/* function returning the addition of two numbers */int addition(int

*a,int *b)

{

 return *a + *b;

}

Program Output:

The addition of two numbers is: 15

Library functions:

The C library functions are provided by the system and stored in the library.

The C library function is also called an inbuilt function in C programming.

To use Inbuilt Function in C, you must include their respective header files,

which contain prototypes and data definitions of the function.

C Program to Demonstrate the Use of Library
Functions

Example:

#include<stdio.h>

#include<ctype.h>

#include<math.h>

void main()

{

 int i = -10, e = 2, d = 10; /* Variables Defining and Assign values */

float rad = 1.43;

PPS

Problem Solving through programming in C Page 74

 double d1 = 3.0, d2 = 4.0;

 printf("%d\n", abs(i));

 printf("%f\n", sin(rad));

 printf("%f\n", cos(rad));

 printf("%f\n", exp(e));

 printf("%d\n", log(d));

 printf("%f\n", pow(d1, d2));

}

Program Output:

Variable scope:

A scope is a region of the program, and the scope of variables refers to the

area of the program where the variables can be accessed after its declaration.

In C each and every variable defined in a scope. You can define scope as the

section or region of a program where a variable has its existence; moreover,

that variable cannot be used or accessed beyond that region.

In C programming, variable declared within a function is different from a

variable declared outside of a function. The variable can be declared in three

places. These are:

PPS

Problem Solving through programming in C Page 75

Position Type

Inside a function or a block. local variables

Out of all functions. Global variables

In the function parameters. Formal parameters

So, now let's have a look at each of them individually.

Local Variables

Variables that are declared within the function block and can be used only

within the function is called local variables.

Local Scope or Block Scope

A local scope or block is a collective program statements put in and declared

within a function or block (a specific region enclosed with curly braces) and

variables lying inside such blocks are termed as local variables. All these

locally scoped statements are written and enclosed within left ({) and right

braces (}) curly braces. There's a provision for nested blocks also in C which

means there can be a block or a function within another block or function. So it

can be said that variable(s) that are declared within a block can be accessed

within that specific block and all other inner blocks of that block, but those

variables cannot be accessed outside the block.

Example:

#include <stdio.h>

int main ()

{

https://www.w3schools.in/c-tutorial/variable-scope/#local_variables
https://www.w3schools.in/c-tutorial/variable-scope/#global_variables
https://www.w3schools.in/c-tutorial/functions/#function_argument

PPS

Problem Solving through programming in C Page 76

 /* local variable definition and initialization */ int x,y,z;

 /* actual initialization */ x = 20;

 y = 30;

 z = x + y;

 printf ("value of x = %d, y = %d and z = %d\n", x, y, z);

 return 0;

}

Global Variables

Variables that are declared outside of a function block and can be accessed

inside the function is called global variables.

Global Scope

Global variables are defined outside a function or any specific block, in most of

the case, on the top of the C program. These variables hold their values all

through the end of the program and are accessible within any of the functions

defined in your program.

Any function can access variables defined within the global scope, i.e., its

availability stays for the entire program after being declared.

Example:

#include <stdio.h>

/* global variable definition */int z;

PPS

Problem Solving through programming in C Page 77

int main ()

{

 /* local variable definition and initialization */ int x,y;

 /* actual initialization */ x = 20;

 y = 30;

 z = x + y;

 printf ("value of x = %d, y = %d and z = %d\n", x, y, z);

 return 0;

}

Global Variable Initialization

After defining a local variable, the system or the compiler won't be initializing

any value to it. You have to initialize it by yourself. It is considered good

programming practice to initialize variables before using. Whereas in contrast,

global variables get initialized automatically by the compiler as and when

defined. Here's how based on datatype; global variables are defined.

datatype Initial Default Value

int 0

char '\0'

PPS

Problem Solving through programming in C Page 78

float 0

double 0

pointer NULL

Custom Header File:

It helps to manage user-defined methods, global variables, and structures in a

separate file, which can be used in different modules.

A process to Create Custom Header File in C

For example, I am calling an external function named swap in my main.c file.

Example:

#include<stdio.h>

#include"swap.h"

void main()

{

 int a=20;

 int b=30;

 swap (&a,&b);

 printf ("a=%d\n", a);

 printf ("b=%d\n",b);

}

PPS

Problem Solving through programming in C Page 79

Swap method is defined in swap.h file, which is used to swap two numbers by

using a temporary variable.

