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Introduction

System — An interconnection of elements and devices for a desired purpose.

Control System — An interconnection of components forming a system configuration
that will provide a desired response.

Process — The device, plant, or system
under control. The input and output
relationship represents the cause-and-
effect relationship of the process.

— —

Process to be controlled.



Chapter 1: Introduction to Control Systems
Objectives

In this chapter we describe a general process for designing a control system.

A control system consisting of interconnected components is designed to achieve a
desired purpose. To understand the purpose of a control system, it is useful to
examine examples of control systems through the course of history. These early
systems incorporated many of the same ideas of feedback that are in use today.

Modern control engineering practice includes the use of control design strategies for
improving manufacturing processes, the efficiency of energy use, advanced
automobile control, including rapid transit, among others.

We also discuss the notion of a design gap. The gap exists between the complex
physical system under investigation and the model used in the control system
synthesis.

The iterative nature of design allows us to handle the design gap effectively while
accomplishing necessary tradeoffs in complexity, performance, and cost in order to

meet the design specifications. ,



Introduction

Open-Loop Control Systems
utilize a controller or control
actuator to obtain the desired
response.

Closed-Loop Control Systems
utilizes feedback to compare
the actual output to the
desired output response.

Multivariable Control System

Open-loop control system (without feedback).

—» — — >
AI— -

Closed-loop feedback control system (with feedback).
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History

Greece (BC) — Float regulator mechanism
Holland (16th Century)— Temperature regulator

Measured Boiler

Output |1
shaft

Watt’s Flyball Governor
(18th century)



History

Water-level float regulator

Floal

Valve




History
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Difference

p  Controller

—»

Process

Measurement

device

Closed-loop feedback system.




History

18th Century James Watt’s centrifugal governor for the speed control of a steam
engine.

1920s Minorsky worked on automatic controllers for steering ships.
1930s Nyquist developed a method for analyzing the stability of controlled systems

1940s Frequency response methods made it possible to design linear closed-loop
control systems

1950s Root-locus method due to Evans was fully developed
1960s State space methods, optimal control, adaptive control and
1980s Learning controls are begun to investigated and developed.

Present and on-going research fields. Recent application of modern control theory
includes such non-engineering systems such as biological, biomedical, economic and
socio-economic systems



Examples of Modern Control Systems
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(a)Automobile
steering control
system.

(b)The driver uses
the difference
between the actual

|I_:~.-si|_1-u and the desired
chirecilon . -
et o travel direction of travel
directiom
af travel to generate a
controlled adjustment
" of the steering wheel.
Digsired direction of trmvel (C) Typlcal d | I'eCtIOH-

Acctual direction of tmvel

of-travel response.

B po mse—lirection of e el




Examples of Modern Control Systems

' Fmor Control

devioe

i AC[AIOr  p— Process

Sensor i

A negative feedback system block diagram depicting a bagic closed-loop control system.
The control device is often called a “controller.”



Examples of Modern Control Systems

A manuval control system for regulating the level of fluid in a tank by adjusting the

output valve. The operator views the level of fluid through a port in the side of the tank.
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Examples of Modern Control Systems

A three-axis control system for inspecting individual
semiconductor wafers with a highly sensitive camera.



Examples of Modern Control Systems
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Coordinated control system for a boiler-generator,



Examples of Modern Control Systems
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A computer control sVslem.



Examples of Modern Control Systems

The Utah/MIT Dextrous Robotic Hand: A dextrous robotic hand having 18 degrees of
freedom, developed as a research tool by the Center for Engineering Design at the
University of Utah and the Artificial Intelligence Laboratory at MIT. It is controlled by
five Motorola 68000 microprocessors and actuated by 36 high-performance
electropneumatic actuators via high-strength polymeric tendons. The hand has three
fingers and a thumb. It uses touch sensors and tendons for control.
{Photograph by Michael Milochik. Courtesy of University of Utah.)
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Examples of Modern Control Systems
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A feedback control system model of the national income.



Examples of Modern Control Systems

A laboratory robot used for sample preparation. The robot manipulates small objects,
such as test tubes, and probes in and out of tight places at relatively high speeds [41].

(@& Copyright 1993 Hewlett-Packard Company. Reproduced with permission. )
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The Future of Control Systems

The Honda P3 humanoid robot. P3 walks, climbs stairs and tums corners.

Photo courtesy of American Honda Motor, Inc.
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The Future of Control Systems
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Future evolution of control systems and robotics.
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Control System Design

l. Establish contral goals

2. Identify the variables o control

A Write the specilications
for the variahles

4. Establizh the system configuration
and identify the acwator

5. Obtain a moxdel of the process, the

actuator, and the sensor

&, Describe a controller and select
key parameters Lo be adjusted

T Optimize the parameters and
analyze the perfommance

It the performance does not meet the specifications,
then iterate the configuration and the actuator,

[T the performance mezis the
specifications, then finalize the design,

The control system design process.



Physical System
Modeling

Sensors and
Actuators

Signals and
Systems

MECHATRONICS

Software and
Data Acquisition

Computers and
Logic Systems

Control Svstems
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Design Example

Input angle, 6,(7) 50 volts

A
e
B C
— 50 volts
®
Output

voltage, v (1

1
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Design Example

ELECTRIC SHIP CONCEPT
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Reconfigurable
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’ . ’ ,Tfsc:r':ﬂ,: v Increasing Affordability and Military Capability
« Electric Drive + Reduced manning o Warfiahi
+ Reduce # of Prime ~ * Automation artigning
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Design Example

CVN(X) FUTURE AIRCRAFT CARRIER
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Design Example
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Design Example
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Design Example

Baltery
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| de
- do motar

armplifier

(a)
Control device Actuator Process
Desired
) Adctual
speed E— E——
' speed
(vollage)
()

(a) Open-loop (without feedback) control of the speed of a turntable.
(b} Block diagram model.



Design Example
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Process
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(a) Closed-loop control of the speed of a tumtable.
(b Block diagram model.
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Design Example

Blood
glucose

Concentration

Insulin

Breakfast Lunch Dinner

The blood glucose and insulin levels for a healthy person.



Design Example

Programmed et
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(a) Open-loop (without feedback) control and
(b) closed-loop control of blood glucose.



