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UNIT - I  
INTRODUCTION TO CONTROL

SYSTEMS



Introduction

System – An interconnection of elements and devices for a desired purpose.

Control System – An interconnection of components forming a system configuration
that will provide a desired response.

Process – The device, plant, or system  
under control. The input and output  
relationship represents the cause-and-
effect relationship of the process.
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In this chapter we describe a general process for designing a control system.

A control system consisting of interconnected components is designed to achieve a  

desired purpose. To understand the purpose of a control system, it is useful to  

examine examples of control systems through the course of history. These early  

systems incorporated many of the same ideas of feedback that are in use today.

Modern control engineering practice includes the use of control design strategies for  

improving manufacturing processes, the efficiency of energy use, advanced  

automobile control, including rapid transit, among others.

We also discuss the notion of a design gap. The gap exists between the complex  

physical system under investigation and the model used in the control system  

synthesis.

The iterative nature of design allows us to handle the design gap effectively while  

accomplishing necessary tradeoffs in complexity, performance, and cost in order to  

meet the design specifications.

Chapter 1: Introduction to Control Systems  
Objectives



Introduction

Multivariable Control System

Open-Loop Control Systems  
utilize a controller or control  
actuator to obtain the desired  
response.
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Closed-Loop Control Systems  
utilizes feedback to compare  
the actual output to the  
desired output response.



History

Watt’s Flyball Governor  
(18th century)
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Greece (BC) – Float regulator mechanism  
Holland (16th Century)– Temperature regulator



History

Water-level float regulator
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History
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History

18th Century James Watt’s centrifugal governor for the speed control of a steam  
engine.

1920s Minorsky worked on automatic controllers for steering ships.

1930s Nyquist developed a method for analyzing the stability of controlled systems

1940s Frequency response methods made it possible to design linear closed-loop  
control systems

1950s Root-locus method due to Evans was fully developed

1960s State space methods, optimal control, adaptive control and

1980s Learning controls are begun to investigated and developed.

Present and on-going research fields. Recent application of modern control theory  
includes such non-engineering systems such as biological, biomedical, economic and  
socio-economic systems



(a)Automobile  

steering control  

system.

(b)The driver uses  

the difference  

between the actual  

and the desired  

direction of travel

to generate a  

controlled adjustment  

of the steering wheel.

(c) Typical direction-

of-travel response.
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Examples of Modern Control Systems



Examples of Modern Control Systems
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Examples of Modern Control Systems
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Examples of Modern Control Systems
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Examples of Modern Control Systems
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Examples of Modern Control Systems
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Examples of Modern Control Systems
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Examples of Modern Control Systems

17



Examples of Modern Control Systems
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The Future of Control Systems
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The Future of Control Systems
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Control System Design
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Design Example
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Ship  
Service  
Power

Main Power
Distribution

Propulsion

Motor

Motor  

Drive
Generator

Prime  

Mover

Power  

Conversion  

Module

 Electric Drive
 Reduce # of Prime

Movers

 Fuel savings

 Reduced maintenance

 Technology  

Insertion
 Warfighting

Capabilities

ELECTRIC SHIP CONCEPT

Vision

Integrated  
Power  
System

All  
Electric  

Ship

Electrically  
Reconfigurable  

Ship

 Reduced manning

 Automation

 Eliminate auxiliary
systems (steam,  
hydraulics, compressed  
air)

Increasing Affordability and Military Capability
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Design Example



CVN(X) FUTURE AIRCRAFT CARRIER

25

Design Example



Design Example
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Design Example
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Design Example
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Design Example
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Design Example
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Design Example
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Sequential Design Example
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Sequential Design Example
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UNIT -II

BLOCK DIAGRAM REDUCTION  
OF MULTIPLE SYSTEMS
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Figure 5.2
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Components of a block diagram for a linear, time-invariant system



Figure 5.3

a. Cascaded subsystems;
b. equivalent transfer function
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Figure 5.5

a. Parallel subsystems;
b. equivalent transfer function
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Figure 5.6

a. Feedback control system;
b. simplified model;

c. equivalent transfer function
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Figure 5.7: Block diagram algebra for summing junctions

equivalent forms for moving a block
a. to the left past a summing junction;
b. to the right past a summing junction
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Figure 5.8: Block diagram algebra for pickoff points

equivalent forms for moving a block
a. to the left past a pickoff point;
b. to the right past a pickoff point
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Block diagram reduction via familiar forms for Example5.1

44

Problem: Reduce the block diagram shown in figure to a single transfer
function



Steps in solving Example 5.1:
a. collapse summing junctions;

b. form equivalent cascaded system  
in the forward path

c. form equivalent parallel system in the  
feedback path;

d. form equivalent feedback system and
multiply by cascadedG1(s)
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Block diagram reduction via familiar forms for Example5.1 Cont.



Problem: Reduce the block diagram shown in figure to a single transfer function
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Block diagram reduction by moving blocks Example 5.2



Steps in the block diagram reduction for Example 5.2
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a)Move G2(s) to the left past of  
pickoff point to create parallel  
subsystems, and reduce the  
feedback system of G3(s) and H3(s)

b)Reduce parallel pair of 1/G2(s)  
and unity, and push G1(s) to the  
right past summing junction

c)Collapse the summing junctions,  
add the 2 feedback elements, and  
combine the last 2 cascade blocks

d)Reduce the feedback system to  
the left

e)finally, Multiple the 2 cascade  
blocks and obtain final result.



Second-order feedback control system

The closed loop transfer function is

Note K is the amplifier gain, As K varies, the poles move through  
the three ranges of operations OD, CD, and UD
0<K<a2/4 system is over damped
K = a2/4  
K > a2/4

system is critically damped  
system is under damped

K

48

s 2
T (s ) 

 as K



Finding transient response Example 5.3

Problem: For the system shown, find peak time, percent overshot, and settling time.