Example:

void swap (int* a, int* b)

{ int tmp;

 tmp = *a;

 *a = *b;

 *b = tmp;

}

Note:

 header file name must have a .h file extension.

 In this example, I have named swap.h header file.

 Instead of writing <swap.h> use this terminology swap.h for include custom
header file.

 Both files swap.h and main.c must be in the same folder.

Recursion:

C is a powerful programming language having capabilities like an iteration of a

set of statements 'n' number of times. The same concepts can be done using

functions also. In this chapter, you will be learning about recursion concept and

how it can be used in the C program.

What is Recursion

Recursion can be defined as the technique of replicating or doing again an

activity in a self-similar way calling itself again and again, and the process

continues till specific condition reaches. In the world of programming, when

your program lets you call that specific function from inside that function, then

PPS

Problem Solving through programming in C Page 80

this concept of calling the function from itself can be termed as recursion, and

the function in which makes this possible is called recursive function.

Here's an example of how recursion works in a program:

Example Syntax:

void rec_prog(void) {

 rec_prog(); /* function calls itself */}

int main(void) {

 rec_prog();

 return 0;

}

C program allows you to do such calling of function within another function, i.e.,

recursion. But when you implement this recursion concept, you have to be

cautious in defining an exit or terminating condition from this recursive function,

or else it will continue to an infinite loop, so make sure that the condition is set

within your program.

Factorial Program

Example:

#include<stdio.h>

#include<conio.h>

int fact(int f) {

 if (f & lt; = 1) {

 printf("Calculated Factorial");

 return 1;

PPS

Problem Solving through programming in C Page 81

 }

 return f * fact(f - 1);

}

int main(void) {

 int f = 12;

 clrscr();

 printf("The factorial of %d is %d \n", f, fact(f));

 getch();

 return 0;

}

Fibonacci Program

Example:

#include<stdio.h>

#include<conio.h>

int fibo(int g) {

 if (g == 0) {

 return 0;

 }

 if (g == 1) {

 return 1;

 }

 return fibo(g - 1) + fibo(g - 2);

PPS

Problem Solving through programming in C Page 82

}

int main(void) {

 int g;

 clrscr();

 for (g = 0; g & lt; 10; g++) {

 printf("\nNumbers are: %d \t ", fibonacci(g));

 }

 getch();

 return 0;

}

Arrays:

The array is a data structure in C programming, which can store a fixed-size

sequential collection of elements of the same data type.

For example, if you want to store ten numbers then instead of defining ten

variables, it's easy to define an array of 10 lengths.

In the C programming language, an array can beOne-Dimensional, Two-

Dimensional and Multidimensional.

Define an Array in C

Syntax:

type arrayName [size];

This is called a one-dimensional array. An array type can be any valid C data

types, and array size must be an integer constant greater than zero.

PPS

Problem Solving through programming in C Page 83

Example:

double amount[5];

Initialize an Array in C

Arrays can be initialized at declaration time:

int age[5]={22,25,30,32,35};

Initializing each element separately in a loop:

int myArray[5];

int n = 0;

// Initializing elements of array seperately

for(n=0;n<sizeof(myArray);n++)

{

 myArray[n] = n;

}

A Pictorial Representation of the Array:

Accessing Array Elements in C

Example:

int myArray[5];

int n = 0;

PPS

Problem Solving through programming in C Page 84

// Initializing elements of array seperately

for(n=0;n<sizeof(myArray);n++)

{

 myArray[n] = n;

}

int a = myArray[3]; // Assigning 3rd element of array value to integer

'a'.

Strings:

In C programming, the one-dimensional array of characters are called strings,

which is terminated by a null character '\0'.

In C programming, the one-dimensional array of characters are called strings,

which is terminated by a null character '\0'.