Sequential Design Example

Rotation
of arm

Spindle

Acualor
molor

Track a
Track b
Head slider

(a) (b)

(a) A disk drive ©1999 Quantum Corporation. All rights reserved.
(b) Diagram of a disk drive.
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Sequential Design Example

Ciontrol
device

ASchuabor motar
and read arm

Sensor

il

Closed-loop control system for disk drive.
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BLOCK DIAGRAM REDUCTION
OF MULTIPLE SYSTENIS



Figure 5.2

Components of a block diagram for a linear, time-invariant system

R(s) C(s) R(s) C(s)
— _— e G(s)
[nput Output
Signals System
(a) (b)

R (s) -*C ; C(s) = Ry(s) + Ry(s) — Rs(s) R(s)
/_ R(s) R(s)_
RH(s
2(5) Ry (s) R(s)

Summing junction Pickoff point

(¢) (d)
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G,(s)

Figure 5.3

a. Cascaded subsystems;
b. equivalent transfer function

Xo(s) = Xi(s) =
G1(s)R(s) GH(5)G1(s)R(s)
> G(s) > G3(5)
(a)
R(s) C(s)
— G3(5)Ga(5)Gq(s) —

C(s) =
G1(5)G(s) G (s)R(s)

-

(b)



Figure 5.5

X,(s) = R(s) Gy(s)

a. Parallel subsystems;
b. equivalent transfer function

G(s)

Ga(s)

.
Xz(\) - R(S)Gz(s) +
o

R(s)

= ‘X_}(S) = R(\)(f}(%)
G3(s)

C(S) = [i(;l(\) . G:(S) + G3(\)]R(S) -

H

(a)

iG](S) + Gz(.\') + G3(.\') —————

(b)

C(s)
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Figure 5.6

a. Feedback control system; Input
. o transducer Controller Plant
b. simplified model; R(s) g E(s) )
. . — Gy(s) = » Ga(s) = (3(8) - -
c. equivalent transfer function " Fetutiing Output
signa
(error)
Hz(.\') - Hl(.\’) -
Feedback Output
transducer
(a)
Plant and
controller
R(s) + E(s C(s
(5) (5) G(s) . (\)>
Actuating Output
signal
(error)
H(s) |=
Feedback
(b)
R(s) G(s) C(s)

=

Input | 1 £ G(s)H(s) [ Output

(¢)
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Figure 5.7: Block diagram algebra for summing junctions

equivalent forms for moving a block
a. to the left past a summing junction;
b. to the right past a summing junction

R(s) + C(s) — R(s) + C(s)
ﬂ(%_’ G(s) pF— —— —»= G(s) |

X(s)
G(s)
(a) X(s)
R(s - C(s — R(@s) + C(s
LS)—» G(s) —>®——\)> —_— L—» G(s) A)—»
3 T i
\f(\) 1
G(s)
(b) A(s) 12



Figure 5.8: Block diagram algebra for pickoff points

equivalent forms for moving a block

a. to the left past a pickoff point;
b. to the right past a pickoff point

] R(s) G(s) R(s) G(s)
— ((5) = -
R(s) R(s) R(s) 1 R(s)
L — — G(5) H™ &) -
- - -
G(s)
(a)
R(s) G(s) R(s) G(s)
—————— — G(s) pb—
R(s) R(s) G(s) R(s) R(s) G(5)
—1 G(5) o — Gis) b——m
R(s) G(s) R(s) G(5)
s " e (;(g) - e

(b)
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Block diagram reduction via familiar forms for Example5.1

Problem: Reduce the block diagram shown in figure to a single transfer
function

—»l  (3(5) -~




Block diagram reduction via familiar forms for Example5.1 Cont.

Steps in solving Example 5.1:
a. collapse summing junctions;

b. form equivalent cascaded system
in the forward path

c. form equivalent parallel system in the

feedback path;
d. form equivalent feedback system and
multiply by cascadedG,(s)

R(s C(s
L» G (s) | G1(5) (\)>
H|(.\') ni—
H(s) fa—
(@)
s C(s
&—> Gy(s) - G3(5)Gal(s) (S)>
H](S) = HE(S) + H;(S)
(b)
R(s) G1(5)Ga(5)Gy(5) C(s)
- -
I + G3(s)Ga(s)[H(s) — Hy(s) + Hy(s)]
(¢) 45



Block diagram reduction by moving blocks Example 5.2

Problem: Reduce the block diagram shown in figure to a single transfer function

R(s) + % Vi(s)

Gofs)

G3(s)

Ve(s)

H(s)

Hy(s)

H;(s)
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Steps in the block diagram reduction for Example 5.2

a)Move G,(s) to the left past of
pickoff point to create parallel
subsystems, and reduce the
feedback system of G;(s) and Hs(s)

b)Reduce parallel pair of 1/G,(s)
and unity, and push G4(s) to the
right past summing junction

c)Collapse the summing junctions,
add the 2 feedback elements, and
combine the last 2 cascade blocks

d)Reduce the feedback system to
the left

e)finally, Multiple the 2 cascade
blocks and obtain final result.

——
(::l\)
Ris) '/\'—)\'.l(" G ":(\) Ve Vils) Gols) Va(s) - | Gals) C
—_— e (5)H] 2 (s - - ~
\S 'l 2 & 1+ Ga(3)Hals)
Fa(x)
/I:‘.\)
Vels)
¢ Hy(s)
(a)

Ris) 4 Vi(s) 4 . i Vals) 1 Gr(s) Clx)
-1 Gr(s)Goly) - - 1 el —————
c; c D Galx) 1 + Ga(s)Hy(x)
i
[ Hys) |
Gy(x)
Hys)
(b
Ris) + Vy(s) 1 Gals) Cls)
Gs)Galx) : !/ v ﬁ( L \) \ag
7 = '\(I_‘(\l ,,“\l (1'1(.\)”-.’\))
Ha(s)
— Hils) =
G yly)
(¢)
Ri(s) Gi$)Gafs) Fils) £2:1 \/ Gals) v C(s)
— =11 vy |
1+ Gols)Hy(s) + Gs)Gals)H (5) WGas) A1+ Gals)Hsls))
(d)
Ris) Gis)Gas)[1 + Gats)) Cis)
. ¥ W -
[1 4 Go(s)H5(x) + G Gals)H ()] [1+ Gyts)Hs(s)) 47
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Second-order feedback control system

R(s) + _ K C(s) _
@ s(s + a)

K
s? +as+K

Note K is the amplifier gain, As K varies, the poles move through
the three ranges of operations OD, CD, and UD

0<K<a?/4 system is over damped

K=a2/4 system is critically damped

K>a2/4 system is under damped

The closed loop transfer functionis T (S —



Finding transient response Example 5.3

R(s) + 8 25 )
s(s+35)

Problem: For the system shown, find peak time, percent overshot, and settling time.
25

Solution: The closed loop transfer functionis T (s )= —
$°+55+25

And @ =75 =5
2¢w, =5 so £=0.5
using values for £and @, and equation in chapter 4 wefind
By

Tp = — 6 sec
a)n 1_52

%0S =e /6% 100 =16.303

T. = 4 =1.6 sec
cw

n



Gain design for transient response Example 5.4

R(s) + K C(S‘)F
s(st+35)

Problem: Design the value of gain K, so that the system will respond with a 10%
overshot. K
Solution: The closed loop transfer function is T(s)= 52 + 55+ K

o, =~K and 2w, =5 thus &= >

2K

For 10% OS we find 5:0.591

We substitute this value in previous equation to find K= 17.9



Signal-flow graph components:

a. system;
b. signal;
c. interconnection of systems and signals
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Building signal-flow graphs

R(is)O O

a. cascaded system nodes Vs(s)

b. cascaded system signal-flow
graph;
C. parallel system nodes
d. parallel system signal-flow
graph;
e. feedback system nodes Ris)O

f. feedback system signal-flow
graph

R(‘\')O

‘ Gi(s)  Gols)  Gsls)

O Qcs)  Rs)O—> QOC(s)

Vi(s) (s)  V(s)
(a) (b)
O
"](,\')
O O Cs) R(s) C(s)
F5(s)
O
F3(5)
(c) (d)

| G(s)
&) O Cls) Ris) O———> C(s)
E(s) E(s)
~H(s)

(e) (f)
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Converting a block diagram to a signal-flow graph

Problem: Convert the block diagram to a signal-flow graph.

