
 
 
 

ELECTRONICS AND COMPUTER ENGINEERING 

 

 

 

 

LECTURE NOTES 

 

 

Data Base Management 

System 

 

 
 

 

 

 

J.B. INSTITUTE OF ENGINEERING AND TECHNOLOGY 
(UGC AUTONOMOUS) 

Bhaskar Nagar, Moinabad Mandal , R.R. District, Hyderabad  -500075  



 

 

UNIT-I 

 

---------------------------------------------------------------------------------------------------------------- 

 

 Introduction to Database systems 

 

 Basic definitions 

 

 DBMS Application 

 
 File Systems Vs DBMS 

 
 View of DATA 

 

 History of Database Systems 

 

 Data models 

 

 Network and hierarchal model 

 
 Relational model 

 

 E-R model 

 

 Features of the ER model 

 
 ER diagram 

 

 Conceptual design with ER model 

 

 Relational model 

 

 Integrity constraints of relations 

 

 Enforcing Integrity constraints 

 

 Database languages 

 

 DB Language (DML, DDL) 

 
 DB Users and Administrator 

 
 Data storage and Querying 

 

 DBMS Architecture  
 
 
 

 

2 | P a g e 



 

 

UNIT-1 
 

CONCEPTUAL MODELLING 

 

 Introduction to Database systems 
 

 

DATABASE:-A database is a collection of information that is organized so that it can be 

easily accessed, managed and updated. Data is organized into rows, columns and tables, and it 

is indexed to make it easier to find relevant information. Data gets updated, expanded and 

deleted as new information is added. Databases process workloads to create and update 

themselves, querying the data they contain and running applications against it. DATA: - Any 

factor that can be stored. 
 
Example: text, numbers, images, videos and speech. 
 
 

Database Applications: A Database application is a computer program whose primary purpose 

is entering and retrieving information from a computerized database. 

 

 Banking: all transactions 
 
 Airlines: reservations, schedules 
 
 Universities: registration, grades 
 
 Sales: customers, products, purchases 
 
 Online retailers: order tracking, customized recommendations 
 
 Manufacturing: production, inventory, orders, supply chain 
 
 Human resources: employee records, salaries, tax deductions 
 
 Databases touch all aspects of our lives 
 
 

 

What Is a DBMS? 

 

A Database Management System (DBMS) is a software package designed to interact with end-

users, other applications, store and manage databases. A general-purpose DBMS allows the 

definition, creation, querying, update, and administration of databases. 
 
 A very large, integrated collection of data.

 Models real-world enterprise. Entities (e.g., students, courses) Relationships (e.g., 

Madonna is taking CS564).
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DBMS contains information about a particular enterprise 
 

 Collection of interrelated data 
 
 Set of programs to access the data 
 
 An environment that is both convenient and efficient to use 
 

Why Use a DBMS? 

 

A database management system stores, organizes and manages a large amount of information 

within a single software application. It manages data efficiently and allows users to perform 

multiple tasks with ease. 
 

 Reduced application development time.

 Data integrity and security.

 Uniform data administration.

 Concurrent access, recovery from crashes.
 

Why Study Databases?? 

 

 Shift from computation to information at the “low end”: scramble to webspace (a
 

mess!) at the “high end”: scientific applications 
 

 Datasets increasing in diversity and volume. Digital libraries, interactive video, Human 

Genome project, EOS project ... need for DBMS exploding

 DBMS encompasses most of CS OS, languages, theory, AI, multimedia, logic.
 
 
 
 

Purpose of Database Systems: 

 

In the early days, database applications were built directly on top of file systems. A DBMS 

provides users with a systematic way to create, retrieve, update and manage data. It is a 

middleware between the databases which store all the data and the users or applications which 

need to interact with that stored database. A DBMS can limit what data the end user sees, as 

well as how that end user can view the data, providing many views of a single database 

schema. 

 

Database + database management system = database system 

 

Drawbacks of using file systems to store data: 

 

 Data redundancy and inconsistency.


 Multiple file formats, duplication of information in different files. 
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 Difficulty in accessing data.


 Need to write a new program to carry out each new task.


 Data isolation — multiple files and formats


 Integrity problems


 Hard to add new constraints or change existing ones


 Atomicity of updates


 Failures may leave database in an inconsistent state with partial updates carried out 


 Example: Transfer of funds from one account to another should either complete or not 

happen at all


 Concurrent access by multiple users


 Concurrent accessed needed for performance


 Uncontrolled concurrent accesses can lead to inconsistencies


 Example: Two people reading a balance and updating it at the same time


 Security problems


 Hard to provide user access to some, but not all, data 


 Database systems offer solutions to all the above problems
 
 
 
 

Files vs. DBMS: 

 

A file processing system is a collection of programs that store and manage files in computer 

hard-disk. On the other hand, a database management system is collection of programs that 

enables to create and maintain a database. File processing system has more data redundancy, less 

data redundancy in dbms. 

 

 Application must stage large datasets between main memory and secondary 

storage (e.g., buffering, page-oriented access, 32-bit addressing, etc.)


 Special code for different queries


 Must protect data from inconsistency due to multiple concurrent users


 Crash recovery


 Security and access control 
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View of Data 

 

Architecture for a database system: 

 

A database system is a collection of interrelated data and a set of programs that allow users to 

access and modify these data. The main task of database system is to provide abstract view of 

data i.e hides certain details of storage to the users. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Data Abstraction: 

 

Major purpose of dbms is to provide users with abstract view of data i.e. the system hides cert 

ain details of how the data are stored and maintained. Since database system users are not 

computer trained,developers hide the complexity from users through 3 levels of abstraction , to 

simplify user’s interaction with the system. 

 

Levels of Abstraction 

 

 Physical level of data abstraction: Describes how a record (e.g., customer) is stored. This 

is the lowest level of abstraction which describes how data are actually stored. 
 
 Logical level of data abstraction: The next highest level of abstraction which hides what 

data are actually stored in the database and what relations hip exists among them. Describes 

data stored in database, and the relationships among the data. 
 

type customer = record; 

customer_id:string; 

customer_name:string; 
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customer_stree:string; 
 

customer_city : string; 
 

end; 

 

 View Level of data abstraction: The highest level of abstraction provides security 

mechanism to prevent user from accessing certain parts of database. Application programs 

hide details of data types. Views can also hide information (such as an employee’s salary) 

for security purposes and to simplify the interaction with the system. 
 

Summary 

 

 DBMS used to maintain, query large datasets. 

 

 Benefits include recovery from system crashes, concurrent access, quick 

application development, data integrity and security. 

 
 Levels of abstraction give data independence. 

 

 A DBMS typically has a layered architecture. 

 

 DBAs hold responsible jobs and are well-paid! 

 

 DBMS R&D is one of the broadest, most exciting areas in CS. 
 
 
 

 

Instances and Schemas: 

 

Similar to types and variables in programming languages. Database changes over time when 

information is inserted or deleted. 

 

Instance – the actual content of the database at a particular point in time analogous to the value 

of a variable is called an instance of the database. 

 

Schema – the logical structure of the database called the database schema. Schema is of three 

types: Physical schema, logical schema and view schema. 

 

 Example: The database consists of information about a set of customers and accounts 

and the relationship between them)Analogous to type information of a variable in a 

program
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Physical schema: Database design at the physical level is called physical schema. How the 

data stored in blocks of storage is described at this level. 

 

Logical schema: database design at the logical level Instances and schemas, programmers and 

database administrators work at this level, at this level data can be described as certain types of 

data records gets stored in data structures, however the internal details such as implementation 

of data structure is hidden at this level. 

 

View schema: Design of database at view level is called view schema. This generally describes 

end user interaction with database systems. 
 

 

Physical Data Independence – The ability to modify the physical schema without changing 

the logical schema. 
 

Applications depend on the logical schema 

 

In general, the interfaces between the various levels and components should be well defined so 

 

that changes in some parts do not seriously influence others. 

 

Example: University Database 

 

Conceptual schema: 

 

Students(sid: string, name: string, login: string,  age: integer, gpa:real) 

 

Courses(cid: string, cname:string, credits:integer) 

 

Enrolled(sid:string, cid:string, grade:string) 

 

Physical schema: Relations stored as unordered files. 

 

Index on first column of Students. 

 

External Schema (View): 

 

Course_info(cid:string,enrollment:integer) 

 

Data Independence: 

 

Applications insulated from how data is structured and stored. 

 

Logical data independence: Protection from changes in logical structure of data.  
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Physical data independence: Protection from changes in physical structure of data. 
 
 
 

 

History of Database Systems: 

 

 1950s and early 1960s: 

 

–Data processing using magnetic tapes for storage 

 

 Tapes provide only sequential access 

 

–Punched cards for input 

 

 Late 1960s and 1970s: 

 

–Hard disks allow direct access to data 

 

–Network and hierarchical data models in widespread use 

 

–Ted Codd defines the relational data model 

 

 Would win the ACM Turing Award for this work 

 

 IBM Research begins System R prototype 

 

 UC Berkeley begins Ingres prototype 

 

–High-performance (for the era) transaction processing 

 

 1980s: 

 

–Research relational prototypes evolve into commercial systems 

 

  SQL becomes industry standard 

 

–Parallel and distributed database systems 

 

–Object-oriented database systems 

 

 1990s: 

 

–Large decision support and data-mining applications 

 

–Large multi-terabyte data warehouses  
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–Emergence of Web commerce 

 

 2000s: 

 

–XML and XQuery standards 

 

–Automated database administration 

 

–Increasing use of highly parallel database systems 

 

–Web-scale distributed data storage systems 
 
 
 
 
 

Data Models: 

 

A Data Model is a logical structure of Database. It is a collection of concepts for describing 

data, reflects entities, attributes, relationship among data, constrains etc. A schema is a 

description of a particular collection of data, using the given data model. The relational model 

of data is the most widely used model today. it is a collection of tools for describing 

 

–   Data 
 

–   Data relationships 
 

–   Data semantics 
 

–   Data constraints 
 

–   Relational model 
 

–   Entity-Relationship data model (mainly for database design) 
 

–   Object-based data models (Object-oriented and Object-relational) 
 

–   Semi structured data model (XML) 
 

–   Other older models: 
 

 Network model 
 

 Hierarchical model 
 

Every relation has a schema, which describes the columns, or fields. 