Strings Declaration in C

There are two ways to declare a string in C programming:

Example:

Through an array of characters.

char name[6];

Through pointers.

char *name;

Strings Initialization in C

Example:

char name[6] = {'C', 'l', 'o', 'u', 'd', '

PPS

Problem Solving through programming in C Page 85

char name[6] = {'C', 'l', 'o', 'u', 'd', '\0'};

'};

or

char name[] = "Cloud";

Memory Representation of Above Defined String in C

Example:

#include<stdio.h>

int main ()

{

 char name[6] = {'C', 'l', 'o', 'u', 'd', '

#include<stdio.h>

int main ()

{

 char name[6] = {'C', 'l', 'o', 'u', 'd', '\0'};

 printf("Tutorials%s\n", name);

 return 0;

}

'};

 printf("Tutorials%s\n", name);

 return 0;

}

Program Output:

PPS

Problem Solving through programming in C Page 86

TutorialsCloud

C Pointers:

A pointer is a variable in C, and pointers value is the address of a memory

location.

A pointer is a variable in C, and pointers value is the address of a memory

location.

Pointer Definition in C

Syntax:

type *variable_name;

Example:

int *width;

char *letter;

Benefits of using Pointers in C

 Pointers allow passing of arrays and strings to functions more efficiently.

 Pointers make possible to return more than one value from the function.

 Pointers reduce the length and complexity of a program.

 Pointers increase the processing speed.

 Pointers save the memory.

How to use Pointers in C

Example:

#include<stdio.h>

int main ()

{

PPS

Problem Solving through programming in C Page 87

 int n = 20, *pntr; /* actual and pointer variable declaration */

 pntr = &n; /* store address of n in pointer variable*/

 printf("Address of n variable: %x\n", &n);

 /* address stored in pointer variable */ printf("Address stored in

pntr variable: %x\n", pntr);

 /* access the value using the pointer */ printf("Value of *pntr

variable: %d\n", *pntr);

 return 0;

}

Address of n variable: 2cb60f04

Address stored in pntr variable: 2cb60f04

Value of *pntr variable: 20

Memory Management:

C language provides many functions that come in header files to deal with the

allocation and management of memories. In this tutorial, you will find brief

information about managing memory in your program using some functions

and their respective header files.

C language provides many functions that come in header files to deal with the

allocation and management of memories. In this tutorial, you will find brief

information about managing memory in your program using some functions

and their respective header files.

Management of Memory

Almost all computer languages can handle system memory. All the variables

used in your program occupies a precise memory space along with the

program itself, which needs some memory for storing itself (i.e., its own

PPS

Problem Solving through programming in C Page 88

program). Therefore, managing memory utmost care is one of the major tasks

a programmer must keep in mind while writing codes.

When a variable gets assigned in a memory in one program, that memory

location cannot be used by another variable or another program. So, C

language gives us a technique of allocating memory to different variables and

programs.

There are two types used for allocating memory. These are:

static memory allocations

In static memory allocation technique, allocation of memory is done at

compilation time, and it stays the same throughout the entire run of your

program. Neither any changes will be there in the amount of memory nor any

change in the location of memory.

dynamic memory allocations

In dynamic memory allocation technique, allocation of memory is done at the

time of running the program, and it also has the facility to increase/decrease

the memory quantity allocated and can also release or free the memory as and

when not required or used. Reallocation of memory can also be done when

required. So, it is more advantageous, and memory can be managed

efficiently.

malloc, calloc, or realloc are the three functions used to manipulate memory.

These commonly used functions are available through the stdlib library so you

must include this library to use them.

malloc, calloc, or realloc are the three functions used to manipulate memory.

These commonly used functions are available through the stdlib library so you

must include this library to use them.

C - Dynamic memory allocation functions

PPS

Problem Solving through programming in C Page 89

Function Syntax

malloc() malloc (number *sizeof(int));

calloc() calloc (number, sizeof(int));

realloc() realloc (pointer_name, number * sizeof(int));

free() free (pointer_name);

malloc function

 malloc function is used to allocate space in memory during the execution of
the program.

 malloc function does not initialize the memory allocated during execution. It
carries garbage value.

 malloc function returns null pointer if it couldn't able to allocate requested
amount of memory.

Example program for malloc() in C

Example:

#include<stdio.h>

#include<string.h>

#include<stdlib.h>

int main()

{

char *mem_alloc;

/* memory allocated dynamically */mem_alloc = malloc(15 * sizeof(char)

);

PPS

Problem Solving through programming in C Page 90

if(mem_alloc== NULL)

{

printf("Couldn't able to allocate requested memory\n");

}

else

{

strcpy(mem_alloc,"w3schools.in");

}

printf("Dynamically allocated memory content : %s\n", mem_alloc);

free(mem_alloc);

}

Program Output:

Dynamically allocated memory content : w3schools.in

calloc function

 calloc () function and malloc () function is similar. But calloc () allocates
memory for zero-initializes. However, malloc () does not.