And

25

s 2
Solution: The closed loop transfer function is T (s )

 5s  25

4

p

n

s

n

 n   2 5   5

2n   5 so  =0 .5

T 


 0 .726 sec
 1   2

% O S  e  / 1 2

X 1 0 0  1 6 .303

T   1 .6 sec

and equation in chapter 4 wefindusing values for  and n
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Gain design for transient response Example 5.4

Problem: Design the value of gain K, so that the system will respond with a 10%
overshot.
Solution: The closed loop transfer function is

For 10% OS we find

We substitute this value in previous equation to find K = 17.9

K

s 2
T (s ) 

 5s  K

5

50

n n
2 K

K a n d thus  =  2  5

 =0 . 5 91



Signal-flow graph components:

a. system;
b. signal;

c. interconnection of systems and signals
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a. cascaded system nodes

b. cascaded system signal-flow  

graph;

c. parallel system nodes

d. parallel system signal-flow  

graph;

e. feedback system nodes

f. feedback system signal-flow  

graph

52

Building signal-flow graphs



Problem: Convert the block diagram to a signal-flow graph.

Converting a block diagram to a signal-flow graph
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Signal-flow graph development:

a. signal nodes;

b. signal-flow graph;

c. simplified signal-flow graph

Converting a block diagram to a signal-flow graph
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Mason’s rule - Definitions
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Loop gain: The product of branch gains found by traversing a path that starts at a node and ends at the  
same node, following the direction of the signal flow, without passing through any other node more than  
once. G2(s)H2(s), G4(s)H2(s), G4(s)G5(s)H3(s), G4(s)G6(s)H3(s)

Forward-path gain: The product of gains found by traversing a path from input node to output node in  
the direction of signal flow. G1(s)G2(s)G3(s)G4(s)G5(s)G7(s), G1(s)G2(s)G3(s)G4(s)G5(s)G7(s)
Nontouching loops: loops that do not have any nodes in common. G2(s)H1(s) does not touch G4(s)H2(s),  
G4(s)G5(s)H3(s), and G4(s)G6(s)H3(s)
Nontouching-loop gain: The product of loop gains from nontouching loops taken 2, 3,4, or more at a  
time.
[G2(s)H1(s)][G4(s)H2(s)], [G2(s)H1(s)][G4(s)G5(s)H3(s)], [G2(s)H1(s)][G4(s)G6(s)H3(s)]



56

Mason’s Rule
The Transfer function. C(s)/ R(s), of a system represented by a signal-flow graph is

Where
K = number of forward paths  

Tk = the kth forward-path gain

= 1 - loop gains + nontouching-loop gains taken 2 at a time - nontouching-loop

y eliminating from those loop gains that touch the kth forward path.

C (s)

R (s )
G (s )   k



T k k

 gainstaken  3 at a time   + nontouching-loop gains taken 4 at a time - …….


k is formed b k

= - loop gain terms in


that touch the kth forward path. In other words,






Transfer function via Mason’s rule
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Now

1 2 3 4[G (s)G (s)G (s)G (s)G (s)][1-G (s)H (s)]

Problem: Find the transfer function for the signal flow graph
Solution:
forward path
G1(s)G2(s)G3(s)G4(s)G5(s)

Loop gains
G2(s)H1(s), G4(s)H2(s), G7(s)H4(s),
G2(s)G3(s)G4(s)G5(s)G6(s)G7(s)G8(s)

Nontouching loops
2at a time 
G2(s)H1(s)G4(s)H2(s)
G2(s)H1(s)G7(s)H4(s)
G4(s)H2(s)G7(s)H4(s)
3 at a time G2(s)H1(s)G4(s)H2(s)G7(s)H4(s)

 = 1-[G2(s)H1(s)+G4(s)H2(s)+G7(s)H4(s)+ G2(s)G3(s)G4(s)G5(s)G6(s)G7(s)G8(s)] + [G2(s)H1(s)G4(s)H2(s) +

G2(s)H1(s)G7(s)H4(s) + G4(s)H2(s)G7(s)H4(s)] – [G2(s)H1(s)G4(s)H2(s)G7(s)H4(s)]

1 = 1 - G7(s)H4(s)

T 
G (s)  1 1 



5 7 4





Signal-Flow Graphs of State Equations

1 2 3
x

P


roblem: draw signal-flow graph for:
2x 1  5x  3x  2r

x 2  6x 1  2x 2  2x 3  5r

x 3  x 1  3x 2  4x 3  7r   

y  4x 1  6x 2  9x 3

a. placenodes;

b. interconnect state variables and  
derivatives;

c. form dx1/dt ;
d. form dx2/dt
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(continued)
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e. form dx3 /dt;
f. form output

Signal-Flow Graphs of State Equations



Alternate Representation: Cascade Form

24

60

R (s )

C (s )


(s  2)(s  3)(s  4)



Alternate Representation: Cascade Form

1 2

3 3

x  4x  x
1

x 2   3x 2  x 3

x   2x  24r
y  c (t )  x 1

4 1 0  0 

X   0

24

 3 1 X  0  r
  

0 0 2

y  1 0 0X
61



Alternat2e4Representation1: P2arallel F2o4rm 12

R (s )

C (s )
   

(s  2)(s  3)(s  4) (s  2) (s  3) (s  4)

x 1  2x 1

x 2   3x 2

x 3 
y  c (t )  x 1  x 2

 12r

 24r

 4x 3  12r
 x 3



X   0 0 X  24 r

2 0 0  12

3 
0 4

 
12 


0

y  1 1 1X
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Alternate Representation: Parallel Form Repeated roots