 

Different types of data models are: 

 

 Relational model: The relational model uses a collection of tables to represent both data and 

relationships among those data. Each table has multiple columns with unique name. 
 

–   It is example of record based model  
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–   These models are structured is fixed-format of several types. 
 

–   Each table contains records of particular type 
 

–   Each record type defines fixed number of fields, or attributes. 
 

–   The columns of the table correspond to attributes of the record type. 
 

The relational data model is the most widely used data model and majority of current database 

systems are based on relational model. 

 

 Entity-relationship model: The E-R model is based on a perception of real world that 

consists of basic objects called entities and relationships among these objects. An entity is a 

‘thing’ or ‘object’ in the real world, E-R model is widely used in database design. 

 
 
 

Introduction to Database Design: 

 

 Conceptual design:  (ER Model is used at this stage.) 

 

–What are the entities and relationships in the enterprise? 

 

–What information about these entities and relationships should we store in the 

database? 

 
–What are the integrity constraints or business rules that hold? 

 

–A database `schema’ in the ER Model can be represented pictorially (ER 

diagrams). 

 
–Can map an ER diagram into a relational schema. 

 

ER Model:  
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 Entity: Real-world object distinguishable from other objects. An entity is described (in  

DB) using a set of attributes. 

 
 Entity Set: A collection of similar entities. E.g., all employees. 

 

– All entities in an entity set have the same set of attributes. (Until we consider 

ISA hierarchies, anyway!) 

 
–    Each entity set has a key. 

 

–    Each attribute has a domain.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Relationship: Association among two or more entities. E.g., Attishoo works in 

Pharmacy department. 

 
 Relationship Set:  Collection of similar relationships. 

 

–An n-ary relationship set R relates n entity sets E1 ... En; each relationship in R 

involves entities e1 E1, ..., en En 

 

 Same entity set could participate in different relationship sets, or in different “roles” in 

same set. 

 

Modeling: 

 

 A database can be modeled as: 

 

–a collection of entities, 

 

–relationship among entities.  
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Entities and Entity Sets: 

 

 An entity is an object that exists and is distinguishable from other objects. 

Example: specific person, company, event, plant 

 
 Entities have attributes 

 

Example: people have names and addresses 

 

 An entity set is a set of entities of the same type that share the same properties. 

Example: set of all persons, companies, trees, holidays 

 
Example:Entity Sets customer and loan  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Attributes: 

 

 An entity is represented by a set of attributes, that is descriptive properties possessed by all 

members of an entity set. 

 
 Domain – the set of permitted values for each attribute 

 

 Attribute types: 

 

–Simple and composite attributes.  
 
 
 

13 | P a g e 



 
–Single-valued and multi-valued attributes Example: 

multivalued attribute: phone_numbers 

 
–Derived attributes can be computed from other attributes 

Example: age, given date_of_birth 

 
 

 

 Composite Attributes  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Mapping Cardinality Constraints 

 

 Express the number of entities to which another entity can be associated via a relationship 

set. 

 
 Most useful in describing binary relationship sets. 

 

 For a binary relationship set the mapping cardinality must be one of the following 

types: 

 
–One to one 

 

–One to many 

 

–Many to one 

 

–Many to many  
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Mapping Cardinalities: 

 

Note: Some elements in A and B may not be mapped to any elements in the other set  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Mapping Cardinalities 

 

Note: Some elements in A and B may not be mapped to any elements in the other set  
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Relationships and Relationship Sets 

 

 A relationship is an association among several entities 

 

A relationship set is a mathematical relation among n  2 entities, each taken from 

 

entity sets 

 

 {(e1, e2, … en) | e1   E1, e2  E2, …, en  En}where (e1, e2, …, en) is a relationship 

 

– Example: 

 

(Hayes, A-102)  depositor 

 

Relationship Set borrower  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

An attribute can also be property of a relationship set.  
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 For instance, the depositor relationship set between entity sets customer and account 

 

may have the attribute access-date 

 

Degree of a Relationship Set 

 

 Refers to number of entity sets that participate in a relationship set. 

 

 Relationship sets that involve two entity sets are binary (or degree two). Generally, 

most relationship sets in a database system are binary. 

 
 Relationship sets may involve more than two entity sets. 

 

 Example: Suppose employees of a bank may have jobs (responsibilities) at multiple 

branches, with different jobs at different branches. Then there is a ternary relationship 

set between entity sets employee, job, and branch

 

 Relationships between more than two entity sets are rare. Most relationships are binary.  
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Weak Entities 

 

 A weak entity can be identified uniquely only by considering the primary key of another 

(owner) entity. 

 
 Owner entity set and weak entity set must participate in a one-to-many 

 

relationship set (one owner, many weak entities). 

 

 Weak entity set must have total participation in this identifying relationship set. 

 

Weak Entity Sets 

 

 An entity set that does not have a primary key is referred to as a weak entity set. 

 

 The existence of a weak entity set depends on the existence of a identifying entity set 

 

 it must relate to the identifying entity set via a total, one-to-many relationship  
 
 

set from the identifying to the weak entity set 

 

 Identifying relationship depicted using a double diamond 

 

 The discriminator (or partial key) of a weak entity set is the set of attributes that 

distinguishes among all the entities of a weak entity set. 

 
 The primary key of a weak entity set is formed by the primary key of the strong entity 

 

set on which the weak entity set is existence dependent, plus the weak entity set’s 

discriminator. 
 
 depict a weak entity set by double rectangles. 

 

 underline the discriminator of a weak entity set  with a dashed line. 

 

 payment_number – discriminator of the payment entity set 

 

 Primary key for payment – (loan_number, payment_number) 

 

 Note: the primary key of the strong entity set is not explicitly stored with the weak 

entity set, since it is implicit in the identifying relationship. 

 
 If loan_number were explicitly stored, payment could be made a strong entity, but then 

 



the relationship between payment and loan would be duplicated by an implicit 

relationship defined by the attribute loan_number common to payment and loan 
 
More Weak Entity Set Examples 

 

 In a university, a course is a strong entity and a course_offering can be modeled as a 

weak entity 

 
 The discriminator of course_offering would be semester (including year) and 

 

section_number (if there is more than one section) 

 

 If we model course_offering as a strong entity we would model course_number as an 

 

attribute. 

 

Then the relationship with course would be implicit in the course_number attribute  
 

Aggregation  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Relationship sets works_on and manages represent overlapping information 

 

–    Every manages relationship corresponds to a works_on relationship 

 

 However, some works_on relationships may not correspond to any manages relationships. 
 

So we can’t discard the works_on relationship 

 

 Eliminate this redundancy via aggregation 

 



–    Treat relationship as an abstract entity 

 

–    Allows relationships between relationships 

 

–    Abstraction of relationship into new entity 

 

 Without introducing redundancy, the following diagram represents: 

 

–    An employee works on a particular job at a particular branch 

 

–    An employee, branch, job combination may have an associated manager 

 

E-R Diagram with Aggregation  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Conceptual Design with ER Model 

 

Design choices: 

 

–   Should a concept be modeled as an entity or an attribute? 

 

–   Should a concept be modeled as an entity or a relationship? 

 

–   Identifying relationships: Binary or ternary? Aggregation?  
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 Constraints in the ER Model: 

 

–   A lot of data semantics can (and should) be captured. 

 

–   But some constraints cannot be captured in ER diagrams. 

 

Entity vs. Attribute 

 

 Should address be an attribute of Employees or an entity (connected to Employees by a 

relationship)? 

 
 Depends upon the use we want to make of address information, and the semantics of the 

data: 

 

If we have several addresses per employee, address must be an entity (since attributes cannot 

be set-valued). 

 

If the structure (city, street, etc.) is important, e.g., we want to retrieve employees in a given 

city, address must be modeled as an entity (since attribute values are atomic). 
 
  
 An example in the other direction: a ternary relation Contracts relates entity sets Parts, 

Departments and Suppliers, and has descriptive attribute qty. No combination of binary 

. relationships is an adequate substitute: 
 

S “can-supply” P, D “needs” P,and D “deals-with” S does not imply that D 
 

has agreed to buy P from S. 

–How do we record qty? 

 

Introduction to relational model 

 

Relational Database: Definitions 

 

 Relational database: a set of relations 

 

 Relation: made up of 2 parts: 

 

– Instance : a table, with rows and columns. 

#Rows = cardinality, #fields = degree / 

arity. 

 
– Schema : specifies name of relation, plus name and type of each column. E.G. 

Students (sid: string, name: string, login: string, age: integer, gpa: real). 

 
 Can think of a relation as a set of rows or tuples (i.e., all rows are distinct). 



 

Example Instance of Students Relation 
 

sid name login age gpa 
     

53666 Jones jones@cs 18 3.4 
     

53688 Smith smith@eecs 18 3.2 
     

53650 Smith smith@math 19 3.8 
      
 

Cardinality = 3, degree = 5, all rows distinct 

 

Do all columns in a relation instance have to be distinct? 

 

Relational Query Languages A major strength of the relational model: supports simple, 

powerful querying of data. 

 

 Queries can be written intuitively, and the DBMS is responsible for efficient evaluation. 

 

–   The key: precise semantics for relational queries. 

 

– Allows the optimizer to extensively re-order operations, and still ensure that the answer does 

not change. 

Creating Relations in SQL 

 

 Creates the Students relation. Observe that the type of each field is specified, and enforced 

by the DBMS whenever tuples are added or modified. 

 

CREATE TABLE Students (sid CHAR(20), name CHAR(20),login CHAR(10),age: 
 

INTEGER, gpa: REAL) 

 

 As another example, the Enrolled table holds information about courses that students take. 