Example program for calloc() in C

Example:

#include<stdio.h>

#include<string.h>

#include<stdlib.h>

PPS

Problem Solving through programming in C Page 91

int main()

{

char *mem_alloc;

/* memory allocated dynamically */mem_alloc = calloc(15, sizeof(char));

if(mem_alloc== NULL)

{

printf("Couldn't able to allocate requested memory\n");

}

else

{

strcpy(mem_alloc,"w3schools.in");

}

printf("Dynamically allocated memory content : %s\n", mem_alloc);

free(mem_alloc);

}

Program Output:

Dynamically allocated memory content : w3schools.in

realloc function

 realloc function modifies the allocated memory size by malloc and calloc
functions to new size.

PPS

Problem Solving through programming in C Page 92

 If enough space doesn't exist in the memory of current block to extend, a new
block is allocated for the full size of reallocation, then copies the existing data
to the new block and then frees the old block.

free function

 free function frees the allocated memory by malloc (), calloc (), realloc ()
functions.

Example program for realloc() and free()

Example:

#include<stdio.h>

#include<string.h>

#include<stdlib.h>

int main()

{

char *mem_alloc;

/* memory allocated dynamically */mem_alloc = malloc(20 * sizeof(char)

);

if(mem_alloc == NULL)

{

printf("Couldn't able to allocate requested memory\n");

}

else

{

strcpy(mem_alloc,"w3schools.in");

}

PPS

Problem Solving through programming in C Page 93

printf("Dynamically allocated memory content : " \ "%s\n", mem_alloc);

mem_alloc=realloc(mem_alloc,100*sizeof(char));

if(mem_alloc == NULL)

{

printf("Couldn't able to allocate requested memory\n");

}

else

{

strcpy(mem_alloc,"space is extended upto 100 characters");

}

printf("Resized memory : %s\n", mem_alloc);

free(mem_alloc);

}

Program Output:

Dynamically allocated memory content : w3schools.in

Resized memory: space is extended up to 100 characters.

Structures:

The structure is user-defined data type in C, which is used to store a collection

of different kinds of data.

 The structure is something similar to an array; the only difference is array is
used to store same data types.

 struct keyword is used to declare the structure in C.

 Variables inside the structure are called members of the structure.

PPS

Problem Solving through programming in C Page 94

Defining a Structure in C

Syntax:

struct structureName

{

 //member definitions

};

Example:

struct Courses

{

 char WebSite[50];

 char Subject[50];

 int Price;

};

Accessing Structure Members in C

Example:

#include<stdio.h>

#include<string.h>

struct Courses

{

 char WebSite[50];

 char Subject[50];

 int Price;

};

PPS

Problem Solving through programming in C Page 95

void main()

{

 struct Courses C;

 //Initialization

 strcpy(C.WebSite, "w3schools.in");

 strcpy(C.Subject, "The C Programming Language");

 C.Price = 0;

 //Print

 printf("WebSite : %s\n", C.WebSite);

 printf("Book Author : %s\n", C.Subject);

 printf("Book Price : %d\n", C.Price);

}

Program Output:

WebSite : w3schools.in

Unions:

Unions are user-defined data type in C, which is used to store a collection of

different kinds of data, just like a structure. However, with unions, you can only

store information in one field at any one time.

 Unions are like structures except it used less memory.

 The keyword union is used to declare the structure in C.

 Variables inside the union are called members of the union.

PPS

Problem Solving through programming in C Page 96

Defining a Union in C

Syntax:

union unionName

{

 //member definitions

};

Example:

union Courses

{

 char WebSite[50];

 char Subject[50];

 int Price;

};

Accessing Union Members in C

Example:

#include<stdio.h>

#include<string.h>

union Courses

{

 char WebSite[50];

 char Subject[50];

 int Price;

};

PPS

Problem Solving through programming in C Page 97

void main()

{

 union Courses C;

 strcpy(C.WebSite, "w3schools.in");

 printf("WebSite : %s\n", C.WebSite);

 strcpy(C.Subject, "The C Programming Language");

 printf("Book Author : %s\n", C.Subject);

 C.Price = 0;

 printf("Book Price : %d\n", C.Price);

}

Program Output:

WebSite : w3schools.in

Typedef:

C is such a dominant language of its time and now, that even you can name

those primary data type of your own and can create your own named data type

by blending data type and its qualifier.