  
(s 1) (s  2)

C (s)


(s  3) 2 1 1

R (s ) (s  1)2 (s  2) (s  1)2

+2r

x 1   x 1  x 2

x 2  x 2

x 3 
y  c (t )  x 1

 2x  3  r
 1 / 2x 2  x 3

0

X   0   
2 1

1X

1 1 0 

 1 0 X  2 r

0 0

y  1 1 /2

63



Alternate Representation: controller canonical form

G(s) = C(s)/R(s) = (s2 + 7s + 2)/(s3 + 9s2 + 26s + 24)
This form is obtained from the phase-variable form simply by ordering the
phase variable in reverse order

x 
 1  0  x 1  0

x 1  x   0r 2   2    

1

 0 1

  0 0

24 26 9 x    3   
 
x 3 
 

x 1 

1x 2


y  2 7
 
x  3 

x 
 1  1

x 

  1 0  x   0r 2   2    

9 26 24 x 1 

0

 0 1 0  x  0   3   
 
x 3 
 

x 1 

2x 2


y  1 7
 
x  3 

64
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Alternate Representation: controller canonical form

System matrices that contain the coefficients of the characteristic polynomial are  
called companion matrices to the characteristic polynomial.

Phase-variable form result in lower companion matrix  

Controller canonical form results in upper companion matrix



Alternate Representation: observer canonical form
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Observer canonical form so named for its use in the design of observers
G(s) = C(s)/R(s) = (s2 + 7s + 2)/(s3 + 9s2 + 26s + 24)

= (1/s+7/s2 +2/s3 )/(1+9/s+26/s2 +24/s3 )
Cross multiplying
(1/s+7/s2 +2/s3 )R(s) = (1+9/s+26/s2 +24/s3 ) C(s)
And C(s) = 1/s[R(s)-9C(s)] +1/s2[7R(s)-26C(s)]+1/s3[2R(s)-24C(s)]

= 1/s{ [R(s)-9C(s)] + 1/s {[7R(s)-26C(s)]+1/s [2R(s)-24C(s)]}}



Alternate Representation: observer canonical form

x 1   9x 1  x 2  r  

x 2 26x 1  x3 +7r

x 3 24x 1  2r  

y  c (t )  x 1

1

X  26   
0 2

 9 1 0

 0 1 X  7 r

24 0

y  1 0 0X
Note that the observer form has A matrix that is transpose of the  
controller canonical form, B vector is the transpose of the controller C  
vector, and C vector is the transpose of the controller B vector. The 2  
forms are called duals.
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Feedback control system for Example 5.8

Problem Represent the feedback control system

shown in state space. Model the forward transfer
function in cascade form.

Solution first we model the forward transfer  

function as in (a), Second we add the feedback  
and input paths as shown in (b) complete system.  
Write state equations

x 1  3x 1

x 2 

 x 2

- 2x 2  100(r - c )

but c  5x 1  (x 2  3x 1 )  2x 1  x 2
68



Feedback control system for Example 5.8

x 1   3x 1  x 2

x 2  200x 1 102x 2  100r

y  c (t )  2x 1  x 2

13 
X


rX 

 
0

200 102 100
  

y  2 1X

69



State-space forms for

C(s)/R(s) =(s+ 3)/[(s+ 4)(s+ 6)].
Note: y = c(t)

70
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UNIT-III
TIME RESPONSE ANALYSIS
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Transient vs Steady-State

The output of any differential equation can be broken up into two parts,
•a transient part (which decays to zero as t goes to infinity) and
•a steady-state part (which does not decay to zero as t goes to infinity).

y(t)  ytr (t)  yss(t)  

lim ytr (t)  0
t0

Either part might be zero in any particular case.



Prototype systems

1st Order system

2nd ordersystem

Agenda:
transfer function  
response to test signals

impulse  
step  
ramp  
parabolic  
sinusoidal


c(t) 

1
c(t)  kr(t)

2

n n kr(t)c(t)  2 c(t)  c(t) 

73



1st order system
Impulse response  
Step response  
Ramp response
Relationship between impulse, step and ramp
Relationship between impulse, step and ramp responses

C(s) 1 T

R(s)
G(s)  

s 1 T

1
e 1(t)

T


t Tc (t) r(t)   (t), R(s) 1,

r(t) 1(t), R(s) 
1

,
s

cstep (t)  1e 1(t)
t T

ramp

74

s2
r(t)  t1(t), R(s) 

1
, c (t)  t  T Tet T 1(t)
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1st Order system

Prototype parameter: Time constant

Relate problem specific parameter to prototype parameter.

Parameters: problem specific constants. Numbers that do not change with  
time, but do change from problem to problem.

We learn that the time constant defines a problem specific time scale that is more  
convenient than the arbitrary time scale of seconds, minutes, hours, days, etc, or  
fractions thereof.
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Transient vs Steady state

Consider the impulse, step, ramp responses computed earlier. Identify the steady  
state and the transient parts.



1st order  
system
Impulse response  
Step response  
Ramp response
Relationship between impulse, step and ramp
Relationship between impulse, step and ramp responses

C(s) 1 T
G(s)   , T  0

R(s) s 1 T

1
e 1(t)

T


t Tc (t) r(t)   (t), R(s) 1,

r(t) 1(t), R(s) 
1

,
s

cstep (t)  1e 1(t)
t T

ramp

77

s2
r(t)  t1(t), R(s) 

1
, c (t)  t  T Tet T 1(t)

Consider the impulse, step, ramp responses computed  
earlier. Identify the steady state and the transient  
parts.

Compare steady-state part to input function, transient part to TF.