 

CREATE TABLE Enrolled (sid: CHAR(20),cid: CHAR(20), grade: CHAR(2)) 

 

Integrity Constraints (ICs) over Relations: 

 

 IC: condition that must be true for any instance of the database; e.g., domain constraints. 

 

 ICs are specified when schema is defined. 

 

 ICs are checked when relations are modified. 

 

 A legal instance of a relation is one that satisfies all specified ICs.  
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 DBMS should not allow illegal instances. 

 

 If the DBMS checks ICs, stored data is more faithful to real-world meaning. 

 

– Avoids data entry errors, too! 

 

Primary Key Constraints 

 

 A set of fields is a key for a relation if : 

 

 No two distinct tuples can have same values in all key fields, and 

 

 This is not true for any subset of the key. 

 

– Part 2 false? A superkey. 

 

– If there’s >1 key for a relation, one of the keys is chosen (by DBA) to be the 

 

primary key. 

 

 E.g., sid is a key for Students. (What about name?) The set {sid, gpa} is a superkey.  
 
 
 
 

Primary and Candidate Keys in SQL 

 

 Possibly many candidate keys (specified using UNIQUE), one of which is chosen as the 
primary key. 

  

Foreign Keys, Referential Integrity 

 

 Foreign key : Set of fields in one relation that is used to `refer’ to a tuple in another  

 

relation. (Must correspond to primary key of the second relation.) Like a `logical 

pointer’. 
 
 E.g. sid is a foreign key referring to Students: 
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Foreign Keys in SQL 

 

 Only students listed in the Students relation should be allowed to enroll for courses. 

 

Enforcing Integrity constraints 

 

 Consider Students and Enrolled; sid in Enrolled is a foreign key that references 

Students. 

 
 What should be done if an Enrolled tuple with a non-existent student id is inserted? 

(Reject it!) 

 
 What should be done if a Students tuple is deleted? 

 

– Also delete all Enrolled tuples that refer to it. 

 

 

 



– 

 

– 

 

– 

Disallow deletion of a Students tuple that is referred to. 

 

Set sid in Enrolled tuples that refer to it to a default sid. 

 

(In SQL, also: Set sid in Enrolled tuples that refer to it to a special value null, 

 

denoting `unknown’ or `inapplicable’.) 

 

 Similar if primary key of Students tuple is updated. 

 

Referential Integrity in SQL 

 

 SQL/92 and SQL:1999 support all 4 options on deletes and updates. 

 

– 

 

– 

 

– 

 

Default is NO ACTION (delete/update is rejected) 

 

CASCADE (also delete all tuples that refer to deleted tuple) 

 

SET NULL / SET DEFAULT  (sets foreign key value of referencing tuple) 

 

Where do ICs Come From? 

 

 ICs are based upon the semantics of the real-world enterprise that is being described in the 

database relations. 

 
 We can check a database instance to see if an IC is violated, but we can NEVER infer 

that an IC is true by looking at an instance. 

 
– 

 

– 

 
An IC is a statement about all possible instances! 

 

From example, we know name is not a key, but the assertion that sid is a key is 

 

given to us. 

 

 Key and foreign key ICs are the most common; more general ICs supported too. 

 

Data base Languages: 

 

Data Control Language (DCL): It is used to control privilege in database. To perform any 

operations like creating tables, view and modifying we need privileges which are of two types.  

 

System:- Creating session and tables are types of system privilege.  
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Object:- Any command or query to work on tables comes under object privilege. 

 

DCL defines two commands GRANT and REVOKE. 

 

GRANT:-Gives user access privilege to database. 

 

REVOKE: - To take back permissions from users. 

 

CONNECTING TO ORACLE: 

 

CONNECT<USER NAME>/<PASSWORD>@<DATABASE NAME>; 

 

Create user login: 

 

CREATE USER <USER_NAME> IDENTIFIED BY <PASSWORD>; 

 

Provide roles: 

 

GRANT CONNECT, CREATE SESSION, RESOURCE TO <USER_NAME>; 

 

Provide privileges: 

 

GRANT ALL PRIVILEGES TO <USER_NAME>; 

 

Data Definition Language (DDL): 

 

 Specification notation for defining the database schema by a set of definitions. 
 
 DDL compiler generates a set of tables stored in a data dictionary 
 
 Data dictionary contains metadata (i.e., data about data) 
 
 Database schema 
 
 Data storage and definition language 
 
 Specifies the storage structure and access methods used 
 
 Integrity constraints 
 
 Domain constraints 
 
 Referential integrity (e.g. branch_name must correspond to a valid to branch in the branch 

table) 
 
 Authorization 
 
 Procedural – user specifies what data is required and how to get those data 
 
 Declarative (nonprocedural) – user specifies what data is required without specifying 

how to get those data. 
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DDL: Data Definition Language 
 

All DDL commands are auto-committed. That means it saves all the changes permanently in 

the database. 
 
       

 

Command 
   

Description 
 

     
       

       

 create    to create new table or database  
       

       

 

alter 
   

for alteration 
 

     
       

       

 truncate    delete data from table  
       

       

 

drop 
   

to drop a table 
 

     
       

       

 rename    to rename a table  
       

        
 

 

CREATE command: 
 

create is a DDL command used to create a table or a database. 
 

Creating a database 
 

To create a database in RDBMS, create command is uses. Following is the Syntax, 

Create database database-name; 
 

Example for creating database 
 

Create database Test; 
 

The above command will create a database named Test. 
 

 

Creating a table 
 

create command is also used to create a table. We can specify names and datatypes of various 

columns along. Following is the Syntax, 
 

create table table-name 
 

{ 
 

Column-name1 datatype1, 
 

Column-name2 datatype2, 
 

Column-name1 datatype3, 
 

Column-name2 datatype4 
 

}; 
 

Create table command will tell the database system to create a new table with given table 

name and column information. 
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Example for creating table 
 

Create table Student(id int, name varchar, age int); 
 

The above command will create a new table Student in database system with 3 columns, 

namely id, name and age. 
 
 
 

ALTER command 
 

alter command is used for alteration of table structures. There are various uses 

of alter command, such as, 
 
 to add a column to existing table


 to rename any existing column


 to change datatype of any column or to modify its size.


 alter is also used to drop a column.
 

 

To add column to existing table 
 

Using alter command we can add a column to an existing table. Following is the Syntax, 

Alter table table-name add(column-name datatype); 

 

Here is an Example for this, 
 

Alter table student add(address char); 
 

The above command will add a new column address to the Student table 
 

 

To add multiple column to existing table 
 

Using alter command we can even add multiple columns to an existing table. Following is the 

Syntax, 
 
Alter table table-name add(column1 datatype1, column2 datatype2, column3 datatype3, 
 

colum4 datatype4); 
 

Here is an Example for this, 
 

Alter table student add(father_name varchar(60), mother_name varchar(60), DOB date); 

 

 Date input format is:- ’date-month-year’ i.e ’10-jan-2016’


 

The above command will add three new columns to the Student table  
 

 

To add column with default value  
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alter command can add a new column to an existing table with default values. Following is the 

Syntax, 
 
alter table table_name add (column_name datatype default data); 
 

 

Here is an Example for this, 
 

alter table Student add(branch char default ‘CSE'); 
 

The above command will add a new column with default value to the Student table  
 

 

To modify an existing column 
 

alter command is used to modify data type of an existing column . Following is the Syntax, 
 

alter table table-name modify(column-name datatype); 
 

Here is an Example for this, 
 

alter table Student modify(address varchar(30)); 
 

The above command will modify address column of the Student table  
 

 

To rename a column 
 

Using alter command you can rename an existing column. Following is the Syntax, 
 

alter table table-name rename old-column-name to new-column-name; 
 

Here is an Example for this, 
 

alter table Student rename address to Location; 
 

The above command will rename address column to Location.  
 

 

To drop a column 
 

alter command is also used to drop columns also. Following is the Syntax, 
 

alter table table-name drop(column-name); 
 

Here is an Example for this, 
 

alter table Student drop(address); 
 

The above command will drop address column from the Student table  
 

 

SQL queries to Truncate, Drop or Rename a Table 
 

truncate command 
 

truncate command removes all records from a table. But this command will not destroy the 

table's structure. When we apply truncate command on a table its Primary key is 

initialized. Following is its Syntax, 
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truncate table table-name 
 

Here is an Example explaining it. 
 

truncate table Student; 
 

The above query will delete all the records of Student table. 
 

 

truncate command is different from delete command. delete command will delete all the rows  

from a table whereas truncate command re-initializes a table(like a newly created table). 
 
eg. If you have a table with 10 rows and an auto_increment primary key, if you  use delete 

command to delete all the rows, it will delete all the rows, but will not initialize the primary 

key, hence if you will insert any row after using delete command, the auto_increment primary 

key will start from 11. But in case of truncatecommand, primary key is re-initialized. 
 
 
 

drop command 
 

drop query completely removes a table from database. This command will also destroy the 

table structure. Following is its Syntax, 
 
drop table table-name; 
 

Here is an Example explaining it. 
 

drop table Student; 
 

The above query will delete the Student table completely. It can also be used on Databases. 

For Example, to drop a database, 
 
drop database Test; 
 

The above query will drop a database named Test from the system.  
 

 

rename query 
 

rename command is used to rename a table. Following is its Syntax, 
 

rename table old-table-name to new-table-name 

Here is an Example explaining it. 
 
rename table Student to Student-record; 
 

The above query will rename Student table to Student-record.  
 

 

DML COMMANDS: 

 

INSERT command 
 

Insert command is used to insert data into a table. Following is its general syntax,  
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insert into table_name values(data1,data2,…….); 
 

Lets see an example, 
 

Consider a table Student with following fields. 
 

 S_id S_Name  age 

     

 INSERT into Student values(101,'Adam',15);   

 The above command will insert a record into Student table.   
     
     

 S_id S_Name  age 
     
     
    

 101 Adam  15 
     
      

 

Example to Insert NULL value to a column 
 

Both the statements below will insert NULL value into age column of the Student table. 
 