C is such a dominant language of its time and now, that even you can name

those primary data type of your own and can create your own named data type

by blending data type and its qualifier.

The typedef keyword in C

typedef is a C keyword implemented to tell the compiler for assigning an

alternative name to C's already exist data types. This keyword, typedef typically

employed in association with user-defined data types in cases if the names of

datatypes turn out to be a little complicated or intricate for a programmer to get

PPS

Problem Solving through programming in C Page 98

or to use within programs. The typical format for implementing this typedef

keyword is:

Syntax:

typedef <existing_names_of_datatype> <alias__userGiven_name>;

Here's a sample code snippet as of how typedef command works in C:

Example:

typedef signed long slong;

slong in the statement as mentioned above is used for a defining

a signed qualified long kind of data type. Now the thing is this 'slong', which is

an user-defined identifier can be implemented in your program for defining any

signed long variable type within your C program. This means:

Example:

slong g, d;

will allow you to create two variables name 'g' and 'd' which will be of type

signed long and this quality of signed long is getting detected from

the slong(typedef), which already defined the meaning of slongin your

program.

Various Application of typedef

The concept of typedef can be implemented for defining a user-defined data

type with a specific name and type. This typedef can also be used with

structures of C language. Here how it looks like:

Syntax:

typedef struct

{ type first_member;

PPS

Problem Solving through programming in C Page 99

 type sec_member;

 type thrid_member;

} nameOfType;

Here nameOfType correspond to the definition of structure allied with it. Now,

this nameOfType can be implemented by declaring a variable of this structure

type.

nameOfType type1, type2;

Simple Program of structure in C with the use of typedef:

Example:

#include<stdio.h>

#include<string.h>

typedef struct professor

{ char p_name[50];

 int p_sal;

} prof;

void main(void)

{

 prof pf;

 printf("\n Enter Professor details: \n \n");

 printf("\n Enter Professor name:\t");

 scanf("% s", pf.p_name);

 printf("\n Enter professor salary: \t");

 scanf("% d", &pf.p_sal);

 printf("\n Input done ! ");

PPS

Problem Solving through programming in C Page 100

}

Using typedef with Pointers

typedef can be implemented for providing a pseudo name to pointer variables

as well. In this below-mentioned code snippet, you have to use the typedef, as

it is advantageous for declaring pointers.

int* a;

The binding of pointer (*) is done to the right here. With this kind of statement

declaration, you are in fact declaring an as a pointer of type int (integer).

typedef int* pntr;

pntr g, h, i;

File Handling:

C files I/O functions handle data on a secondary storage device, such as a

hard disk.

C can handle files as Stream-oriented data (Text) files, and System oriented

data (Binary) files.

Stream-oriented
data files

The data is stored in the same manner as it appears on the screen. The I/O
operations like buffering, data conversions, etc. take place automatically.

System-oriented
data files

System-oriented data files are more closely associated with the OS and data stored
in memory without converting into text format.

C File Operations

Five major operations can be performed on file are:

PPS

Problem Solving through programming in C Page 101

 Creation of a new file.

 Opening an existing file.

 Reading data from a file.

 Writing data in a file.

 Closing a file.

Steps for Processing a File

 Declare a file pointer variable.

 Open a file using fopen() function.

 Process the file using the suitable function.

 Close the file using fclose() function.

To handling files in C, file input/output functions available in the stdio library

are:

Function Uses/Purpose

fopen Opens a file.

fclose Closes a file.

getc Reads a character from a file

putc Writes a character to a file

getw Read integer

putw Write an integer

fprintf Prints formatted output to a file

fscanf Reads formatted input from a file

https://www.w3schools.in/c-tutorial/file-handling/fopen/
https://www.w3schools.in/c-tutorial/file-handling/fclose/
https://www.w3schools.in/c-tutorial/file-handling/getc/
https://www.w3schools.in/c-tutorial/file-handling/putc/
https://www.w3schools.in/c-tutorial/file-handling/getw/
https://www.w3schools.in/c-tutorial/file-handling/putw/
https://www.w3schools.in/c-tutorial/file-handling/fprintf/
https://www.w3schools.in/c-tutorial/file-handling/fscanf/

PPS

Problem Solving through programming in C Page 102

fgets Read string of characters from a file

fputs Write string of characters to file

feof Detects end-of-file marker in a file

Fopen:

C fopen function is used to open an existing file or create a new file.