R(s) + @ Vi(s)

Gy(s)

Go(s)

G3(s)

Ve(s)

H(s)

Hy(s)

H;(s)

53



Converting a block diagram to a signal-flow graph_

O C(s)
1(8) F(y) Fals) F(x)
Signal-flow graph development:
g grap P - - &
. Vels) Fa(s) Fa(s)
a. signal nodes; i
b. signal-flow graph; |
c. simplified signal-flow graph
| | G3(s)
Ris)y O > / ) - O C(s)
‘ u'ﬁ(-\')
’,. fJ\I
1
1 Gri(s) Gay) | (73(5)
:‘\'|'~.)O U C(x)
()
Hi(s) 54

(c)



Mason’s rule - Definitions

Gel(s)

G(s) G (s) Gi(s)  Gy(s) Gs(s) G7(s)
R(s) O—»—O—>—)—» {—m - —) ((5)
Wﬂ; () V3(s) V5 (s) Vi(s)

H(s)

H;(s)

Loop gain: The product of branch gains found by traversing a path that starts at a node and ends at the
same node, following the direction of the signal flow, without passing through any other node more than
once. G,(s)Hy(s), G4(s)H,(s), G4(s)Gs(s)Hs(s), Ga(s)Ge(s)Hs(s)

Forward-path gain: The product of gains found by traversing a path from input node to output node in
the direction of signal flow. G,(s)G,(s)G5(s)G.(s)Gs(s)G;(s), G1(s)G,(s)Gs(s)G4(s)Gs(s)G,(s)

Nontouching loops: loops that do not have any nodes in common. G,(s)H;(s) does not touch G,(s)H,(s),
G4(s)Gs(s)Hs(s), and G4(s)Ge(s)Hs(s)

Nontouching-loop gain: The product of loop gains from nontouching loops taken 2, 3,4, or more at a
time.

[G(s)H1(s)][Ga(s)Ha(s)], [Ga(s)H(s)][Gals)Gs(s)Hs(s)], [Ga(s)Hy(s)][Ga(s)Ge(s)Hs(s)]
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Mason’s Rule

The Transfer function. C(s)/ R(s), of a system represented by a signal-flow graph is

T, A
Q(i):; -
Where R(S) A

K = number of forward paths
T\.= the kth forward-path gain

G(s) =

=1- loopgains+ nontouching-loop gains taken 2 ata time -  nontouching-loop
galnsztaken 3ata trrZe+ nontouching-loop gains taken 4 at a 2dime- .......

= - loop gain terms in , that touch the kth forward path. In other words,
Ak is formed @ eliminating from A those loop gains that touch the kth forward path.A K



Transfer function via Mason’s rule

Problem: Find the transfer function for the signal flow graph

Solution: Gi(s) Go(s) GA(s) Gy(s) Gs(s)

forward path R(s) O— A:' - “I, >~ ’\l, - A:' - C(s)
4(¥) (¥) )(5) (¥)

G1(s)G,(s)G3(s)G4(s)Gs(s) ! . U ‘

Loop gains

G,(s)H1(s), Ga(s)H,(s), G7(s)Ha(s), Hy(s)

G,(5)G3(s)G4(s)Gs(s)Ge(s)G(s)Gs(s)
Nontouching loops
2at a time
G,(s)H,(s)Ga(s)H,(s)
G,(s)H.(s)G(s)Ha(s)
G,(s)H2(s)G(s)Ha(s)
3 at a time G,(s)H,(s)G,(s)H,(s)G,(s)Ha(s) Hy(s)
Now

A = 1-[G2(s)H1(s)+G,(s)Hy(s)+G;(s)H,(s)+ G1(s)G3(5)G4(s)G5(5)Ge(S)G(s)Gs(s)] + [Ga(s)H1(s)Gals)H,(s) +
G,(s)H1(s)G(s)Hy(s) + G4(s)H,(s)G(s)Ha(s)] — [G,(s)H,(s)G4(s)H,(s)G5(s)Ha(s)]

Ge(s)

Aj=1-G7(s)H4(s)

T A )
G (s) =ﬁ [G(s)G{s)G (s)G (5)G (s)I[2 ZG (sH(s)]
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Signal-Flow Graphs of State Equations

P roblem draw s%nal rowrgraph for:
X, =

X,=—06X,; —2X, +2X; + 51

[
Xg=X;—3X, —4X,+7r

y =—-4x, + 6Xx, + 9X,
a. placenodes; )
b. interconnect state variables and _

derivatives;
c. form dx1/dt ;

d. form dx2/dt

R(x)

O ¥y
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Signal-Flow Graphs of State Equations

(continued)
e. form dx;/dt;
f. form output

R(s)




Alternate Representation: Cascade Form

R(s) 1 1 1 C(s)
ST2 | X35) | T3 | Xos) | sT4 |Xi(s)
C(s)_ 24
R(s) (s+2)(s+3)(s+4)
1
] S
R;(s) (}—@ Ci(s)
sCi(5)
(a)
1 1 1
24 s 1 S 1 § |
R(s) C(s)
X5(8) Xo(s) X1(s)
9 =3 —4 "



Alternate Representation: Cascade Form
|

1 s
Ri(s) O——) > Ci(5)
\(".( \)

—a;

(a)

2 (_/:) -4
= —4X, + X -4 1 0 0
I x -l g -3 1!X+0Ir
— 3X, + X4 | |
Cox, +24r L0 0 =20 A

61



C (S ) Alternat2e4Representat|on1 Pzarallel I:204rm 12
R(s) (s+2)(s+3)(s+4) (s+2) (s+3) (s +4)

X,=—2X,4 +12r

[l

X, = —3X , — 24r 1
[l =

y =c(t) =X, +X, + X3

2 0 0] (12 |
X =| 0 -3 O’X+—24r
0 o 4 2]
y=[11 1]X




Alternate Representation: Parallel Form Repeated roots

C(s) _ (s +3) 2 1 1

R(S) (5+12(s+2) (+17 (s+1) (s+2)

[

Xl:_xl +X2

[

X2: X2 +2r

[
X3: _2X3+r

y =c(t)=x, -1/2x, + X,

-1 1 0] [o
)l(:O -1 O}X+2r
0 o -2l Il
y=[1 -1/2 1]X




Alternate Representation: controller canonical form

G(s) = C(s)/R(s) = (s2+ 7s + 2)/(s3 + 9s2 + 26s + 24)
This form is obtained from the phase-variable form simply by ordering the
phase variable in reverse order
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Alternate Representation: controller canonical form

System matrices that contain the coefficients of the characteristic polynomial are
called companion matrices to the characteristic polynomial.