INSERT into Student(id,name) values(102,'Alex'); 
 

Or, 
 

INSERT into Student values(102,'Alex',null); 
 

The above command will insert only two column value other column is set to null. 
 
           

 

S_id 
  

S_Name 
   

age 
  

        
           
        

       

101   Adam  15   
         

         

         

 102   Alex       
           
           

            
 

 

Example to Insert Default value to a column 
 

INSERT into Student values(103,'Chris',default); 
 
           

 

S_id 
  

S_Name 
   

age 
  

        
           
         

       

101   Adam   15   
          

          

 

102 
  

Alex 
      

         
           
           

       

103   chris   14   
           

            
Suppose the age column of student table has default value of 14.  
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Also, if you run the below query, it will insert default value into the age column, whatever the 
 

default value may be. 
 

INSERT into Student values(103,'Chris');  
 
 

 

UPDATE command 
 

Update command is used to update a row of a table. Following is its general syntax, 
 

UPDATE table-name set column-name = value where condition; 
 

Lets see an example, 
 

update Student set age=18 where s_id=102; 
 
          

 

S_id 
  

S_Name 
   

age 
 

       
          
       

      

101   Adam  15  
       

      

       

 102   Alex    18  
          
       

      

103   chris  14  
          

           

 

Example to Update multiple columns 
 

UPDATE Student set s_name='Abhi',age=17 where s_id=103; 

The above command will update two columns of a record. 
 
           

 

S_id 
  

S_Name 
   

age 
  

        
           
          

        

101   Adam   15   
          
          

        

 

102 
  

Alex 
   

18 
  

        
           
           

        

103   Abhi   17   
           

           

            
 

3) Delete command 
 

Delete command is used to delete data from a table. Delete command can also be used with 

condition to delete a particular row. Following is its general syntax, DELETE from table-

name; 

 

 

 

 
 



Example to Delete all Records from a Table  
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DELETE from Student; 
 

The above command will delete all the records from Student table. 
 

 

Example to Delete a particular Record from a Table 
 

Consider the following Student table 
 
          

 

S_id 
  

S_Name 
   

age 
 

       
          
          

      

101   Adam   15  
        

      

 

102 
  

Alex 
   

18 
 

       
          
        

      

103   Abhi   17  
          

           
DELETE from Student where s_id=103; 

 

The above command will delete the record where s_id is 103 from Student table. 
 
           

 

S_id 
  

S_Name 
   

age 
  

        
           
           

        

101   Adam  15   
         

        

 

102 
  

Alex 
   

18 
  

        
           
           

           

            
 

TCL command 
 

Transaction Control Language(TCL) commands are used to manage transactions in 

database.These are used to manage the changes made by DML statements. It also allows 

statements to be grouped together into logical transactions. 

 
 

Commit command 
 

Commit command is used to permanently save any transaaction into database. 

Following is Commit command's syntax, 
 

commit; 
 

 

Rollback command 
 

This command restores the database to last commited state. It is also use with savepoint 

command to jump to a savepoint in a transaction. Following is Rollback command's 

syntax, 
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rollback to savepoint-name; 
 

 

Savepoint command 
 

savepoint command is used to temporarily save a transaction so that you can rollback to 

that point whenever necessary. 
 

Following is savepoint command's syntax, 
 

savepoint savepoint-name; 
 

 

Example of Savepoint and Rollback 
 

Following is the class table, 
 
      

 

ID 
  

NAME 
 

    
      
    

    

1   abhi 
    

    

 

2 
  

adam 
 

    
      
    

    

4   alex 
      
      
       

Lets use some SQL queries on the above table and see the results. 
 

INSERT into class values(5,'Rahul'); 
 

commit; 
 

UPDATE class set name='abhijit' where 

id='5'; savepoint A; 
 

INSERT into class values(6,'Chris'); 
 

savepoint B; 
 

INSERT into class values(7,'Bravo'); 
 

savepoint C; 
 

SELECT * from class; 
 

The resultant table will look like, 
  

Now rollback to savepoint B 
 

rollback to B; 
 

SELECT * from class; 
 

The resultant table will look like 
  

Now rollback to savepoint A 
 

rollback to A; 
 

SELECT * from class; 
 

The result table will look like 
  
 



DCL command  
  
Data Control Language(DCL) is used to control privilege in Database. To perform any 

operation in the database, such as for creating tables, sequences or views we need privileges. 

Privileges are of two types, 
 
 System : creating session, table etc are all types of system privilege. 


 Object : any command or query to work on tables comes under object 

privilege. DCL defines two commands,

 Grant : Gives user access privileges to database.


 Revoke : Take back permissions from user.
 

 

To Allow a User to create Session 
 

grant create session to username; 
 

 

To Allow a User to create Table 
 

grant create table to username; 
 

 

To provide User with some Space on Tablespace to store Table 

alter user username quota unlimited on system; 

 
 

To Grant all privilege to a User 
 

grant sysdba to username 
 

 

To Grant permission to Create any Table 
 

grant create any table to username 
 

 

To Grant permission to Drop any Table 
 

grant drop any table to username 
 

 

To take back Permissions 
 

revoke create table from username 
 
 
 
 

Data Base Access from Application Programs: 

 

SQL: Application programs generally access databases through one of  
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–Language extensions to allow embedded SQL 

 

–Application program interface (e.g., ODBC/JDBC) which allow SQL queries to 

 

be sent to a database. 

 

Customer: 

 

Example: Find the name of the customer with customer-id 192-83-7465 

SQL>select customer.customer_name 
 

 

Example: Find the balances of all accounts held by the customer with customer-Id 192-83-

7465. 
 
SQL>select account.balance 
 

from depositor,account 
 

where depositor.customer_id=‘192-83-7465’and 

depositor.account_number = account.account_number; 

 
 

Database Architecture: 

 

The architecture of a database systems is greatly influenced by the underlying computer system 

on which the database is running: 
 
 Centralized 

 

 Client-server 

 

 Parallel (multiple processors and disks) 

 

 Distributed  
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Overall System Structure  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Database Application Architectures:  
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Transaction Management: 

 

 A transaction is a collection of operations that performs a single logical function in a 

database application A transaction in a database system must maintain atomicity, 

consistency, isolation, and durability − commonly known as ACID properties properties − 

in order to ensure accuracy, completeness, and data integrity. 

 
 Transaction-management component ensures that the database remains in a consistent 

(correct) state despite system failures (e.g., power failures and operating system crashes) 

and transaction failures. 
 
 Concurrency-control manager controls the interaction among the concurrent transactions, 

to ensure the consistency of the database. 

 
 

Data storage and Querying: 

 

A database system is partitioned into modules that deal with each of the responsibilities of the 

overall system. The functional components of the database system are 
 

–   Storage management 
 

–   Query processing 
 

–   Transaction processing 
 

Storage Management 

 

 Storage manager is a program module that provides the interface between the low-level 

data stored in the database and the application programs and queries submitted to the 

system. 

 
 The storage manager is responsible to the following tasks:  

 

–   Interaction with the file manager 
 

–   Efficient storing, retrieving and updating of data 
 

–   Authorization and integrity manager 
 

–   Integrity 
 

–   Transaction manager 
 

–   File manager 
 

–   Buffer manager  
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 Issues: 

 

–   Storage access 
 

–   File organization 
 

–   Indexing and hashing 

 

Query Processing 

 

 Parsing and translation 
 
 Optimization 
 
 Evaluation  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Alternative ways of evaluating a given query 

 

–   Equivalent expressions 

 

–   Different algorithms for each operation 

 

 Cost difference between a good and a bad way of evaluating a query can be enormous 

 

 Need to estimate the cost of operations 

 

– Depends critically on statistical information about relations which the database must 

maintain 
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– Need to estimate statistics for intermediate results to compute cost of complex 

expressions 

 
 
 

 

Database Users and Administrators:  

 

Database Users 

 

Users are differentiated by the way they expect to interact with the system 

 

 Application programmers – interact with system through DML calls 

 

 Sophisticated users – form requests in a database query language 

 

 Specialized users – write specialized database applications that do not fit into the 

traditional data processing framework 

 
 Naïve users – invoke one of the permanent application programs that have been written 

 

previously 

 

– Examples, people accessing database over the web, bank tellers, clerical staff 

 

Database Administrator 

 

 Coordinates all the activities of the database system 

 

–has a good understanding of the enterprise’s information resources and needs. 

 

Database administrator's duties include: 

 

–Storage structure and access method definition 

 

–Schema and physical organization modification 

 

–Granting users authority to access the database 

 

–Backing up data 

 

–Monitoring performance and responding to changes 

 

–Database tuning.  
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UNIT-II 
 

Relational Approach 

 

----------------------------------------------------------------------------------------------------- 
 
 

 

 Relational Algebra 

 

 Operations 

 
 Query examples 

 
 
 
 
 Relational Calculus 

 
 Tuple Relational Calculus 

 
 Domain Relational Calculus 

 

 Expressive power of algebra and calculus  
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 Basic operations: 

 

– Selection ( ) Selects a subset of rows from relation. 
         

– Projection (  ) Deletes unwanted columns from relation.  
        

– Cross-product ( ) Allows us to combine two relations. 

– Set-difference  ( ) Tuples in reln. 1, but not in reln. 2. 

– Union ( ) Tuples in reln. 1 and in reln. 2. 
          

 
 
 

 Additional operations: 

 

– Intersection, join, division, renaming: Not essential, but (very!) useful. 

 

 Since  each  operation  returns  a  relation,  operations  can  be  composed!  (Algebra  is 
 

“closed”.)  
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 Deletes attributes that are not in projection list. 

 

 Schema of result contains exactly the fields in the projection list, with the same names that 

they had in the (only) input relation. 

 
 Projection operator has to eliminate duplicates! (Why??) 

 

– Note:  real  systems  typically  don’t  do  duplicate  elimination  unless  the  user  
 

explicitly asks for it. (Why not?)  
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 Selects rows that satisfy selection condition. 