The basic format of fopen is:

Syntax:

FILE *fopen(const char * filePath, const char * mode);

Parameters

 filePath: The first argument is a pointer to a string containing the name of the
file to be opened.

 mode: The second argument is an access mode.

C fopen() access mode can be one of the following values:

Mode Description

r Opens an existing text file.

w Opens a text file for writing if the file doesn't exist then a new file is created.

a Opens a text file for appending(writing at the end of existing file) and create the file if it does not
exist.

r+ Opens a text file for reading and writing.

https://www.w3schools.in/c-tutorial/file-handling/fgets/
https://www.w3schools.in/c-tutorial/file-handling/fputs/
https://www.w3schools.in/c-tutorial/file-handling/feof/

PPS

Problem Solving through programming in C Page 103

w+ Open for reading and writing and create the file if it does not exist. If the file exists then make it
blank.

a+ Open for reading and appending and create the file if it does not exist. The reading will start from
the beginning, but writing can only be appended.

Return Value

C fopen function returns NULL in case of a failure and returns a FILE stream

pointer on success.

Example:

#include<stdio.h>

int main()

{

 FILE *fp;

 fp = fopen("fileName.txt","w");

 return 0;

}

 The above example will create a file called fileName.txt.

 The w means that the file is being opened for writing, and if the file does not
exist then the new file will be created.

Fclose:

fclose() function is C library function and it's used to releases the memory

stream, opened by fopen()function.

The basic format of fclose is:

Syntax:

PPS

Problem Solving through programming in C Page 104

int fclose(FILE * stream);

Return Value

C fclose returns EOF in case of failure and returns 0 on success.

Example:

#include<stdio.h>

int main()

{

 FILE *fp;

 fp = fopen("fileName.txt","w");

 fprintf(fp, "%s", "Sample Texts");

 fclose(fp);

 return 0;

}

 The above example will create a file called fileName.txt.

 The w means that the file is being opened for writing, and if the file does not
exist then the new file will be created.

 The fprintf function writes Sample Texts text to the file.

 The fclose function closes the file and releases the memory stream.

Getc:

getc() function is C library function, and it's used to read a character from a file

that has been opened in read mode by fopen() function.

Syntax:

int getc(FILE * stream);

PPS

Problem Solving through programming in C Page 105

Return Value

 getc() function returns next requested object from the stream on success.

 Character values are returned as an unsigned char cast to an int or EOF on
end of file or error.

 The function feof() and ferror() to distinguish between end-of-file and error
must be used.

Example:

#include<stdio.h>

 int main()

{

 FILE *fp = fopen("fileName.txt", "r");

 int ch = getc(fp);

 while (ch != EOF)

 {

 /* To display the contents of the file on the screen */

putchar(ch);

 ch = getc(fp);

 }

 if (feof(fp))

 printf("\n Reached the end of file.");

 else

 printf("\n Something gone wrong.");

 fclose(fp);

 getchar();

 return 0;

}

PPS

Problem Solving through programming in C Page 106

Putc:

putc() function is C library function, and it's used to write a character to the

file. This function is used for writing a single character in a stream along with

that it moves forward the indicator's position.

putc() function is C library function, and it's used to write a character to the

file. This function is used for writing a single character in a stream along with

that it moves forward the indicator's position.

Syntax:

int putc(int c, FILE * stream);

Example:

int main (void)

{

 FILE * fileName;

 char ch;

 fileName = fopen("anything.txt","wt");

 for (ch = 'D' ; ch <= 'S' ; ch++) {

 putc (ch , fileName);

 }

 fclose (fileName);

 return 0;

}

Getw:

PPS

Problem Solving through programming in C Page 107

C getw function is used to read an integer from a file that has been opened in

read mode. It is a file handling function, which is used for reading integer

values.

Syntax:

int getw(FILE * stream);

 putw:

C putw function is used to write an integer to the file.