•(two real distinct roots = two 1st order systems with real poles)
Critically damped
•(a single pole of multiplicity two, highly unlikely, requires exact matching)
Underdamped
• (complex conjugate pair of poles, oscillatory behavior, most common)  

step response

2

n

2

n

C(s) K 2

2nd order system G(s) 

Over damped

n

R(s) s  2 s 

 step dc 1(t)
ent

sin  t  tan
1 1  2


(t)  K 1

 1 2







n ent sin 





c (t)  K  dt 1(t)
 1 2


78
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2nd Order System

Prototype parameters:
undamped natural frequency,  
damping ratio

Relating problem specific parameters to prototype parameters
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Transient vs Steady state

Consider the step, responses computed earlier. Identify the steady state and the  
transient parts.



•(two real distinct roots = two 1st order systems with real poles)
Critically damped
•(a single pole of multiplicity two, highly unlikely, requires exact matching)
Underdamped
• (complex conjugate pair of poles, oscillatory behavior, most common)  

step response

2

n

2

n

C(s) K 2

2nd order system G(s) 

Over damped

n

R(s) s  2 s 

 step dc 1(t)
ent

sin  t  tan
1 1  2


(t)  K 1

 1 2







n ent sin 





c (t)  K  dt 1(t)
 1 2


81
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Use of Prototypes

Too many examples to cover them all  
We cover important prototypes
We develop intuition on the prototypes
We cover how to convert specific examples to prototypes
We transfer our insight, based on the study of the prototypes to the specific  
situations.
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Transient-Response Spedifications

1. Delay time, td: The time required for the response to reach half the final value the
very first time.

2. Rise time, tr: the time required for the response to rise from  
10% to 90% (common for overdamped and 1st order systems);  
5% to 95%;
or 0% to 100% (common for underdamped systems);  
of its final value

1. Peak time, tp:
2. Maximum (percent) overshoot, Mp:
3. Settling time, ts



Derived relations for 2nd  

Order Systems

r

d
t 

  
p

d

t





p




1 2

M  e 100%

4
s

n
 

t  4T 
4
 2%

3
s

n
 

t  3T 
3
 5%

d n
  1 2

  n

  tan1 d 

84

  
 

See book for details. (Pg. 232)

Allowable Mp determines dampingratio.
Settling time then determines undamped naturalfrequency.
Theory is used to derive relationships between design specifications andprototype  
parameters.
Which are related to problem parameters.
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Higher order system

PFEs have linear denominators.

•each term with a real pole has a time constant

•each complex conjugate pair of poles has a damping ratio and an undamped  
natural frequency.



Proportional control of plant w  
integrator

1

86

GC (s)  Kp , G(s) 
s(Js b)



Integral control of Plant w disturbance

1
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C
s

G (s) 
K

, G(s) 
s(Js b)



Proportional Control of plant w/o  
integrator

1
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C
G (s)  K, G(s) 

Ts 1



Integral control of plant w/o integrator

1

89

C
s

G (s) 
K

, G(s) 
Ts 1
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UNIT-IV
STABILITY ANALYSIS IN S- DOMAIN



Routh’s Stability Criterion
How do we determine stability without finding all poles?  

Actual poles provide more info than is needed.

All we need to know if any poles are in LHP.

Routh’s stability criterion (Section 5-7).

K G(s)
G(s)  , T(s) 

q(s)  s4  2s3 3s2 4s 5

q(s)  s3  2s2  s  2

q(s)  s5  2s4  24s3  48s2  25s 50
What values of K produce a stable system?

s(s2  s 1)(s  2) 1G(s)91
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The issue of ensuring the stability of a closed-loop feedback system is central to
control system design. Knowing that an unstable closed-loop system is generally
of no practical value, we seek methods to help us analyze and design stable
systems. A stable system should exhibit a bounded output if the corresponding
input is bounded. This is known as bounded-input, bounded-output stability
and is one of the main topics of this chapter.

The stability of a feedback system is directly related to the location of the roots
of the characteristic equation of the system transfer function. The Routh–
Hurwitz method is introduced as a useful tool for assessing system stability. The
technique allows us to compute the number of roots of the characteristic
equation in the right half-plane without actually computing the values of the
roots. Thus we can determine stability without the added computational burden
of determining characteristic root locations. This gives us a design method for
determining values of certain system parameters that will lead to closed-loop
stability. For stable systems we will introduce the notion of relative stability,
which allows us to characterize the degree of stability.

The Stability of Linear Feedback Systems
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The Concept of Stability

A stable system is a dynamic system with a bounded
response to a bounded input.

Absolute stability is a stable/not stable characterization for a  
closed-loop feedback system. Given that a system is stable  
we can further characterize the degree of stability, or the  
relative stability.



The Concept of Stability

94

The concept of stability can be
illustrated by a cone placed on
a plane horizontal surface.

A necessary and  
sufficient condition for a  
feedback system to be  
stable is that all the  
poles of the system  
transfer function have  
negative real parts.

A system is considered marginally stable if only certain bounded  
inputs will result in a bounded output.
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The Routh-Hurwitz Stability Criterion

It was discovered that all coefficients of the characteristic polynomial must  
have the same sign and non-zero if all the roots are in the left-hand plane.

These requirements are necessary but not sufficient. If the above  
requirements are not met, it is known that the system is unstable. But, if the  
requirements are met, we still must investigate the system further to  
determine the stability of the system.

The Routh-Hurwitz criterion is a necessary and sufficient criterion for the
stability of linear systems.