 

 No duplicates in result! (Why?) 

 

 Schema of result identical to schema of (only) input relation. 

 

 Result relation can be the input for another relational algebra operation! (Operator 

composition.) 

 
 
 

 

Set Operations: 

 

Union, Intersection, Set-Difference 

 

 All of these operations take two input relations, which must be union-compatible: 

 

– 

 

– 

 

Same number of fields. 

 

`Corresponding’ fields have the same type. 

 

 What is the schema of result?  
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Cross-Product 

 

 Each row of S1 is paired with each row of R1. 

 

 Result schema has one field per field of S1 and R1, with field names `inherited’ if 
 

possible. 

 

– Conflict: Both S1 and R1 have a field called sid.  
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 Condition Join: 

 

 Result schema same as that of cross-product. 

 

 Fewer tuples than cross-product, might be able to compute more efficiently 

 

 Sometimes called a theta-join. 

 

 Equi-Join:   A  special  case  of  condition  join  where  the  condition  c  contains  only 
 

equalities. 

 

 Result schema similar to cross-product, but only one copy of fields for which equality is 
 
specified. 

 

 Natural Join: Equijoin on all common fields.  
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Find names of sailors who’ve reserved boat #103 

 

 Solution 1: 

 

 Find names of sailors who’ve reserved a red boat 

 

 Information about boat color only available in Boats; so need an extra join: 

 

Find sailors who’ve reserved a red or a green boat 

 

 Can identify all red or green boats, then find sailors who’ve reserved one of these boats:  

 

Find sailors who’ve reserved a red and a green boat 

 

 Previous approach won’t work! Must identify sailors who’ve reserved red boats, sailors 

who’ve reserved green boats, then find the intersection (note that sid is a key for Sailors): 
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Relational Calculus: 

 

 Comes in two flavors:  Tuple relational calculus (TRC) and Domain relational calculus 
 

(DRC). 

 

 Calculus has variables, constants, comparison ops, logical connectives and quantifiers. 

 

– TRC: Variables range over (i.e., get bound to) tuples. 
    

– DRC: Variables range over domain elements (= field values). 
   

– Both TRC and DRC are simple subsets of first-order logic. 

 

 Expressions in the calculus are called formulas. An answer tuple is essentially an assignment 

of constants to variables that make the formula evaluate to true. 

 

Tuple Relational Calculus: 

 

TRC – a declarative query language 

 

TRC Formulas 

 

Atomic expressions are the following: 

 

 r ( t ) -- true if t is a tuple in the relation instance r 

 

 t1. Ai t2 .Aj compOp is one of {, ≥, =, ≠ } 

 

 t.Ai c c is a constant of appropriate type 

Composite expressions: 

 
 Any atomic expression 
 F1 ∧ F2 ,, F1 ∨ F2 , ¬ F1 where F1 and F2 are expressions 

 

 (∀t) (F), (∃t) (F) where F is an expression and t is a tuple variable Free Variables 

 

Bound Variables – quantified variables 

 

Obtain the rollNo, name of all girl students in the Maths Dept  
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{s.rollNo,s.name | student(s) ^ s.sex=‘F’ ^ (∃ d)(department(d) ^ d.name=‘Maths’ ^ d.deptId = s.deptNo)}  

 

s: free tuple variable 

 

d: existentially bound tuple variable 

 

Determine the departments that do not have any girl students 

 

student (rollNo, name, degree, year, sex, deptNo, advisor) department (deptId, name, 

hod, phone) 
{d.name|department(d)  ̂¬(∃ s)(student(s)  ̂s.sex =‘F’  ̂s.deptNo = d.deptId)  

 

Obtain the names of courses enrolled by student named Mahesh 

 
{c.name | course(c) ^ (∃s) (∃e) ( student(s) ^ enrollment(e) ^ s.name = “Mahesh” ^ s.rollNo = e.rollNo ^ c.courseId = e.courseId }  

 

Get the names of students who have scored ‘S’ in all subjects they have enrolled. 

Assume that every student is enrolled in at least one course. 
{s.name | student(s)  ̂(∀e)(( enrollment(e)  ̂e.rollNo = s.rollNo) → e.grade =‘S’)}  

 

Get the names of students who have taken at least one course taught by their advisor 

 
{s.name | student(s) ^ (∃e)(∃t)(enrollment(e) ^ teaching(t) ^ e.courseId = t.courseId ^ e.rollNo = s.rollNo ^ t.empId = s.advisor} 

 
 
 
 

 

Domain Relational Calculus: 

 

 Query has the form: 

 

DRC Formulas 

 

 Atomic formula: 

 

– 

 

, or X op Y, or X op constant 

 

– 

 

op is one of  
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 Formula: 

 

– an atomic formula, or        

– , where p and q are formulas, or 

– , where variable X is free in p(X), or 

– , where variable X is free in p(X) 

• The use of quantifiers and is said to bind X. 

– A variable that is not bound is free.   

Free and Bound Variables         

• The use of quantifiers and in a formula is said to bind X. 

– A variable that is not bound is free.   
          

 

 Let us revisit the definition of a query: 

 

Find all sailors with a rating above 7 

 

 The condition ensures that the domain variables I, N, T and A are bound to fields of the same 

Sailors tuple. 

 

• The term to the left of `|’ (which should be read as such that) says that every tuple 
 

that satisfies T>7 is in the answer. 

 

 Modify this query to answer: 

 

– Find sailors who are older than 18 or have a rating under 9, and are called ‘Joe’. 

 

Find sailors rated > 7 who have reserved boat #103 

 

 We have used  as a shorthand for 

 

 Note the use of to find a tuple in Reserves that `joins with’ the Sailors tuple under  
 

consideration. 

 

Find sailors rated > 7 who’ve reserved a red boat 

 

 Observe how the parentheses control the scope of each quantifier’s binding.   
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 This may look cumbersome, but with a good user interface, it is very intuitive. (MS Access, 

QBE) 

 

Find sailors who’ve reserved all boats 

 

• Find all sailors I such that for each 3-tuple either it is not a tuple in Boats or there is a 
 

tuple in Reserves showing that sailor I has reserved it. 

 

Find sailors who’ve reserved all boats (again!) 

 

 Simpler notation, same query. (Much clearer!) 

 

 To find sailors who’ve reserved all red boats: 

 

Expressive Power of Algebra and Calculus 

 

 It is possible to write syntactically correct calculus queries that have an infinite number of 

answers! Such queries are called unsafe. 

 

– e.g., 

 

 It is known that every query that can be expressed in relational algebra can be expressed as a 

safe query in DRC / TRC; the converse is also true. 

 
 Relational Completeness: Query language (e.g., SQL) can express every query that is 

expressible in relational algebra/calculus. 
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UNIT-III 

 

Basic SQL Query 

 

---------------------------------------------------------------------------------------------------------------- 

 

1.SQL Data definition 

 

Introduction to Schema Refinement 

 

 Functional Dependencies 

 

 Normal Forms 

 

 Decompositions 

 

 Schema refinement in database design 

 

 Fourth Normal Form 

 

 Fifth normal form  
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The Form of a Basic SQL Queries: 

 

History 

 

 IBM Sequel language developed as part of System R project at the IBM San Jose 

Research Laboratory 

 
 Renamed Structured Query Language (SQL) 

 

 ANSI and ISO standard SQL: 

 

– SQL-86 

 

– SQL-89 

 

– SQL-92 

 

– SQL:1999 (language name became Y2K compliant!) 

 

– SQL:2003 

 

 Commercial systems offer most, if not all, SQL-92 features, plus varying feature sets from 

later standards and special proprietary features. 

 

– Not all examples here may work on your particular system. 

 

 Data Definition Language 

 

 The schema for each relation, including attribute types. 

 

 Integrity constraints 

 

 Authorization information for each relation. 

 

 Non-standard SQL extensions also allow specification of 

 

– The set of indices to be maintained for each relations. 

 

– The physical storage structure of each relation on disk. 

 

 Create Table Construct 

 

 An SQL relation is defined using the create table command:  
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create table 
 
r (A1 D1, A2 D2, ..., An Dn, 

 

(integrity-constraint1), 
 

..., 
 

(integrity-constraintk)) 

 

– 

 

– 

 

r is the name of the relation 

 

each Ai is an attribute name in the schema of relation r 

 

– 
 

Di is the data type of attribute Ai 

 

Example: 

 

create table branch 
 

(branch_name char(15), 
 

branch_city char(30), 
 

assets integer) 

 

 Domain Types in SQL 

 

 char(n). Fixed length character string, with user-specified length n. 

 

 varchar(n). Variable length character strings, with user-specified maximum length n. 

 

 int. Integer (a finite subset of the integers that is machine-dependent). 

 

 smallint. Small integer (a machine-dependent subset of the integer domain type). 

 

 numeric(p,d).  Fixed point number, with user-specified precision of p digits, with n 
 

digits to the right of decimal point. 

 

 real, double precision. Floating point and double-precision floating point numbers, with 

machine-dependent precision. 

 
 float(n). Floating point number, with user-specified precision of at least n digits. 

 

 More are covered in Chapter 4. 

 

 Integrity Constraints on Tables 

 

 not null  
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 primary key (A1, ..., An ) 

 

 Basic Insertion and Deletion of Tuples 

 

 Newly created table is empty 

 

 Add a new tuple to account 
 
 
 

 

– 

 

insert into account values ('A-9732', 'Perryridge', 1200) 

 

Insertion fails if any integrity constraint is violated 

 

 Delete all tuples from account delete 

from account 

 
 
 

 Drop and Alter Table Constructs 

 

 The drop table command deletes all information about the dropped relation from the 
 
database. 

 

 The alter table command is used to add attributes to an existing relation: 

 

alter table r add A D 

 

where A is the name of the attribute to be added to relation r and D is the domain of A. 

 

– All tuples in the relation are assigned null as the value for the new attribute. 