Phase-variable form result in lower companion matrix

Controller canonical form results in upper companion matrix



Alternate Representation: observer canonical form

Observer canonical form so named for its use in the design of observers
G(s) = C(s)/R(s) = (s2+ 7s + 2)/(s3 + 9s2 + 26s + 24)
= (1/s+7/s2+2/s3)/(1+9/s+26/s2 +24/s3)
Cross multiplying
(1/s+7/s2+2/s3)R(s) = (1+9/s+26/s2 +24/s3) C(s)
And C(s) = 1/s[R(s)-9C(s)] +1/s2[7R(s)-26C(s)]+1/s3[2R(s)-24C(s)]
= 1/s{ [R(s)-9C(s)] + 1/s {[7R(s)-26C(s)]+1/s [2R(s)-24C(s)]}}

1 1 1

s I s 1 s 1
R(s) O Oo——0O0——0O0——0O0——0O——0O——0O )

\'i(\) \7_‘1\) \.I‘\'
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Alternate Representation: observer canonical form

><|1=—9x1 + X, + T
x|2 =—206X, + Xy + /1
X , =—24x, L or
y :C(t):X1

-9 1 0] [1]
*:4601V+7“
24 0 ol 2]
y=[10 0]X

Note that the observer form has A matrix that is transpose of the
controller canonical form, B vector is the transpose of the controller C
vector, and C vector is the transpose of the controller B vector. The 2

forms are called duals.




Feedback control system for Example 5.8

R(s) + E(s) 100(s + 5) C(s)

(s +2)(s+3)

Problem Represent the feedback control system
shown in state space. Model the forward transfer

function in cascade form.
E(s) O

Solution first we model the forward transfer
function as in (a), Second we add the feedback
and input paths as shown in (b) complete system.
Write state equations

I I
X, =-3X; +X, R(s) O—>
I A3

X , = - 2%, +100(r -c)

butc =5x;+ (X, —3X;)=2X,+ X,




Feedback control system for Example 5.8

I
I

X, =-200x, -102x, +100r

y = c(t) =2x,+ X,

X :[—ggo —1102}X + Foo]r

y = [2 1]X



State-space forms for

C(s)/R(s) =(s+ 3)/[(s+ 4)(s+ 6)].
Note:y = c(t)

Form Transfer Function Signal-Flow Diagram State Equations
Phase [0
variable . S o(s+3) hir

(s + 105 + 24) '
|
5
Parallel V2 372 3
drmie 1\44)’\b(v =

Ve | (v + 1) r

Cascade YR TTS)
1
Controller | X+iol
= | —_— 3
canonical P Tirere T (k)
| 3 |
Observer Rk i
canonical




UNIT-III
TIME RESPONSE ANALYSIS



Transient vs Steady-State

The output of any differential equation can be broken up into two parts,
ea transient part (which decays to zero as t goes to infinity) and
ea steady-state part (which does not decay to zero as t goes to infinity).

y(t) =Yy (1) + Yss(t)
limy, (t) =0

t—0

Either part might be zero in any particular case.
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Prototype systems

1stOrder system C(t) N lc(t) _ kr(t)

r
2nd order system C(t) + Zé/a)nC(t) + C()r?C(t) = Kkr (t)
Agenda:

transfer function
response to test signals
impulse
step
ramp
parabolic
sinusoidal
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1storder system C(s) T

G(S) = =
Impulse response ( ) R(S) S _I_]/T

Step response

Ramp response

Relationship between impulse, step and ramp
Relationship between impulse, step and ramp responses

I’('[) — 5(t), R(S) =1, C (t) — ie—t/T 1(t)
r(t) =1(t),R(s) = l, Catep (1) = |_|_1— e | [L(t)

S

(1) =|t= T+ Te " ()

ramp

/(1) = ti(t), R(s) =;12 |
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1stOrder system

Prototype parameter: Time constant

Relate problem specific parameter to prototype parameter.

Parameters: problem specific constants. Numbers that do not change with
time, but do change from problem to problem.

We learn that the time constant defines a problem specific time scale that is more
convenient than the arbitrary time scale of seconds, minutes, hours, days, etc, or
fractions thereof.
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Transient vs Steady state

Consider the impulse, step, ramp responses computed earlier. Identify the steady
state and the transient parts.
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1St O rd e I Consider the impulse, step, ramp responses computed
earlier. Identify the steady state and the transient

SySte m parts.

Impulse response

sopremone 6o == - ¥ 750
Relationship between impulse, step and ramp R(S) S ‘|‘]7/T
Relationship between impulse, step and ramp responses
r(t) =o(t),R(s)=1, c (t) = —e 1(t)
) -1, RE =L, S Tl1e 10
S
r(t) = tL(t), R(S) ==, Cran,(t) =I|t= T+ Te " 111

Compare steady-state part to input function, transient part to TF.



2
2nd order system G(s) = € DZ“ Ko :
R(s) s“+20w.S+w;

Over damped

e (two real distinct roots = two 1storder systems with real poles)

Critically damped

*(a single pole of multiplicity two, highly unlikely, requires exact matching)

Underdamped

* (complex conjugate pair of poles, oscillatory behavior, most common)
step response

i e—g“a)nt
Corep (1) = KL_ e S|n(a)dt+tan (q/ - /;)).1(0
C, (1) = K| —2— e~<@t sin (st ) [1(t)
J1-¢7 ( )_\




2nd Order System

Prototype parameters:
undamped natural frequency,
damping ratio

Relating problem specific parameters to prototype parameters
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Transient vs Steady state

Consider the step, responses computed earlier. Identify the steady state and the
transient parts.
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2
2nd order system G(s) = € DZ“ Ko :
R(s) s“+20w.S+w;

Over damped

e (two real distinct roots = two 1storder systems with real poles)

Critically damped

*(a single pole of multiplicity two, highly unlikely, requires exact matching)

Underdamped

* (complex conjugate pair of poles, oscillatory behavior, most common)
step response

i e—g“a)nt
Corep (1) = KL_ e S|n(a)dt+tan (q/ - /;)).1(0
C, (1) = K| —2— e~<@t sin (st ) [1(t)
J1-¢7 ( )_\




Use of Prototypes

Too many examples to cover them all

We cover important prototypes

We develop intuition on the prototypes

We cover how to convert specific examples to prototypes

We transfer our insight, based on the study of the prototypes to the specific
situations.



N

Transient-Response Spedifications

Delay time, t4: The time required for the response to reach half the final value the
very first time.

Rise time, t.: the time required for the response to rise from

10% to 90% (common for overdamped and 15t order systems);

5% to 95%;

or 0% to 100% (common for underdamped systems);

of its final value

Peak time, t,:

Maximum (percent) overshoot, M,:

Settling time, t,



Derived relations for 2nd 0, = a)n\/l—g’z
Order Systems o ={w,
t ==L ¢ =% ,B:tanl(&j

Uérm
/_2
M =e =" % 100%

4 4 33
O

See book for details. (Pg. 232)

t=4T="=—" 2% t =3T=2=_"_ 5%
0 (o, GO,

Allowable M, determines dampingratio.

Settling time then determines undamped naturalfrequency.

Theory is used to derive relationships between design specifications and prototype

parameters.

Which are related to problem parameters.
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Higher order system

PFEs have linear denominators.
eeach term with a real pole has a time constant

eecach complex conjugate pair of poles has a damping ratio and an undamped
natural frequency.



Proportional control of plant w
Integrator

1

Ge(8) =K, G(8)= s(Js+b)




Integral control of Plant w disturbance

1
S(Js+Db)

G, (s) :g, G(s) =



Proportional Control of plant w/o
Integrator

1

Gc (S) =K, G(S) — To +1




Integral control of plant w/o integrator

1
Ts+1

G, (s) =§, G(s) =



UNIT-1V
STABILITY ANALYSIS IN S- DOMAIN



Routh’s Stability Criterion

How do we determine stability without finding all poles?