The Routh-Hurwitz Stability Criterion

1 0


1

1

   

   

   

n1

n1

n3n1n1

n3

n3n1n1 n1

n1

n1

n2

n2n1n

b b

an1 an3

n1 n3b
c

an4

a a a
b 

an2an

a a a a  

an2


an1an2  anan3 1

b

hs0

bbb

an an2 an4  

an1 an3 an5

n1 n3 n5

cn1 cn3 cn5

sn  

sn1  

sn2  

sn3

sn1  aa sn  a s  a s a  0Characteristic equation, q(s)

Routh array

The Routh-Hurwitz criterion  
states that the number of  
roots of q(s) with positive real  
parts is equal to the number  
of changes in sign of the first  
column of the Routh array.

96



The Routh-Hurwitz Stability Criterion
Case One: No element in the first column is zero.

Example 6.1 Second-order system

The Characteristic polynomial of a second-order system is:

q(s) a2s
2  a1s  a0

The Routh array is written as:

w here:

b1

a1a0  (0)a2

a1

a0

Theref ore the requirement for a stable second-order system is

simply that al coeff icients be positive or all the coefficients be

negative.

1

1

a2 a0

a. 0

b. 0

s2

s1

s0

97



The Routh-Hurwitz Stability Criterion
Case Two: Zeros in the first column while some elements of the row containing a  
zero in the first column are nonzero.

If only one element in the array is zero , it may be replaced w ith a smal positiv e   

number  that is allow ed to approach zero af ter completing the array.

q ( s )  s 5   2s4   2s3   4s2   11s  1 0

The Routh array is then:

w here:

2 2  1 4 4  26 1 2 6 c1   10

2   c1

b 1 0  c1 d 1 6

There are t w o sign changes in the f irst column due to the large negative number  

calculated for  c1. Thus,  the sys tem is unstable because t w o  roots lie in the  

right half of the plane.

1

1

1 2 11

2 4 10

b 6 0

c 10 0

d1 0 0

10 0 0

s5

s4

s3

s2

s1  

s0
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The Routh-Hurwitz Stability Criterion
Case Three: Zeros in the first column, and the other elements of the row containing
the zero are also zero.

This case occurs when the polynomial q(s) has zeros located sy metrically about the  

origin of the s-plane, such as (s+)(s -) or (s+j)(s-j). This case is solved using  

the auxiliary polynomial, U(s), w hich is located in the row above the row containing  

the zero entry in the Routh array.

q(s) s
3 
 2s

2 
 4s  K

Routh array:

For a stable system we require that 0  s  8

For the marginally stable case, K=8, the s^1 row of the Routh array contains all zeros. The  

auxiliary plynomial comes f rom the s^2 row.

U(s) 2s
2
 Ks

0
2s

2
 8 2s2

 4 2(s  j2)(s  j2)

It can be proven that U(s) is a factor of the characteristic polynomial:

q(s) s  2

U(s) 2 Thus, w hen K=8, the factors of the characteristic polynomial are:

q(s) (s  2)(s  j2)(s  j2)

s3

s2

s1

s0

1 4

2 K

8K 0
2

K 0

99
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The Routh-Hurwitz Stability Criterion
Case Four: Repeated roots of the characteristic equation on the jw-axis.

With simple roots on the jw-axis, the system will  
have a marginally stable behavior. This is not  the 
case if the roots are repeated. Repeated  roots 
on the jw-axis will cause the system to be  
unstable. Unfortunately, the routh-array will fail  
to reveal this instability.



Example 6.4
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Example 6.5 Welding control

Using block diagram reduction we find that:

The Routh array is then:

Ka

c

b

Ka

3

3

s4

s3

s2

s1  

s0

1

6

11

(K 6)

Ka

For the system to be stable both b3 and c3 must be positive.

Using these equations a relationship can be determined forK and a .

where: b3

60 K

6
and c3

b3(K  6)  6Ka

b3
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The Relative Stability of Feedback Control Systems

103

It is often necessary to know the
relative damping of each root to
the characteristic equation.
Relative system stability can be  
measured by observing the  
relative real part of each root. In  
this diagram r2 is relatively more  
stable than the pair of roots  
labeled r1.

One method of determining the relative stability of  
each root is to use an axis shift in the s-domain and  
then use the Routh array as shown in Example 6.6  
of the text.



Problem statement: Design the turning control for a tracked vehicle. Select K
and a so that the system is stable. The system is modeled below.

104

Design Example: Tracked Vehicle Turning Control



The characteristic equation of this system is:

1  GcG(s) 0

or

K(s  a)
1  0

s(s  1)(s  2)(s  5)

Thus,

s(s  1)(s  2)(s  5)  K(s  a) 0

or

s4  8s3  17s2  (K  10)s   Ka 0

To determine a stable region for the system, we establish the Routh array as:

where

b3

126  K

8
and c3

b3(K  10)  8Ka

b3

Ka

105

c

b

3

3

s4

s3

s2

s1  

s0

Ka

0

1

8

17

(K 10)

Ka

Design Example: Tracked Vehicle Turning Control



Ka

c

b

3

3

s4

s3

s2

s1

s0

Ka

0

1

8

17

(K 10)

Ka

Design Example: Tracked Vehicle Turning Control

where

b3

126 K

8
and c3

b3(K  10)  8Ka

b3

Therefore,
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K  126

Ka  0  

(K  10)(126  K)  64Ka  0



System Stability Using MATLAB
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System Stability Using MATLAB
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System Stability Using MATLAB
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System Stability Using MATLAB
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Root Locus

•Motivation
To satisfy transient performance requirements, it may be necessary to know how to  

choose certain controller parameters so that the resulting closed-looppoles are in the  

performance regions, which can be solved with Root Locustechnique.

•Definition
A graph displaying the roots of a polynomial equation when one of the parameters in  

the coefficients of the equation changes from 0 to.