 

 The alter table command can also be used to drop attributes of a relation: 

 

alter table r drop A 

 

where A is the name of an attribute of relation r 

 

– Dropping of attributes not supported by many databases  
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Basic Query Structure 
 
 
 

 

 Atypical SQL query has the form: 
 
 

select A1, A2, ..., 

An from r1, r2, ..., 

rm where P 

 

–Ai represents an attribute 

 

–Ri represents a relation 

 

–P is a predicate. 

 

 This query is equivalent to the relational algebra expression. The result of an SQL query is 

a relation. 

 
 The select Clause 

 

 The select clause list the attributes desired in the result of a query 

 

–corresponds to the projection operation of the relational algebra 

 

• Example: find the names of all branches in the loan relation: 
 

select branch_name 
 

from loan 

 

 In the relational algebra, the query would be: 

 

Õbranch_name (loan) 

 

 NOTE: SQL names are case insensitive (i.e., you may use upper- or lower-case letters.) 

 

– 

 

– 

 

E.g. Branch_Name ≡ BRANCH_NAME ≡ branch_name 

Some people use upper case wherever we use bold font. 

 
 SQL allows duplicates in relations as well as in query results. 

 

 To force the elimination of duplicates, insert the keyword distinct after select.  
 

 

63 | P a g e 



 
 Find the names of all branches in the loan relations, and remove duplicates select 

distinct branch_name from loan 

 
 The keyword all specifies that duplicates not be removed. 

 

select all branch_name from loan 

 

 The select Clause (Cont.) 

 

 An asterisk in the select clause denotes “all attributes” select 

* from loan 

 
 The select clause can contain arithmetic expressions involving the operation, +, –, *, and /, and 

operating on constants or attributes of tuples. 

 

E.g.: 

 

select loan_number, branch_name, amount * 100 from loan 
 
 
 

 

 The where Clause 

 

 The where clause specifies conditions that the result must satisfy 

 

– Corresponds to the selection predicate of the relational algebra. 

 

 To find all loan number for loans made at the Perryridge branch with loan amounts greater 

than $1200. 

 

select loan_number from loan where branch_name = 'Perryridge' and amount 
 

 1200 

 

 Comparison results can be combined using the logical connectives and, or, and not. 

 

 The from Clause 

 

 The from clause lists the relations involved in the query 

 

– Corresponds to the Cartesian product operation of the relational algebra. 

 

 Find the Cartesian product borrower X loan  
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Select *from borrower, loan 

 

 The Rename Operation 

 

 SQL allows renaming relations and attributes using the as clause: 

old-name as new-name 

 
 E.g. Find the name, loan number and loan amount of all customers; rename the column 

name loan_number as loan_id. 

 
 Tuple Variables 

 

 Tuple variables are defined in the from clause via the use of the as clause. 

 

 Find the customer names and their loan numbers and amount for all customers having a 

loan at some branch. 

 

11.Example Basic Sql Queries:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 We will use these instances of the Sailors and Reserves relations in our examples.  
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 If the key for the Reserves relation contained only the attributes sid and bid, how would the 

semantics differ? 

 

Basic SQL Query  
 
 
 
 
 
 
 
 
 
 
 

 

 relation-list  A list of relation names (possibly with a range-variable after each name). 

 

 target-list  A list of attributes of relations in relation-list 

 

•  qualification   Comparisons  (Attr  op  const  or  Attr1  op  Attr2,  where  op  is  one  of 
    

) combined using AND, OR and NOT. 

 

 DISTINCT is an optional keyword indicating that the answer should not contain duplicates. 

Default is that duplicates are not eliminated! 

 

Conceptual Evaluation Strategy 

 

 Semantics of an SQL query defined in terms of the following conceptual evaluation 

strategy: 

 

– 
 

Compute the cross-product of relation-list. 

 

– 
 

Discard resulting tuples if they fail qualifications. 

 

– 

 

Delete attributes that are not in target-list. 

 

– 

 

If DISTINCT is specified, eliminate duplicate rows. 

 

 This strategy is probably the least efficient way to compute a query! An optimizer will find 

more efficient strategies to compute the same answers. 
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A Note on Range Variables 

 

 Really needed only if the same relation appears twice in the FROM clause. The previous 

query can also be written as: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Find sailors who’ve reserved at least one boat  
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 Would adding DISTINCT to this query make a difference? 

 

 What is the effect of replacing S.sid by S.sname in the SELECT clause? Would adding 

DISTINCT to this variant of the query make a difference? 

 

Expressions and Strings 

 

 Illustrates use of arithmetic expressions and string pattern matching: Find triples (of ages of 

sailors and two fields defined by expressions) for sailors whose names begin and end with B 

and contain at least three characters. 

 
 AS and = are two ways to name fields in result. 

 

 LIKE is used for string matching. `_’ stands for any one character and `%’ stands for 0  
 

or more arbitrary characters. 

 

String Operations 

 

 SQL includes a string-matching operator for comparisons on character strings.  The 
 

operator “like” uses patterns that are described using two special characters:  

 

– 

 

percent (%). The % character matches any substring. 

 

– 

 

underscore (_). The _ character matches any character. 

 

 Find the names of all customers whose street includes the substring “Main”. 

 

select customer_name 

from customer 
 

where customer_street like '% Main%' 

 

 Match the name “Main%” like 'Main\%' escape '\' 

 

 SQL supports a variety of string operations such as  
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– 
 
concatenation (using “||”) 

 

– 

 

converting from upper to lower case (and vice versa) 

 

– 

 

finding string length, extracting substrings, etc. 

 

Ordering the Display of Tuples 

 

 List in alphabetic order the names of all customers having a loan in Perryridge branch 

 

select distinct customer_name 
 

from borrower, loan 
 

where borrower loan_number = loan.loan_number and 

branch_name = 'Perryridge' 
 
order by customer_name 

 

 We may specify desc for descending order or asc for ascending order, for each attribute; 

ascending order is the default. 

 

–Example:  order by customer_name desc 

 

Duplicates 

 

 In relations with duplicates, SQL can define how many copies of tuples appear in the 
 
result. 

 

 Multiset versions of some of the relational algebra operators – given multiset relations r1 

and r2: 

 

  (r1): If there are c1 copies of tuple t1 in r1, and t1 satisfies selections ,, then there are 

c1 copies of t1 in  (r1). 

 

2. A (r ): For each copy of tuple t1 in r1, there is a copy of tuple A (t1) in A (r1) where A 

(t1) denotes the projection of the single tuple t1. 

 

 r1  x r2 : If there are c1 copies of tuple t1 in r1 and c2 copies of tuple t2 in r2, there are c1 
 

x c2 copies of the tuple t1. t2 in r1  x r2 

 

 Example: Suppose multiset relations r1 (A, B) and r2 (C) are as follows: 

 

r1 = {(1, a) (2,a)} r2 = {(2), (3), (3)} 
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 Then B(r1) would be {(a), (a)}, while B(r1) x r2 would be 

{(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)} 

 SQL duplicate semantics: 
 

select A1,, A2, ..., An  

from r1, r2, ..., rm 
 

where P 

 

is equivalent to the multiset version of the expression: 

 

Nested Queries: 
 
 
 

 

 A very powerful feature of SQL: a WHERE clause can itself contain an SQL query! 

(Actually, so can FROM and HAVING clauses.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 To find sailors who’ve not reserved #103, use NOT IN. 

 

 To understand semantics of nested queries, think of a nested loops evaluation: For each 

Sailors tuple, check the qualification by computing the subquery. 

 

Correlated Nested Queries: 

 

Nested Queries with Correlation  
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 EXISTS is another set comparison operator, like IN. 

 

 If UNIQUE is used, and * is replaced by R.bid, finds sailors with at most one reservation 

for boat #103. (UNIQUE checks for duplicate tuples; * denotes all attributes. Why do we have 

to replace * by R.bid?) 

 
 Illustrates why, in general, subquery must be re-computed for each Sailors tuple. 
 
 
 
 
 

Set comparison Operators: 

 

Nested Sub queries 

 

 SQL provides a mechanism for the nesting of subqueries. 

 

 A subquery is a select-from-where expression that is nested within another query. 

 

 A common use of subqueries is to perform tests for set membership, set comparisons, and 

set cardinality. 

 
 
 

 

 The set operations union, intersect, and except operate on relations and correspond to the 

relational algebra operations  

 

 Each of the above operations automatically eliminates duplicates; to retain all duplicates 

use the corresponding multiset versions union all, intersect all and except all. 

 
 

Suppose a tuple occurs m times in r and n times in s, then, it occurs: 

 

– m + n times in r union all s  
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– 
 
min(m,n) times in r intersect all s 

 

– 

 

max(0, m – n) times in r except all s 

 

 Find all customers who have a loan, an account, or both: 

 

Find sid’s of sailors who’ve reserved a red or a green boat  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

More on Set-Comparison Operators 

 

 We’ve already seen IN, EXISTS and UNIQUE. Can also use NOT IN, NOT EXISTS and 

NOT UNIQUE. 

 
 Also available: op ANY, op ALL, op IN 

 

 Find sailors whose rating is greater than that of some sailor called Horatio: 

 

Rewriting INTERSECT Queries Using IN 

 

 Similarly, EXCEPT queries re-written using NOT IN.  
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 To find names (not sid’s) of Sailors who’ve reserved both red and green boats, just 
 

replace S.sid by S.sname in SELECT clause.  (What about INTERSECT query?) 

 

Division in SQL  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Aggregate Operators: 

 

 These functions operate on the multiset of values of a column of a relation, and return a 
 

value 

 

avg: average value 
 

min: minimum value 
 

max: maximum value 
 

sum: sum of values 

 

count: number of values  
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Aggregate Operators examples  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Significant extension of relational algebra.  
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Motivation for Grouping 

 

 So far, we’ve applied aggregate operators to all (qualifying) tuples.  Sometimes, we 
 

want to apply them to each of several groups of tuples. 

 

 Consider: Find the age of the youngest sailor for each rating level. 

 

– In general, we don’t know how many rating levels exist, and what the rating values for these 

levels are! 