Actual poles provide more info than is needed.

All we need to know if any poles are in LHP.

Routh’s stability criterion (Section 5-7).

q(s) =s* +2s° +3s°4s +5
q(s) =S +25*+S+2
q(s) =s° +2s* +24s° +48s* — 255 —50

What values of K produce a stable system?

G(s) = A T(s) = )
s(s?+s+1)(s+2) 1+G(s)




The Stability of Linear Feedback Systems

The issue of ensuring the stability of a closed-loop feedback system is central to
control system design. Knowing that an unstable closed-loop system is generally
of no practical value, we seek methods to help us analyze and design stable
systems. A stable system should exhibit a bounded output if the corresponding
input is bounded. This is known as bounded-input, bounded-output stability
and is one of the main topics of this chapter.

The stability of a feedback system is directly related to the location of the roots
of the characteristic equation of the system transfer function. The Routh-—
Hurwitz method is introduced as a useful tool for assessing system stability. The
technique allows us to compute the number of roots of the characteristic
equation in the right half-plane without actually computing the values of the
roots. Thus we can determine stability without the added computational burden
of determining characteristic root locations. This gives us a design method for
determining values of certain system parameters that will lead to closed-loop
stability. For stable systems we will introduce the notion of relative stability,
which allows us to characterize the degree of stability.



The Concept of Stability

A stable system is a dynamic system with a bounded
response to a bounded input.

Absolute stability is a stable/not stable characterization for a
closed-loop feedback system. Given that a system is stable
we can further characterize the degree of stability, or the
relative stability.



The Concept of Stability

e

(a) Stable

N

Y
1T

(b) Neutral (¢) Unstable

=

The concept of stability can be
illustrated by a cone placed on
a plane horizontal surface.

A necessary and
sufficient condition for a
feedback system to be
stable is that all the
poles of the system
transfer function have

Y
1T

negative real parts.

A system is considered marginally stable if only certain bounded
inputs will resultin a bounded output.
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The Routh-Hurwitz Stability Criterion

It was discovered that all coefficients of the characteristic polynomial must
have the same sign and non-zero if all the roots are in the left-hand plane.

These requirements are necessary but not sufficient. If the above

requirements are not met, it is known that the system is unstable. But, if the

requirements are met, we still must investigate the system further to
determine the stability of the system.

The Routh-Hurwitz criterion is a necessary and sufficient criterion for the
stability of linear systems.



The Routh-Hurwitz Stability Criterion

Characteristic equation, g(s) —>a,s" + an_lsn_1 + <":ln_2S”_2 +---+ gs+a, =0

Routh array gn

an an 2 an 4

n-1

S an—1 an—3 an—5
-2

s" b b b
n-3

S Cn 1 Cn 3 Cn 5

n-1 n-3 n-5

([ J ([ J ([ J ([ J
The Routh-Hurwitz criterion . . . .
states that the number of . . . .
roots of q(s) with positive real 9 | h
parts is equal to the number i
of changes in sign of the first
column of the Routh array. h = @ )an )2, (@ns) _ =1 | 2
n-1 a a |a
n-1 n-1 n-1
bn_s :——1 an—2 an_4
an—l an—l an—3
-1|a,.; a,.
Cn_l - = 1 3
bn—l bn—l bn—S




The Routh-Hurwitz Stability Criterion
Case One: No element in the first column is zero.

Example 6.1 Second-order system

The Characteristic polynomial of a second-order system is:

q(s) = a,-5% +a1-s + ag

The Routh array is written as: S 2

1
S la, O
w here: SO bI O

az-ao — (0)-az
1= = 4dg
ay

Theref ore the requirement for a stable second-order system is
simply that al coeff icients be positive or all the coefficients be
negative.



The Routh-Hurwitz Stability Criterion
Case Two: Zeros in the first column while some elements of the row containing a
zero in the first column are nonzero.

If only one element in the array is zero, it may be replaced w ith a smal positive
number ¢ that is allow ed to approach zero after completing the array.

q(s) s + 2s* + 25 + 452 + 11s + 10

The Routh array is then:

1 2 1
s*12 4 10
b 6 0
s?|c, 10 O
s'|d, 0 0
110 0 ©
w here:
b= 2214 4 oo Ao 26 -2 LSRN
2 . - B

There are two sign changes in the first column due to the large negative number
calculated for c1. Thus, the system is unstable because two roots lie in the
right half of the plane.



The Routh-Hurwitz Stability Criterion
Case Three: Zeros in the first column, and the other elements of the row containing
the zero are also zero.

This case occurs when the polynomial q(s) has zeros located sy metrically about the
origin of the s-plane, such as (s+c)(s -o) or (s+jm)(s-jo). This case is solved using
the auxiliary polynomial, U(s), w hich is located in the row above the row containing
the zero entry in the Routh array.

q(s) $+25%+45+K

3
Routh array: S 1 4
2
S 2 K
st | &«
0 : O
S K 0

For a stable system we requirethat 0<s<8

For the marginally stable case, K=8, the s"1 row of the Routh array contains all zeros. The
auxiliary plynomial comes fromthe s"2 row.

U(s) =252 + Ks® =252 + 8 = 2(32 + 4)_2(3 +§2)(s - j2)
Itcan be proven that U(s) is a factor of the characteristic polynomial:

q(s) s+2
uis) 2 Thus, w hen K=8, the factors of the characteristic polynomial are:

q(s) ¢ +2)(s +J-2)(s - J-2)



The Routh-Hurwitz Stability Criterion
Case Four: Repeated roots of the characteristic equation on the jw-axis.

With simple roots on the jw-axis, the system will
have a marginally stable behavior. This is not the
case if the roots are repeated. Repeated roots
on the jw-axis will cause the system to be
unstable. Unfortunately, the routh-array will fail
to reveal this instability.



Example 6.4

A completely integrated, six-legged, micro robot system. The six-legeed design provides
maximum dexterity. Legs also provide a unique sensory system for environmental
interaction. It is equipped with a sensor network that includes 150 sensors of 12 different
types. The legs are instrumented so that the robot can determine the lay of the terrain, the
surface texture, hardness, and even color. The gyro-stabilized camera and range finder can
be used for eathering data beyond the robot’s immediate reach. This high-performance
system is able to walk quickly, climb over obstacles, and perform dynamic motions.
(Courtesy of IS Robotics Corporation.) 101



Example 6.5 Welding control

T Kis +a) I
is+ 1) sy 4+ 205 + 3

Welding head position control.

4 3 2
Using block diagram reduction we find that: dfs) =5 + fis” + 11s7+ (K + 6)s + Ka

The Routh array is then: g 1 11 Ka
s 6 (K +6)
s b, Ka
st C,
s° Ka
_ b3(K + 6) — 6-Ka
where: bg= S0 -K and c3= o )
6 b3

For the system to be stable both b3z and ¢z must be positive.

Using these equations a relationship can be determined forK and a .