•Rules for Sketching Root Locus

•Examples

•Controller Design Using Root Locus
Letting the CL characteristic equation (CLCE) be the polynomial equation, one can use  

the Root Locus technique to find how a positive controller design parameter affects the  

resulting CL poles, from which one can choose a right value for the controller  

parameter.



Poles and zeros

F (s) 
(s  p1)(s  p2 )(s  pn )

k(s  z1)(s  z2 )(s  zm )

n
p1, p2 , p

z1, z2 , zm zeros
poles

Reaxis

Imaxis

pole

zero
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2

2

n n
s 2



 2 s 
T (s) n

Closed-loop transfer function :

Im axis

jn 1  2

n

n



2

100%
1 2








cos  

m.o.  e

T 

T

n

s

n 1

4

p



Reaxis

1 2

j
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sin( 1 2 t  cos1  )y( t)  1 n

e  n t





j

p1

p2

p3

n1

Ts1Ts2 Ts3

n3  n2  

1  2  3

Tp1  Tp2 Tp3

 o.s.1  o.s.2 o.s.3

1  2 3

n

n
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j 1  2





j

p2 p1p3

1 2 3

Ts1Ts2Ts3

 o.s.1  o.s.2 o.s.3

 Tp1  Tp 2 Tp3

n3  n2 n1

  

1  2 3

n 

2
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(iii)    o.s.

(ii)n 1  Tp 

(i)n  Ts 





j

 0

1   0

 1

1   0

 0

 1

0   1

0   1

  1  1   1

 1

 1
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0  1

  0

 1

  0

Overdamped

Critically damped

Underdamped

Undamped

Negative damped



Root locus

k G(s)

H(s)

＋

－

y(t)r(t)

kG(s)

1 kG(s)H (s)
T (s) 

y(s)


R(s)

1 kG(s)H (s)  0 poles

117




kG(s)H (s)  (2n 1)

kG(s)H (s) 1

1 kG(s)H (s)  0

 kG(s)H (s)  1

Open loop transfer function

Using open loop transfer function + system parameters to analyze the  
closed-loop system response

k  0

Draw the s-plan root locus
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Root locus properties:
(i) The locus segments are symmetrical about the real axis.
(ii)

(iii)

1
,k  0 

G(s)H (s)
k 

poles  

zeros

k  0, G(s)H (s)

k , G(s)H (s)



j
0

s

1

2

4

3

4
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32G(s0 )H (s0 ) 1  (   )
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Root locus construction

(i) Loci Branches each locus from poles tokzero0s k 

n  mif for excess zeros or poles, locus segments extend from  
infinity.

(1)

(2)

branches 

nm  0

n m

branches   zeros

nm  0

m  n



(ii) Real axis segments

Poles + zeros = odd

Poles + zeros = even

1800
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kG(s)H(s)  11800



(iii) Asymptotic angles

n  m
k 

(2k 1)
, k  0,1,2,

4
if n  6,m  2  

180 
450

450

450
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(iv) Centroid of the asymptotes

nm
  poles zeros

(s  2)(s2  6s 18)

3s
G(s)H (s) 

Zero : 0
Poles: -2, -3+j3, -3-j3  4

31

(23 j33 j3)  0
 

31

123

 
180

 900

example



(v) Breakaway and entry points dk
 0

ds

example
s(s 1)(s 2)

k
kGH 

1kGH  0 The characteristic function of closed loop system

 0
s(s 1)(s  2)

s3  3s2  2s k
1 kGH 

ds

s  0.423,1.577
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k  (s3  3s2 2s)

dk
 3s2  6s  2  0



(vi) Angle of departure and approach

0

0

G(s)H (s)

G(s)H (s)

A

D

180 

 180 

example
(s 1 j)(s 1 j)

125

k(s  2)
kGH 

Angle of departure from the pole: s  1 j

(s  2) (s 1 j) (s 1 j)  1800

(s  2) D (s 1 j)  180
0

(1 j  2) D (1 j 1 j)  180
0

D 180(1 j  2) (1 j 1 j)
D  225

0
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Angle of approach to the zero:

example
s(s 1)

kGH 
k(s  j)(s  j)

s  j

(s  j) (s  j) s (s 1)  1800

(s  j) A s (s 1)  180
0

( j  j) A j ( j 1)  180
0

A  180 ( j  j) j ( j 1)
0

A  135
0



(vii) The cross point of root locus and Im-axis

example
s(s  3)(s2  2s  2)

k
kGH 

The characteristic function of closed loop system:

5s3 8s2  6s  k  0s4

s(s  3)(s2  2s  2) k  0
s

s0

s3

s2

s1

4

34

k

5

8 k

6

k

1

5

34

204 25k
34

k  8.16

204  25k 
 0

34
s2  k 0

5

s   j1.095
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k

s(1 0.5s)(10.1s)+ -

C(s)R(s)

k

s(1 0.5s)(10.1s)
kGH(s) 

 2, 10

, 

poles  0,

zeros ,

30

30

k 
180 

60

 
0 (2) (10)0

 4

s1  0.945, s2 7.05
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  (0.05s3  0.6s2  s)  0
ds ds

dk d

s(1 0.5s)(10.1s) k  0  

0.05s3  0.6s2  s  k  0
(i)

(ii)

(iii)



k

k

0.6

0.05s3

s2

s1

s

0.6
0.60.05k

0.05s3  0.6s2  s  k  0

1 2

s   j4.5

0.6s 12 0

k 12

0

(k  0)

 2

(k  0)

10

(k  0)

j4.5(k 12)

 j4.5(k  12)

s  0.945
  4

600
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k

s(1 0.5s)(10.1s)
kGH(s) 

MATLAB method

n=[-3 -9]
m=[1 –1 –1 –15 0]
gh=tf(n,m)  
rltool(gh)

s4
 s3  s2 15s

k(3s 9)
kGH (s) 

gh=zpk([],[0 –2 -10],[1])
rltool(gh)
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UNIT-V  
BODE PLOT



Poles and Zeros and Transfer Functions

Transfer Function: A transfer function is defined as the ratio of the Laplace  
transform of the output to the input with all initial  
conditions equal to zero. Transfer functions are defined  
only for linear time invariant systems.