 

– Suppose we know that rating values go from 1 to 10; we can write 10 queries 
 

that look like this (!): 

 

Queries With GROUP BY and HAVING 

 

 The target-list contains (i) attribute names (ii) terms with aggregate operations (e.g., MIN 

(S.age)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

– The attribute list (i) must be a subset of grouping-list. Intuitively, each answer 
 

tuple corresponds to a group, and these attributes must have a single value per group. (A group 

is a set of tuples that have the same value for all attributes in grouping-list.) 

 

Conceptual Evaluation 

 

 The cross-product of relation-list is computed, tuples that fail qualification are discarded, 

`unnecessary’ fields are deleted, and the remaining tuples are partitioned into groups by the 

value of attributes in grouping-list. 
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 The group-qualification is then applied to eliminate some groups.   Expressions in 
 

group-qualification must have a single value per group! 

 

– In  effect,  an  attribute  in  group-qualification  that  is  not  an  argument  of  an 
 

aggregate op also appears in grouping-list. (SQL does not exploit primary key semantics here!) 

 
 

 

 One answer tuple is generated per qualifying group. 

 

Find age of the youngest sailor with age 18, for each rating with at least 2 such sailors  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

• Find age of the youngest sailor with age 18, for each rating with at least 2 such sailors 

and with every sailor under 60.    

• Find age of the youngest sailor with age 18, for each rating with at least 2 sailors 

between 18 and 60.    

 

For each red boat, find the number of reservations for this boat Grouping over a join of 

three relations. 
 
 

76 | P a g e 



 
 What do we get if we remove B.color=‘red’ from the WHERE clause and add a HAVING 

clause with this condition? 

 
 What if we drop Sailors and the condition involving S.sid? 

 

 Find age of the youngest sailor with age > 18, for each rating with at least 2 sailors (of 

any age) 

 
 Shows HAVING clause can also contain a subquery. 

 

 Compare this with the query where we considered only ratings with 2 sailors over 18! 

 

 What if HAVING clause is replaced by: 

 

– HAVING COUNT(*) >1 

 

 Find those ratings for which the average age is the minimum over all ratings 

 

 Aggregate operations cannot be nested! WRONG: 
 
 
 
 
 
 

 

 Find the average account balance at the Perryridge branch. 

 

Aggregate Functions – Group By 

 

 Find the number of depositors for each branch.  
 
 
 
 
 
 
 
 
 
 
 
 

 

Aggregate Functions – Having Clause 

 

 Find the names of all branches where the average account balance is more than $1,200. 
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Null Values: 

 

 Field values in a tuple are sometimes unknown (e.g., a rating has not been assigned) or 
 

inapplicable (e.g., no spouse’s name). 

 

– SQL provides a special value null for such situations. 

 

 The presence of null complicates many issues. E.g.: 

 

– Special operators needed to check if value is/is not null. 

– Is rating>8 true or false when rating is equal to null?  What about AND, OR 

 and NOT connectives?  

– We need a 3-valued logic (true, false and unknown). 
    

– Meaning  of  constructs must  be  defined  carefully.   (e.g.,  WHERE  clause 

eliminates rows that don’t evaluate to true.) 

– New operators (in particular, outer joins) possible/needed. 
 
 
 

 

Comparision Using Null Values: 

 

 It is possible for tuples to have a null value, denoted by null, for some of their attributes 

 

 null signifies an unknown value or that a value does not exist.  
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 The predicate is null can be used to check for null values. 

 

– Example: Find all loan number which appear in the loan relation with null 
 

values for amount. 

 

select loan_number 
 

from loan 
 

where amount is null 

 

 The result of any arithmetic expression involving null is null 

 

– Example: 5 + null  returns null 

 

 However, aggregate functions simply ignore nulls 

 

– More on next slide 

 

 Null Values and Three Valued Logic 

 

 Any comparison with null returns unknown 

 

– Example: 5 < null or null <> null or null = null 

 

Logical Connectives:AND,OR,NOT 

 

 Three-valued logic using the truth value unknown: 

 

– OR: (unknown or true) = true, 
 

(unknown or false)  = unknown 
 

(unknown or unknown) = unknown 

 

– AND: (true and unknown) = unknown, 
 

(false and unknown) = false, 
 

(unknown and unknown) = unknown 

 

– NOT:  (not unknown) = unknown 

 

– “P is unknown” evaluates to true if predicate P evaluates to unknown 

 

 Result of where clause predicate is treated as false if it evaluates to unknown 

 

 Null Values and Aggregates  
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 Total all loan amounts 
 
 
 
 
 

 

– 

 

– 

 

select sum (amount ) 
 

from loan 

 

Above statement ignores null amounts 

 

Result is null if there is no non-null amount 

 

 All aggregate operations except count(*) ignore tuples with null values on the 

aggregated attributes. 

 
 
 

Impact on SQL Constructs:  
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“Some” Construct  
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“All” Construct 

 

 Find the names of all branches that have greater assets than all branches located in 

Brooklyn. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

“Exists” Construct 

 

 Find all customers who have an account at all branches located in Brooklyn. 

 

 Absence of Duplicate Tuples 

 

 The unique construct tests whether a subquery has any duplicate tuples in its result. 

 

 Find all customers who have at most one account at the Perryridge branch.  
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select T.customer_name 

 

from depositor as T 

 

where unique ( 

 

select R.customer_name 
 

from account, depositor as R 
 

where T.customer_name = R.customer_name and 

R.account_number = account.account_number and 

account.branch_name = 'Perryridge') 

 

Example Query 
 
 
 

 

 Find all customers who have at least two accounts at the Perryridge branch.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Modification of the Database – Deletion 

 

 Delete all account tuples at the Perryridge branch 

 

delete from account 
 

where branch_name = 'Perryridge' 

 

 Delete all accounts at every branch located in the city ‘Needham’. 

 

delete from account 
 

where branch_name in (select branch_name 
 

from branch 
 

where branch_city = 'Needham')  
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 Example Query 

 

 Delete the record of all accounts with balances below the average at the bank. 

 

Modification of the Database – Insertion 

 

 Add a new tuple to account 

 

insert into account 
 

values ('A-9732', 'Perryridge', 1200) or equivalently 
 

insert into account (branch_name, balance, account_number) 
 

values ('Perryridge', 1200, 'A-9732') 

 

 Add a new tuple to account with balance set to null 

 

insert into account values ('A-777','Perryridge',  null ) 
 
 
 

 

Modification of the Database – Insertion 

 

 Provide as a gift for all loan customers of the Perryridge branch, a $200 savings 

 

account.  Let the loan number serve as the account number for the new savings account 

 

insert into account 
 

select loan_number, branch_name,  200 
 

from loan 
 

where branch_name = 'Perryridge' 
 
 

 

insert into depositor 
 

select customer_name, loan_number 
 

from loan, borrower 
 

where branch_name = 'Perryridge' 
 

and loan.account_number = borrower.account_number 

 

 The select from where statement is evaluated fully before any of its results are inserted 

into the relation 
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–Motivation:  insert into table1 select * from table1 

 

Modification of the Database – Updates 

 

 Increase all accounts with balances over $10,000 by 6%, all other accounts receive 5%. 

 

– 

 

Write two update statements: 

 

update account 
 

set balance = balance  1.06 
 

where balance > 10000 

 

update account 
 

set balance = balance  1.05 
 

where balance  10000 

 

– 

 

The order is important 

 

– 

 

Can be done better using the case statement (next slide) 

 

Case Statement for Conditional Updates 

 

 Same query as before: Increase all accounts with balances over $10,000 by 6%, all 

other accounts receive 5%. 

 
update account 

 

set balance = case 
 

when balance <= 10000 then balance *1.05 
 

else balance * 1.06 
 

end 

 

20. Outer Joins: 

 

Joined Relations** 

 

 Join operations take two relations and return as a result another relation. 

 

 These additional operations are typically used as subquery expressions in the from 

clause 
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 Join condition – defines which tuples in the two relations match, and what attributes are 

present in the result of the join. 

 
 Join type – defines how tuples in each relation that do not match any tuple in the other  

relation (based on the join condition) are treated. 

 
 Joined Relations – Datasets for Examples 

 

Relation loan  
 
 
 
 
 
 
 
 
 

 

 Joined Relations – Examples  
 
 
 
 
 
 

 

loan inner join borrower on loan.loan_number = borrower.loan_number  
 
 
 
 
 
 
 
 
 
 
 

 

Joined Relations – Examples 

 

loan natural inner join borrower  
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Joined Relations – Examples  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Natural join can get into trouble if two relations have an attribute with 

same name that should not affect the join condition 

 
– e.g.  an attribute such as remarks may be present in many tables 

 

 Solution: 

 

– loan full outer join borrower using (loan_number) 

 

 Derived Relations 

 

 SQL allows a subquery expression to be used in the from clause 

 

 Find the average account balance of those branches where the average account balance is 

greater than $1200. 
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select branch_name, avg_balance 
 

from (select branch_name, avg (balance) 
 

from account 
 

group by branch_name ) as branch_avg ( branch_name, avg_balance 
 

) where avg_balance > 1200 

 

Note that we do not need to use the having clause, since we compute the temporary 

(view) relation branch_avg in the from clause, and the attributes of branch_avg can be used 

directly in the where clause. 

 

Complex Integrity Constraints in SQL: 

 

 Integrity Constraints (Review) 

 

 An IC describes conditions that every legal instance of a relation must satisfy. 

 

– 

 

Inserts/deletes/updates that violate IC’s are disallowed. 

 

– 

 

Can be used to ensure application semantics (e.g., sid is a key), or prevent 

 

inconsistencies (e.g., sname has to be a string, age must be < 200) 

 

 Types of IC’s: Domain constraints, primary key constraints, foreign key constraints, 

general constraints. 

 
– Domain constraints: Field values must be of right type. Always enforced.  
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General Constraints  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Useful when more general ICs than keys are involved. 

 

 Can use queries to express constraint. 