Syntax:

int putw(int c, FILE * stream);

Example:

int main (void)

{ FILE *fileName;

 int i=2, j=3, k=4, n;

 fileName = fopen ("anything.c","w");

 putw(i, fileName);

 putw(j, fileName);

 putw(k, fileName);

 fclose(fileName);

 fileName = fopen ("test.c","r");

 while(getw(fileName)! = EOF)

 {

 n= getw(fileName);

 printf("Value is %d \t: ", n);

 }

 fclose(fp);

PPS

Problem Solving through programming in C Page 108

 return 0;

}

Fprintf:

C fprintf function pass arguments according to the specified format to the file

indicated by the stream. This function is implemented in file related programs

for writing formatted data in any file.

Syntax:

int fprintf(FILE *stream, const char *format, ...)

Example:

int main (void)

{

 FILE *fileName;

 fileName = fopen("anything.txt","r");

 fprintf(fileName, "%s %s %d", "Welcome", "to", 2018);

 fclose(fileName);

 return(0);

}

Fscanf:

C fscanf function reads formatted input from a file. This function is implemented

in file related programs for reading formatted data from any file that is specified

in the program.

Syntax:

int fscanf(FILE *stream, const char *format, ...)

PPS

Problem Solving through programming in C Page 109

Its return the number of variables that are assigned values, or EOF if no

assignments could be made.

Example:

int main()

{

 char s1[10], s2[10];

 int yr;

 FILE* fileName;

 fileName = fopen("anything.txt", "w+");

 fputs("Welcome to", fileName);

 rewind(fileName);

 fscanf(fileName, "%s %s %d", str1, str2, &yr);

 printf("--- \n");

 printf("1st word %s \t", str1);

 printf("2nd word %s \t", str2);

 printf("Year-Name %d \t", yr);

 fclose(fileName);

 return (0);

}

Fgets:

C fgets function is implemented in file related programs for reading strings from

any particular file. It gets the strings 1 line each time.

Syntax:

char *fgets(char *str, int n, FILE *stream)

Example:

PPS

Problem Solving through programming in C Page 110

void main(void)

{

 FILE* fileName;

 char ch[100];

 fileName = fopen("anything.txt", "r");

 printf("%s", fgets(ch, 50, fileName));

 fclose(fileName);

}

 On success, the function returns the same str parameter

 C fgets function returns a NULL pointer in case of a failure.

Fputs:

C fputs function is implemented in file related programs for writing string to any

particular file.

Syntax:

int fputs(const char *str, FILE *stream)

Example:

void main(void)

{ FILE* fileName;

 fileName = fopen("anything.txt", "w");

 fputs("Example: ", fileName);

 fclose(fileName);

}

 In this function returns non-negative value, otherwise returns EOF on error.

Feof:

PPS

Problem Solving through programming in C Page 111

C feof function is used to determine if the end of the file (stream), specified has

been reached or not. This function keeps on searching the end of file (eof) in

your file program.

Syntax:

int feof(FILE *stream)

Example:

while (!feof(fileName)) {

 printf("%s", strr);

 fgets(st, 50, fileName);

}

fclose(fileName)

 C feof function returns true in case end of file is reached, otherwise it's return
false.

Command Line Arguments:

C makes it possible to pass values from the command line at execution time in

your program. In this chapter, you will learn about the use of command-line

argument in C.

The main() function is the most significant function of C and C++ languages.

This main() is typically defined having a return type of integer and having no

parameters; something like this:

Example:

int main()

{

 /* body of the main() function */

}

PPS

Problem Solving through programming in C Page 112

C provides programmers to put command-line arguments within the program,

which will allow users to add values at the very start of program execution.

What are Command line arguments?

Command line arguments are the arguments specified after the program name

in the operating system's command line, and these arguments values are

passed to your program at the time of execution from your operating system.

For using this concept in your program, you have to understand the complete

declaration of how the main function works with this command-line argument to

fetch values that earlier took no arguments with it (main() without any

argument).

So you can program the main() is such a way that it can essentially accept two

arguments where the first argument denotes the number of command line

arguments whereas the second argument denotes the full list of every

command line arguments. This is how you can code your command line

argument within the parenthesis of main():

Example:

int main (int argc, char *argv [])

In the above statement, the command line arguments have been handled via

main() function, and you have set the arguments where

 argc (ARGument Count) denotes the number of arguments to be passed and

 argv [] (ARGument Vector) denotes to a pointer array that is pointing to every
argument that has been passed to your program.