The Relative Stability of Feedback Control Systems

It is often necessary to know the
relative damping of each root to
the characteristic equation. a
Relative system stability can be
measured by observing the

[?l;

relative real part of each root. In

this diagram r2 is relatively more &
stable than the pair of roots ‘
labeled rl.

~

e Ve e -

a

One method of determining the relative stability of
each root is to use an axis shift in the s-domain and
then use the Routh array as shown in Example 6.6
of the text.



Design Example: Tracked Vehicle Turning Control

Problem statement: Design the turning control for a tracked vehicle. Select K
and a so that the system is stable. The system is modeled below.

Track
|'.‘|L|L||.'
_ Righl ¥ix)
thollle ———8  poyertmin —® g Di rection of
Steering =——i Leontroller | 20 Vehicle iravel
— A0 S rodle I—

Difference in track speed

()
Contral ler Power Lrain and
[y vehicle &is)
- + (3 + ) a3 =
R(5) ¥ D P Sis + 205 + S i
Desinedd _
direction

of ming
ik



Design Example: Tracked Vehicle Turning Control

The characteristic equation of this system is:

1+ GeG(s) = 0

or
K(s +a)
s(s+1)(s+2)(s+5) -

Thus,
s(s+ 1)(s+2)(s+5)+K(s+a)=0

or
4 3 2 —

sT+8s"+ 17" +(K+ 10)s + Ka=0

To determine a stable region for the system, we establish the Routh array as:

st 1 17 Ka
s° 8 (K+10) 0
s b, Ka
st C,
s? Ka
where
126 — K b3(K + 10) — 8Ka
by = and C3 =
8 b3
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Design Example: Tracked Vehicle Turning Control

// Selected K and a

s* 1 17 Ka
5% 8 (K+10) 0
2
S b, Ka
st C, 3.0
0
S Ka
20
where
126 —-K ba(K + 10) — 8Ka a
bs = and Cy=
8 b3 Stable
1.0 region
Therefore, 0.6
K <126
0 |
K-a>0 0 50

(K + 10)(126 — K) — 64Ka> 0

70

100

126

150



System Stability Using MATLAB

53 I 2
+ e — 1
r(\]__\"‘+,\'2+2\+23 il 5
- § 1 24
lst sign change
5t —22 0
- 5 2nd sign change

Closed-loop control system with T(s) = Y{s WR(s) = /(57 + 5= + 2x . o o

N

==numg=[1]; deng=[1 1 2 23]; sysg=tf{numg.deng);
»=sys=feedback{sysq.[1]);
=>=pole(sys)

dns =

-3.0000
1.0000 + 2.6458

: Unstable poles
1.0000 - 2.6458]
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System Stability Using MATLAB

| Prisginary axis

K > — -
_ 7+ 25 + 45

3 - - -

: : g :
o - - ﬁ_ R s @ dce e e e

: ; ; E -8
o T U S T

: L E=8 e
0 e S e S R o Mook - T - S - i - S YT S TR+ wm o me e cmmn e e
b Toeremsing KL e
. N e L= = = P Y U

i
a
R
1
—i

% Thiz script computess the roots of the characteristic
"% equalion qis)l =82+ 2 52 +4 3 + K for OcK<20

=
K=[0: 0.5:201, _
i=1:langt ik}
g={1 24 K{i|]; [Loop for o is as
pi.il= |'|:u:t5:|'.q'| g a function of &

potirsalip) imagip).'«"), grid
zlab=sl'Real axi='), ylaksl{"lmaginary axis')

ik

k4



System Stability Using MATLAB

Loop

The end statement
must ke included to
indicate the end of
the loop.

Cieneral format

variable=expression

statement

E.tat:ernent

Example

i=1:10) Counter §
ali=20;

b=alii+2"; @ is a veclor

with 10 elements.

f718 a scalar that
changes as § increments.

The for function and an illustrative example.
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System Stability Using MATLAB

25
2.0 [ Mgt S (@ =06,K = 70)
L= PRUTRU v~ S SN S O T
T 40 Stable region |- e TP e .............
05— = . Bivene S
020 40 &0 8o 100 120
K
(a)

twotrackstable.m

% The a-K stability reqgion for the two track vehicle
% control protlem
s
a=[0.1:0.01:3.0]; K=[20:1:120];
H:D'K: :.":':l 'K;
n=lengthik); m=lengthia);
fori=1:n
far j=1:m i} o
a=[1, 8, 17, Kii+1 0, Ky al)L BRI Skl
p=roots(q); polynomial
if maxirealip)) = 0, xii=Kii); yiii=aij-1); break; end
end ) ) o )
end 1.-.u|' a given "n.'g'lll!l.." :TI K: d::.h:rmm-:
first value of @ for instability.

Range of @ and K

Initialize plot vectors as zero
vectors of appropriate lengths.

plat(ey), arid, xlabel'K'), viakbel'a'

(k)

(a) Stability region for ¢ and & for two-track vehicle tuming control.

(b) Marras script.
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Root Locus

Motivation

To satisfy transient performance requirements, it may be necessary to know how to
choose certain controller parameters so that the resulting closed-loop poles are in the
performance regions, which can be solved with Root Locustechnique.

*Definition
A graph displaying the roots of a polynomial equation when one of the parametersin
the coefficients of the equation changes from 0O to .

‘Rules for Sketching Root Locus

Examples

Controller Design Using Root Locus

Letting the CL characteristic equation (CLCE) be the polynomial equation, one can use
the Root Locus technique to find how a positive controller design parameter affects the
resulting CL poles, from which one can choose aright value for the controller
parameter.
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Poles and zeros

K(s —7,)(s-12,)---(s—-2,)  “wf2rZw zeros

F(S) — ‘ poles
(S—P)(S—P2)---(S—Py)  PuP2r Py
4 Im-axis
>
¢ ¢ Re—axis
>
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2

Closed-loop transfer function : 0,

T(s) =—°
) 2 +2{w s+ °

e—§a)nt -
y(t) =1- \/7 sin(w, \/1-&2t+cos™* &)
1_
Jo1 Im—axis
P ja)n:‘l/‘?ﬁ
o o
—Cw, Re-axis
>
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Ps

P2

P

ja) A

ja)n \[1_ é/ZT

\/.

N/

N/

6,< 6,<6,

= 1 =Gy Gy
=T =Tuo>T5
—> 0.5.,< 0.5., <0.S.,
W3 > Wnp ™ D,

— Tsl — TsZ — Ts3
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0, 6,6,

P P2 P
- < =61 =6, <65

\if

—> 0.5.;> 0.S., =0.5.5
o = Tu=T,,=T,

a)nB >~ C‘)nz >~ a)nl
= T4<T,<Tg
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Root locus

r(t) y(t)
:, > G(s) >
+

T(s) = y(s) _ KG(S)
R(s) 1+kG(s)H(s)

1+ kG(S)H(S) =0 ===> [




RO s

— kG(s)H (s) = -1
KG(s)H (s) =1
/KG(s)H (s) = (2n +1) 7

<k_

=0—> w

C Draw the s-plan root locus

—




Root locus properties:

(i) The locus segments are symmetrical about the real axis.