Considerations: Transfer functions can usually be expressed as the ratio  
of two polynomials in the complex variable, s.

Factorization: A transfer function can be factored into the following form.

G(s) 
K (s  z

1
)(s  z

2
)...(s  z

m
)

(s  p )(s  p ) ... (s  p )
1 2 n

The roots of the numerator polynomial are called zeros.

The roots of the denominator polynomial are called poles.
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Poles, Zeros and the S-Plane

An Example: You are given the following transfer function. Show the  
poles and zeros in the s-plane.

G(s)
(s  8)(s 14)

s(s  4)(s 10)

S - plane

xxo x o
0-4-8-10-14

origin

 axis

j axis

wlg
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Poles, Zeros and Bode Plots

Characterization: Considering the transfer function of the  
previous slide. We note that we have 4 different  
types of terms in the previous general form:  
These are:

, (s / z  1)
1

s (s / p  1)
K ,

1
,

B

Expressing in dB: Given the tranfer function:

G( jw)
K

B
( jw / z1)

( jw)( jw / p1)

20log | G( jw | 20log K 20log | ( jw/ z 1) | 20log | jw | 20log | jw/ p 1|
B

wlg
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Poles, Zeros and Bode Plots

Mechanics: We have 4 distinct terms to consider:

20logKB

20log|(jw/z +1)|

-20log|jw|

-20log|(jw/p + 1)|

wlg



 (rad/sec)

dB Mag

Phase  
(deg)

1 1 1 1 1 1

This is a sheet of 5 cycle, semi-log paper.
This is the type of paper usually used for
preparing Bode plots.

wlg
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Poles, Zeros and Bode Plots

Mechanics: The gain term, 20logKB, is just so many
dB and this is a straight line on Bode paper,
independent of omega (radian frequency).

The term, - 20log|jw| = - 20logw, when plotted  
on semi-log paper is a straight line sloping at
-20dB/decade. It has a magnitude of 0 at w = 1.

20

0

-20

=1

-20db/dec

wlg
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Poles, Zeros and Bode Plots

Mechanics: The term, - 20log|(jw/p + 1), is drawn with the  
following approximation: If w < p we use the  
approximation that –20log|(jw/p + 1 )| = 0 dB,  
a flat line on the Bode. If w > p we use the  
approximation of –20log(w/p), which slopes at
-20dB/dec starting at w = p. Illustrated below.
It is easy to show that the plot has an error of
-3dB at w = p and – 1 dB at w = p/2 and w = 2p.  
One can easily make these corrections if it is  
appropriate.

2
0

0

-20

-40

 = p

-20db/dec

wlg 138



Poles, Zeros and Bode Plots

20

0

-20

-40

 = z

+20db/dec

Mechanics:

139

When we have a term of 20log|(jw/z + 1)| we  
approximate it be a straight line of slop 0 dB/dec  
when w < z. We approximate it as 20log(w/z)  
when w > z, which is a straight line on Bode paper  
with a slope of + 20dB/dec. Illustrated below.
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Example 1:

Given:
G( jw)

50,000( jw10)

( jw1)( jw500)

First: Always, always, always get the poles and zeros in a form such that
the constants are associated with the jw terms. In the above example
we do this by factoring out the 10 in the numerator and the 500 in the
denominator.

G( jw)
50,000x10( jw /10 1) 100( jw /10 1)

149


500( jw1)( jw / 5001) ( jw1)( jw / 5001)

Second: When you have neither poles nor zeros at 0, start the Bode
at 20log10K = 20log10100 = 40 dB in this case.
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Example 1: (continued)

Third: Observe the order in which the poles and zeros occur.
This is the secret of being able to quickly sketch the Bode. 
In this example we first have a pole occurring at 1 which  
causes the Bode to break at 1 and slope – 20 dB/dec.
Next, we see a zero occurs at 10 and this causes a
slope of +20 dB/dec which cancels out the – 20 dB/dec,  
resulting in a flat line ( 0 db/dec). Finally, we have a  
pole that occurs at w = 500 which causes the Bode
to slope down at – 20 dB/dec.

We are now ready to draw the Bode.

Before we draw the Bode we should observe the range  
over which the transfer function has active poles and zeros.  
This determines the scale we pick for the w (rad/sec)
at the bottom of the Bode.

The dB scale depends on the magnitude of the plot and  
experience is the best teacher here.
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1 1 1 1 1 1

dB Mag Phase (deg)

 (rad/sec)

1 1 1 1 1 1

 (rad/sec)

dB Mag Phase (deg)

Bode Plot Magnitude for 100(1 + jw/10)/(1 + jw/1)(1 + jw/500)

0

20

40

-20

60

-60

-60

0.1

wlg
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Using Matlab For Frequency Response

Instruction: We can use Matlab to run the frequency response for
the previous example. We place the transfer function
in the form:

5000(s10)


[5000s50000]

(s1)(s500) [ s 2 501s500]

wlg
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The Matlab Program

num = [5000 50000];
den = [1 501 500];
Bode (num,den)

In the following slide, the resulting magnitude and phase plots (exact)  
are shown in light color (blue). The approximate plot for the magnitude  
(Bode) is shown in heavy lines (red). We see the 3 dB errors at the  
corner frequencies.
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(1 jw)(1 jw /500)
G( jw) 

100(1  jw/10)
Bode for:

wlg
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Phase for Bode Plots

Comment: Generally, the phase for a Bode plot is not as easy to draw
or approximate as the magnitude. In this course we will use  
an analytical method for determining the phase if we want to  
make a sketch of the phase.