You must make sure that in your command line argument, argv[0] stores the

name of your program, similarly argv[1] gets the pointer to the 1st command

line argument that has been supplied by the user, and *argv[n]denotes the last

argument of the list.

PPS

Problem Solving through programming in C Page 113

Program for Command Line Argument

Example:

#include <stdio.h>

int main(int argc, char *argv [])

{

 printf(" \n Name of my Program %s \t", argv[0]);

 if(argc == 2)

 { printf("\n Value given by user is: %s \t", argv[1]);

 }

 else if(argc > 2)

 {

 printf("\n Many values given by users.\n");

 }

 else

 { printf(" \n Single value expected.\n");

 }

}

Output:

PPS

Problem Solving through programming in C Page 114

	Uses of C Programming Language
	C Has Become Very Popular for Various Reasons
	Features of C Programming Language
	Advantages of C
	Disadvantages of C
	Sample Code of C "Hello World" Program
	Let's look into various parts of the above C program.

	Basic Structure of C Program:
	List of format specifiers in C
	Integer Format Specifier %d
	Float Format Specifier %f
	Character Format Specifier %c
	String Format Specifier %s
	Unsigned Integer Format Specifier %u
	Long Int Format Specifier %ld

	Rules for Naming Identifiers
	 C Keywords List
	Example Where and How Keywords are Used in the Program

	Constant Definition in C
	Constant Types in C
	Integer Constant
	Real constant
	Single Character Constants
	String Constants
	Backslash character constant

	Arithmetic Operators
	C Program to Add Two Numbers

	Increment and Decrement Operators
	Relational Operators
	Logical Operators
	Bitwise Operators
	Assignment Operators
	Conditional Operator
	Special Operators
	Program to demonstrate the use of sizeof operator

	Primary Data Types
	Declaration of Primary Data Types with Variable Names

	Derived Data Types
	User Defined Data Types
	Data Types and Variable Declarations in C

	Variable Definition in C
	Variable Definition and Initialization
	Variable Assignment
	There are some rules on choosing variable names
	C Program to Print Value of a Variable
	auto Storage Class
	register Storage Class
	static storage class
	extern Storage class

	C Preprocessors Examples
	How include Works
	Writing of Single and Multiple uses of Header files

	Without Type Casting
	After Type Casting
	Example of a C Program to Demonstrate if Statement
	Example of a C Program to Demonstrate if-else Statement
	Example of a C Program to Demonstrate Nested if-else Statement
	Example of a C Program to Demonstrate else if Statement
	An Example of a C Program to Demonstrate goto Statement
	Example of a C Program to Demonstrate Switch Statement

	C Loop Control Statements
	Example of a C Program to Demonstrate while loop
	Example of a C Program to Demonstrate do while loop
	Example of a C Program to Demonstrate for loop

	Benefits of using function in C
	There are two types of functions in C
	Parts of Function
	1. Function Prototype
	2. Function Definition
	3. Calling a function in C
	Program to illustrate Addition of Two Numbers using User Defined Function

	Call by Value
	Call by Reference
	C Program to Demonstrate the Use of Library Functions
	Local Variables
	Local Scope or Block Scope

	Global Variables
	Global Scope
	Global Variable Initialization

	A process to Create Custom Header File in C
	What is Recursion
	Factorial Program
	Fibonacci Program

	Define an Array in C
	Initialize an Array in C
	A Pictorial Representation of the Array:

	Accessing Array Elements in C
	Strings Declaration in C
	Strings Initialization in C
	Memory Representation of Above Defined String in C

	Pointer Definition in C
	Benefits of using Pointers in C
	How to use Pointers in C
	Management of Memory
	static memory allocations
	dynamic memory allocations

	C - Dynamic memory allocation functions
	malloc function
	Example program for malloc() in C

	calloc function
	Example program for calloc() in C

	realloc function
	free function
	Example program for realloc() and free()

	Defining a Structure in C
	Accessing Structure Members in C
	Defining a Union in C
	Accessing Union Members in C
	The typedef keyword in C
	Various Application of typedef
	Using typedef with Pointers

	C File Operations
	Steps for Processing a File
	Parameters
	Return Value
	Return Value (1)
	Return Value (2)
	What are Command line arguments?
	Program for Command Line Argument