(ii)
N S
G(s)H (s)|
(i) k >0, G(s)H(s)=> zeros
. Jo .
93 ' ------------------------------
< ZG(s)H ) = G- (6, +6,+6,)
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(i) Loci Branches each locus from poles to ke k — o0
if N ==m forexcess zeros or poles, locus segments extend from
infinity.
W n-m>0

n—-m branches - «©
2) n—-m=<0

m—-n  branches 00 — Zeros

120



(ii) Real axis seaments

121



Fs _

it n=6m=2 0= 1870=450
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(iv) Centroid of the asymptotes

example 3
G(s)H(s) =
(s +2)(s* +65+18)
Zero : 0 i ]
Poles: -2, -3+j3, -3-j3 0 = (+2-3+3-3-)3)-0 —_4

3-1

=180 _gpr

123



(v) Breakaway and entry points -

k
s(s+1)(s+2)

1+kcH =0 [

3 2
1. kGHzS + 35 +23+k:O

s(s+1)(s+2)

example  kGH =

k=—(s°+ 35*+25)
dk

— =-35°+65+2=0
ds

s =-0.423,-1.577
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(vi) Angle of departure and approach

k(s+2)
(s +1+ ))(s+1-))

example  kGH =

Angle of departure from the pole: s=—-1— J

Z(s+2)-Z(s+1+ j)— Z(s+1- |)=-180°
AES+2§—¢D(—4(5 i)l_ j)(= —186?)

Z(-1- j+2)— ¢ — £(~1- j+1- ) =180,

=180+ /(-1- J+2)—- Z(-1- J+1-])
%=2250 ( 1+2)
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R (CE) [ CB)

example S(s+1)
Angle of approach to the zero: S = J

4£s+ jg+4(s— j)—«£s-Z(s+1)=-180°
Z(S+ )+ @y — £s—Z£(s+1)=-180,

Z(J+ 1) +¢n— 24— Z£(]+1) =-180
¢ =—180, —Z(J+ )+ L)+ Z(] +1)
¢n=-135




(vii) The cross point of root locus and Im-axis

k

example kGH =

s(s+3)(s* +2s+2)

S(s+3)(s*+25+2)+k =0 .
$* +55° +8s2+65+k =0 = 3 1 8 k
S 5 6
204 — 25k , 34
-0 S
34 - 7 ok

k=28.16 o 204 —25k
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R(S) ) C(s)
; T , —

KGH(s) = K
s(1+0.5s)(1+0.15s)
0 poles=0, -2, -10 s(1+0.5s)(1+0.1s)+k =0
Zeros =oo, o, oo 0.055*+ 0.6s°+s + k=0
(jii)
0=0t(2)+(-10)-0_ , %=—1(0.0533+ 0.65°+5) =0
(i) 3-0 ds S
0, :&:60 S = —0.945, 822—7.05
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0.058°+ 0.6s°+s + k=0 k=12
s° 0.05 1

2 _
o2 0.6 ] mem) 0.65°+12 =0

o 0.6 —-0.05k S = ij4.5
0.6 T
S Kk
14.5(k =12)
. S= —0.945
210 0
—J4.5(k=12)
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k

KGH(s) = 5(1+0.58)(1+0.15)

gh=zpk([],[0 -2 -10],[1])
rltool(gh)

k(-3s—9)
—s>—s2-15s

kGH(s) =

n=[-3 -9]
m=[1-1-1-150]
gh=tf(n,m)
rltool(gh)

MATLAB method
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BODE PLOT



Poles and Zeros and Transfer Functions

Transfer Function: A transfer function is defined as the ratio of the Laplace
transform of the output to the input with all initial
conditions equal to zero. Transfer functions are defined
only for linear time invariant systems.

Considerations: Transfer functions can usually be expressed as the ratio
of two polynomials in the complex variable, s.

Factorization: A transfer function can be factored into the following form.

G(s) = K(s+z)(s+12)..(s+2)
(s+p)(s+p)..(s+p)

The roots of the numerator polynomial are called zeros.

The roots of the denominator polynomial are called poles.
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An Example:

Poles, Zeros and the S-Plane

You are given the following transfer function. Show the
poles and zeros in the s-plane.
G(s) = (s+8)(s+14)
s(s+4)(s+10)
1 jo axis
S -plane
origin
o X o é =
14 -10 -8 0 O axis

wlg
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Poles, Zeros and Bode Plots

Characterization:  Considering the transfer function of the

previous slide. We note that we have 4 different
types of terms in the previous general form:
These are:

1 1

K., =, , (s/z+1)
s (s/p +1)

Expressing in dB: Given the tranfer function:

K,(jw/z+1)

G(jw)=
(w)(yw/ p+1)

20log | G( jw|=20log K +20log | (jw/z +1)|—-20log| jw|—20log | jw/ p +1|
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Poles, Zeros and Bode Plots

Mechanics: We have 4 distinct terms to consider:
20logKg
20log| (jw/z +1) |
-20log|jw]|

-20log| (jw/p +1)]

|
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dB Mag

1 1 1

This is a sheet of 5 cycle, semi-log paper.
This is the type of paper usually used for
preparing Bode plots.

o (rad/sec)

Phase
(deg)
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Poles, Zeros and Bode Plots

Mechanics: The gain term, 20logKg is just so many
dB and this is a straight line on Bode paper,
independent of omega (radian frequency).

The term, - 20log|jw| = - 20logw, when plotted
on semi-log paper is a straight line sloping at
-20dB/decade. It has a magnitude of 0 at w = 1.

20

2 N

|
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Poles, Zeros and Bode Plots

Mechanics: Theterm, - 20log|(jw/p + 1), is drawn with the
following approximation: If w < p we use the
approximation that —20log| (jw/p +1)| =0 dB,
a flat line on the Bode. If w > p we use the
approximation of —20log(w/p), which slopes at
-20dB/dec starting at w = p. lllustrated below.

It is easy to show that the plot has an error of
-3dBatw=pand—1dBatw=p/2 andw = 2p.
One can easily make these correctionsiif it is
appropriate.

-20

-40
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Mechanics:

Poles, Zeros and Bode Plots

When we have a term of 20log|(jw/z + 1) | we
approximate it be a straight line of slop 0 dB/dec
when w < z. We approximate it as 20log(w/z)
when w >z, which is a straight line on Bode paper
with a slope of + 20dB/dec. lllustrated below.

20

+20db/dec

-20

-40

|
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Gi : i
Given: G( jw)= E_?0,000(-]W+10)
(jw+1)(jw+500)

First: Always, always, always get the poles and zeros in a form such that
the constants are associated with the jw terms. In the above example
we do this by factoring out the 10 in the numerator and the 500 in the
denominator.

G(jw)= 50,000x10( jw/10+1) B 100( jw/10+1)
500( jw+1)(jw/500+1)  (jw+1)(jw/500+1)
Second: When you have neither poles nor zeros at 0, start the Bode

at 20log;,K = 20log;;,100 = 40 dB in this case.

|
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Example 1: (continued)

Third: Observe the order in which the poles and zeros occur.
This is the secret of being able to quickly sketch the Bode.

In this example we first have a pole occurring at 1 which
causes the Bode to break at 1 and slope — 20 dB/dec.
Next, we see a zero occurs at 10 and this causes a

slope of +20 dB/dec which cancels out the — 20 dB/dec,
resulting in a flat line ( 0 db/dec). Finally, we have a
pole that occurs at w = 500 which causes the Bode

to slope down at — 20 dB/dec.