Illustration: Consider the transfer function of the previous example.
We express the angle as follows:

G( jw) tan 1(w /10) tan 1(w /1) tan 1(w / 500)

We are essentially taking the angle of each pole and zero.  
Each of these are expressed as the tan-1(j part/real part)

Usually, about 10 to 15 calculations are sufficient to determine  
a good idea of what is happening to the phase.
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Bode Plots

Example 2: Given the transfer function. Plot the Bode magnitude.

G(s)
100(1 s /10)

s(1 s /100)2

Consider first only the two terms of

100

jw

Which, when expressed in dB, are; 20log100 – 20 logw.  
This is plotted below.

1

0

20

40

-20

The is

a tentative line we use  
until we encounter the  
first pole(s) or zero(s)  
not at the origin.

-20db/dec

wlg
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1 1 1 1 1

s(1 s /100)2

G(s)
100(1 s /10)

dB Mag Phase (deg)
0

40

20

60

-20

-40

-60

1 10

 (rad/sec)

100 10000.1

Bode Plots

Example 2: (continued)

-20db/dec

-40 db/dec

s(1 s /100)2

1

G(s)
100(1 s /10)

wlg

The completed plot is shown below.
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1 1 1 1 1 1

dB Mag

Bode Plots
Example 3:

Given:
80(1  jw)3

G(s) 
( jw)3(1 jw / 20)2

1

 (rad/sec)
0.1 10 100

40

20

0

60

-20 .

20log80 = 38 dB

-60 dB/dec

-40 dB/dec
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1 1 1

dB Mag Phase (deg)
0

20

40

60

-20

-40

-60

1 10 100 10000.1

Bode Plots

-40 dB/dec

+ 20 dB/dec

Given:

Sort of a low  
pass filter

Example 4:

2

G( jw)
10(1  jw /2)

149
 (rad/sec)

(1  j0.025w)(1  jw /500)2

1 1 1
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1 1 1 1 1 1

dB Mag Phase (deg)
0

40

20

60

-20

-40

-60

1 10 100 10000.1

Bode Plots

(1 jw / 2)2 (1 jw /1700)2

(1 jw / 30)2 (1 jw /100)2

G( jw)

-40 dB/dec

159
 (rad/sec)

+ 40 dB/dec

Given:

Sort of a low  
pass filter

Example 5
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Bode Plots

Given: problem 11.15 text


( jw)2 (0.1 jw 1)

64( jw 1)(0.01 jw1)

( jw)2 ( jw10)

640( jw1)(0.01jw 1)
H ( jw)

0.01 0.1 1 10 100 1000

0

20

40

-20

-40

dB mag

.

.

.

.

.

-40dB/dec

-20db/dec

-40dB/dec

-20dB/dec

Example 6
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Bode Plots

Design Problem: Design a G(s) that has the following Bode plot.

dB mag

 rad/sec

0

20

40

0.1 1 10 100
30 900

1000

30 dB

+40 dB/dec
-40dB/dec

? ?

Example 7

wlg
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Bode Plots

Procedure: The two break frequencies need to be found.
Recall:

#dec = log10[w2/w1]

Then we have:

(#dec)( 40dB/dec) = 30 dB

log10[w1/30] = 0.75 w1 = 5.33 rad/sec

wlg
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Also:

log10[w2/900] (-40dB/dec) = - 30dB

This gives w2 = 5060 rad/sec



Bode Plots

Procedure:

(1 s / 5.3)2 (1 s / 5060)2

G(s) 
(1 s / 30)2 (1 s / 900)2

Clearing:
(s  5.3)2 (s  5060)2

wlg
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G(s) 
(s  30)2 (s  900)2

Use Matlab and conv:

N 2(s2 10120s  2.56xe7 )

N2 = [1 10120 2.56e+7]

7.222e+8

s4

N1(s2  10.6s 28.1)

N1 = [1 10.6 28.1]

N = conv(N1,N2)

1 1.86e+3 2.58e+7 2.73e+8

s3 s2 s1 s0



Bode Plots

Procedure: The final G(s) is given by;

Testing: We now want to test the filter. We will check it at  = 5.3 rad/sec
And  = 164. At  = 5.3 the filter has a gain of 6 dB or about 2.
At  = 164 the filter has a gain of 30 dB or about 31.6.

We will check this out using MATLAB and particularly, Simulink.

(s4 1860s3  9.189e2s2  5.022e7s  7.29e8 )

wlg
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(s4 10130.6s3  2.571e8s2  2.716e8s  7.194e8 )
G(s)



Matlab (Simulink) Model:

156
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Filter Output at  = 5.3 rad/sec

157

Produced from Matlab Simulink
wlg



Filter Output at  = 70 rad/sec

158

Produced from Matlab Simulink
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Reverse Bode Plot

Required:

From the partial Bode diagram, determine the transfer function
(Assume a minimum phase system)



20
db/dec

dB

20 db/dec

-20 db/dec
30

1 110 850

68

159

Not to scale

wlg
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Reverse Bode Plot

Not to scale
50 dB

0.5

100 dB

-40 dB/dec

-20 dB/dec

40

10 dB

300
160

w (rad/sec)

-20 dB/dec

-40 dB/dec

Required:

From the partial Bode diagram, determine the transfer function
(Assume a minimum phase system)
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THANK YOU