We are now ready to draw the Bode.

Before we draw the Bode we should observe the range
over which the transfer function has active poles and zeros.
This determines the scale we pick for the w (rad/sec)

at the bottom of the Bode.

The dB scale depends on the magnitude of the plot and
experience is the best teacher here. Wl 11



Bode Plot Magnitude for 100(1 + jw/10)/(1 + jw/1)(1 +jw/500)

dB Mag

60

40

20

-20

-60

-60

0.1

10

100
o (rad/sec)

1000

10000

Phase (deg)

wlg

142



Using Matlab For Frequency Response

Instruction: We can use Matlab to run the frequency response for
the previous example. We place the transfer function

in the form:

5000(s+10) _ [5000s+50000]
(s+1)(s+500) [s*+501s+500]

The Matlab Program

num = [5000 50000];
den =[1 501 500];
Bode (hum,den)

In the following slide, the resulting magnitude and phase plots (exact)
are shown in light color (blue). The approximate plot for the magnitude
(Bode) is shown in heavy lines (red). We see the 3 dB errors at the

corner frequencies.

|
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Phase (deg); Magnitude (dB)

To: Y(1)

40

30 |

Bode Diagrams

From: U(1)

20 |

10

1 10 100 500

-20 F

-40

-60 -

-80

-100

1100(1 + jw/10)
(1+ jw)(1+ jw/500)

Bodefor: G(jw)=

10° 10t 102

Frequency (rad/sec)

10°
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lllustration:

Phase for Bode Plots

Generally, the phase for a Bode plot is not as easy to draw

or approximate as the magnitude. In this course we will use
an analytical method for determining the phase if we want to
make a sketch of the phase.

Consider the transfer function of the previous example.
We express the angle as follows:

ZG(jw)=tan*(w/10)—tan*(w/1)—tan*(w/500)

We are essentially taking the angle of each pole and zero.
Each of these are expressed as the tan1(j part/real part)

Usually, about 10 to 15 calculations are sufficient to determine
a good idea of what is happening to the phase.

|
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|Bode Plots I

Example 2: Given the transfer function. Plot the Bode magnitude.

_100(1+5s/10)
s(1+s/100)

Consider first only the two terms of
100
jw

G(s)

Which, when expressed in dB, are; 20log100 — 20 logw.
This is plotted below.

~N .
g The is
40 . . .
||| -20db/dec a tentative line we use
dB 20 I until we encounter the
S first pole(s) or zero(s)
0 . .
not at the origin.
-20
wlg
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Bode Plots

Example2: (continued) The completed plot is shown below.
G(s) _100(1+s/10)
s(1+s/100)

1 1 1 1 1 1

60

o THIS

20

dB Mag 0 -40 db/dec Phase (deg)

-20

6(s) L0001+ 5/10)
w0 \ s(1+s/100)

-60

0.1 1 10 100 1000
wlg
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Bode Plots
Example 3: \

Given: G(s)= ( jWE)B?((lljjjv\\,/VfZO)z 2010880 = 38 dB
60
dB Mag 40
2
0
20

0.1 1 10 100 wig
o (rad/sec)



Bode Plots

Example 4:

- 110(1 — jw /2)
Given: G(jw)=
lven (1 +j0.025w)(1 + jw /500)?

1 1 1

1 1

40

20

dB Mag 0 Phase (deg)

-20 Sort of a low
pass filter

-40

-60

0.1 1 2 10 100 1000 wig
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Bode Plots

— (L+ jw/30) (L+ jw/100)
: + Jw “(1+ Jw i
G(jw)= A= S S
(1+ jw/2)*(1+ jw/1700)
1 1 1 1 1 1
60
40
20
dB Mag 0
-40 dB/dec
-20
20 I+4OdB/dec
ailivg
-60
0.1 1 10 100 1000

o (rad/sec)

Phase (deg)

Sort of alow

pass filter
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Bode Plots

Given: problem 11.15 text

_ 640(jw+1)(0.01jw+1) 64(jw-+1)(0.01jw+1)

H (jw)= "2 w20,
(Jw)*(jw+10) (Jw)*(0.1jw+1)
I I T TTTIII
-40dB/dec
40
-20db/dec
\\
20
\ -40dB/dec
dB mag 0 \
-20
-20dB/dec
N
-40 \
0.01 0.1 10 100 1000



Bode Plots

Design Problem: I Design a G(s) that has the following Bode plot.

40

20

dB mag

30d

+40

/

-40dB/dec

/de:ﬁﬂ,{
I

?

0.1

30
10

o rad/sec

100

900
1000
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Bode Plots

Procedure: | The two break frequencies need to be found.

Recall:

#dec = logyo[w,/w,]

Then we have:

(#dec)( 40dB/dec) =30dB

log,0[W,/30] = 0.75 » W, =5.33 rad/sec

log,,[w,/900] (-40dB/dec) = - 30dB

This gives w, = 5060 rad/sec

|
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Bode Plots

Procedure: |

G(S) _ (1+ 3/53)2 (1+ 3/5060)2

(1+5/30)2(1+s/900)?
Clearing: G(s) (5 + 5.3 (s + 5060
(s +30)?(s +900)°

Use Matlab and conv:

N1=(s*+ 10.6s +28.1) N2=(s? +10120s + 2.56xe")
N1=[110.6 28.1] N2 = [1 10120 2.56e+7]

N = conv(N1,N2)
1 1.86e+3 2.58e+7 2.73e+8 7.222e+8
s4 s3 s2 sl sO

|
we 154



Bode Plots

| Procedure: | The final G(s) is given by;

)= (s*+10130.6s° + 2.571e"s* + 2.716e°s + 7.194¢°)

G(s
( (s* +1860s° +9.189e%s* +5.022e’s + 7.29¢°)

We now want to test the filter. We will check it at ® = 5.3 rad/sec
And ® = 164. At ® = 5.3 the filter has a gain of 6 dB or about 2.
At ® = 164 the filter has a gain of 30 dB or about 31.6.

Testing:

We will check this out using MATLAB and particularly, Simulink.

|
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Matlab (Simulink) Model:

> ]
Scopel Scope
s44+10103.653+2 57 1e+7524+2.716e85+7.194e8
s4+1860s 34+9.189e552+5.022e75+7.29e8
Sine YWave

Transfer Fcn

— in ®_’ ' S aut

Clock
ToWorkspace? ToWorkspace]

To Waorkspace
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Frequency response of a band pass filter
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Filter Response for and Input of 70 radfsec

[N}
=

Input and Output
— — [
= = = =

P
=

£
=

| Produced from Matlab Simulink |

|
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Required:

68

30

dB

Reverse Bode Plot

From the partial Bode diagram, determine the transfer function
(Assume a minimum phase system)

Not to scale

20 db/dec

-20 db/dec

1 110 850 |
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Reverse Bode Plot

Required:
From the partial Bode diagram, determine the transfer function

- (Assume a minimum phase system)

100dB | !
'\ -40dB/dec

Not to scale

50dB | ; ........
5 -20dB/dec

-20dB/dec

773 S O ——
. | ' -40 dB/dec

0.5 40 300

wlg
w (rad/sec)
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THANK YOU