 

 Constraints can be named.  
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Triggers and Active Databases: 

 

 Trigger: procedure that starts automatically if specified changes occur to the DBMS 

 

 Three parts: 

 

– Event (activates the trigger) 

 

– Condition (tests whether the triggers should run) 

 

– Action (what happens if the trigger runs) 

 

 Triggers: Example (SQL:1999) 

CREATE TRIGGER youngSailorUpdate 

 
AFTER INSERT ON SAILORS 

REFERENCING NEW TABLE NewSailors 

 
FOR EACH STATEMENT  
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INSERT 

 

INTO YoungSailors(sid, name, age, rating) 

 

SELECT sid, name, age, rating 

 

FROM NewSailors N 

 

WHERE N.age <= 18 
 
 
 

 

Logical DB Design:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Entity sets to tables: 

 

Relationship Sets to Tables 

 

 In translating a relationship set to a relation, attributes of the relation must include:  
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–Keys for each participating entity set (as foreign keys). 

 

 This set of attributes forms a superkey for the relation. 

 

–All descriptive attributes. 
 
 
 

 

Review: Key Constraints  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

• Each dept has at most one manager, according to the key constraint on Manages. 

 

Translating ER Diagrams with Key Constraints 

 

 Map relationship to a table: 

 

– Note that did is the key now! 

 

– Separate tables for Employees and Departments. 

 

 Since each department has a unique manager, we could instead combine Manages and 

Departments. 
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Views and Security 

 

 Views can be used to present necessary information (or a summary), while hiding 

 

details in underlying relation(s). 

 

–Given YoungStudents, but not Students or Enrolled, we can find students s who 

 

have are enrolled, but not the cid’s of the courses they are enrolled in. 

 

 View Definition 

 

 A relation that is not of the conceptual model but is made visible to a user as a “virtual 

relation” is called a view. 

 

 A view is defined using the create view statement which has the form 

 

create view v as < query expression > 

 

where <query expression> is any legal SQL expression. The view name is represented 

by v. 

 
 Once a view is defined, the view name can be used to refer to the virtual relation that the 

view generates. 

 
 Example Queries 

 

 A view consisting of branches and their customers 

 

 Uses of Views 

 

 Hiding some information from some users 

 

–Consider a user who needs to know a customer’s name, loan number and branch 

 

name, but has no need to see the loan amount. 

 

–Define a view 
 

(create view cust_loan_data as 
 

select customer_name, borrower.loan_number, 

branch_name from borrower, loan 
 

where borrower.loan_number = loan.loan_number ) 

 

–Grant the user permission to read cust_loan_data, but not borrower or loan 

 



 Predefined queries to make writing of other queries easier 

 

–Common example: Aggregate queries used for statistical analysis of data 

 

–Processing of Views 

 

 When a view is created 

 

– the query expression is stored in the database along with the view name  
 

–the expression is substituted into any query using the view 

 

 Views definitions containing views 

 

–One view may be used in the expression defining another view 
 

–A view relation v1 is said to depend directly on a view relation v2 if v2 is used in the 

expression defining v1 

 

– A view relation v1 is said to depend on view relation v2 if either v1 depends directly to v2 or 

there is a path of dependencies from v1 to v2 

 

–A view relation v is said to be recursive  if it depends on itself. 

 

 View Expansion 

 

 A way to define the meaning of views defined in terms of other views. 
 

 Let view v1 be defined by an expression e1 that may itself contain uses of view relations. 

 
 View expansion of an expression repeats the following replacement step: 

 

repeat  

Find any view relation vi in e1  

Replace the view relation vi by the expression defining 

vi until no more view relations are present in e1 

 
 As long as the view definitions are not recursive, this loop will terminate 

 

 With Clause 

 

 The with clause provides a way of defining a temporary view whose definition is 

available only to the query in which the with clause occurs. 

 
 Find all accounts with the maximum balance 
 



 

with max_balance (value) as 
 

select max (balance) 
 

from account  
select account_number 

 

from account, max_balance 
 

where account.balance = max_balance.value 

 

 Complex Queries using With Clause 

 

 Find all branches where the total account deposit is greater than the average of the total 

account deposits at all branches. 

 
 Update of a View 

 

 Create a view of all loan data in the loan relation, hiding the amount attribute 

 

create view loan_branch as 
 

select loan_number, branch_name 
 

from loan 

 

 Add a new tuple to loan_branch 

 

insert into loan_branch 
 

values ('L-37‘, 'Perryridge‘) 

 

This insertion must be represented by the insertion of the tuple 

('L-37', 'Perryridge', null ) into the loan relation 

 

Destroying and Altering Tables and Views: 

 

 Destroys the relation Students. The schema information and the tuples are deleted. 

 

 Adding and Deleting Tuples 

 

 Can insert a single tuple using: 

 

 What if Policies is a weak entity set? 

 

 Views 

 

 A view is just a relation, but we store a definition, rather than a set of tuples.  
 
 
 



Introduction To Schema Refinement: 

 

The Evils of Redundancy 

 

 Redundancy is at the root of several problems associated with relational schemas: 

 

–redundant storage, insert/delete/update anomalies 

 

 Integrity constraints, in particular functional dependencies, can be used to identify 

schemas with such problems and to suggest refinements. 

 
 Main refinement technique: decomposition (replacing ABCD with, say, AB and BCD, or 

ACD and ABD). 

 
 Decomposition should be used judiciously: 

 

–Is there reason to decompose a relation? 

 

–What problems (if any) does the decomposition cause? 

 

Problems Caused by Redundancy: 

 

 Storing the same information redundantly, that is, in more than one place within a 

database, can lead to several problems: 

 
 Redundant storage: Some information is stored repeatedly. 

 

 Update anomalies: If one copy of such repeated data is updated, an inconsistency 

 

 is created unless all copies are similarly updated. 

 

 Insertion anomalies: It may not be possible to store some information unless 

 

 some other information is stored as well. 

 

 Deletion anomalies: It may not be possible to delete some information without 

 

 losing some other information as well. 

 

 Consider a relation obtained by translating a variant of the Hourly Emps entity set 

 

Ex: Hourly Emps(ssn, name, lot, rating, hourly wages, hours worked)  
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 The key for Hourly Emps is ssn. In addition, suppose that the hourly wages attribute 

 

 is determined by the rating attribute. That is, for a given rating value, there is only 

 

 one permissible hourly wages value. This IC is an example of a functional dependency. 

 

 It leads to possible redundancy in the relation Hourly Emps 

 

Decompositions: 

 

 Intuitively, redundancy arises when a relational schema forces an association between 

attributes that is not natural. 

 
 Functional dependencies (ICs) can be used to identify such situations and to suggest 

revetments to the schema. 

 
 The essential idea is that many problems arising from redundancy can be addressed by 

 
 
 

  rating hourly wages    

         

  8  10     

         

  5  7     

         

 ssn  name  lot rating hours worked 

         
         

123-22-3666  Attishoo  48 8 40  

         

231-31-5368  Smiley  22 8 30  

         

131-24-3650  Smethurst  35 5 30  

         

434-26-3751  Guldu  35 5 32  

         

612-67-4134  Madayan  35 8 40  
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replacing a relation with a collection of smaller relations. 

 

 Each of the smaller relations contains a subset of the attributes of the original relation. 

 

 We refer to this process as decomposition of the larger relation into the smaller relations 

 

 We can deal with the redundancy in Hourly Emps by decomposing it into two relations: 

 

 Hourly Emps2(ssn, name, lot, rating, hours worked) 

 

 Wages(rating, hourly wages) 
 
 
 
 
 

Problems Related to Decomposition: 

 

 Unless we are careful, decomposing a relation schema can create more problems than it 

solves. 

 
 Two important questions must be asked repeatedly: 

 

 1. Do we need to decompose a relation? 

 

 2. What problems (if any) does a given decomposition cause? 

 

 To help with the rst question, several normal forms have been proposed for relations. 

 

 If a relation schema is in one of these normal forms, we know that certain kinds of 

 

 problems cannot arise. Considering the n 
 
 
 
 
 

Functional Dependencies (FDs): 

 

 A functional dependency XY holds over relation R if, for every allowable instance r 

 

of R: 

 

– 

 

– 

 

t1 r, t2 r, (t1) = (t2) implies (t1) = (t2) 

 

i.e., given two tuples in r, if the X values agree, then the Y values must also  
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agree. (X and Y are sets of attributes.) 

 

 An FD is a statement about all allowable relations. 

 

–Must be identified based on semantics of application. 

 

– Given some allowable instance r1 of R, we can check if it violates some FD f, but we cannot 

tell if f holds over R! 

 

• K is a candidate key for R means that K R 

 

– However, K R does not require K to be minimal! 

Example: Constraints on Entity Set 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Consider relation obtained from Hourly_Emps: 

 

–Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked) 

 

 Notation: We will denote this relation schema by listing the attributes:  SNLRWH 

 

–This is really the set of attributes {S,N,L,R,W,H}. 

 

–Sometimes, we will refer to all attributes of a relation by using the relation  
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name. (e.g., Hourly_Emps for SNLRWH) 

 

 Some FDs on Hourly_Emps: 

 

– 

 

ssn is the key: S SNLRWH 

 

– 

 

rating determines hrly_wages: 

 

R 

 

W 
 
 
 

 

Constraints on a Relationship Set: 

 

 Suppose that we have entity sets Parts, Suppliers, and Departments, as well as a 

relationship set Contracts that involves all of them. We refer to the schema for 

Contracts as CQPSD. A contract with contract id 
 
 C species that a supplier S will supply some quantity Q of a part P to a department D. 

 

 We might have a policy that a department purchases at most one part from any given 

supplier. 

 
 Thus, if there are several contracts between the same supplier and department, 

 

 we know that the same part must be involved in all of them. This constraint is an FD, 

 

DS ! P. 

 

Reasoning about FDs 

 

 Given some FDs, we can usually infer additional FDs: 

 

– ssn did, did lot implies ssn lot 

 

 An FD f is implied by a set of FDs F if f holds whenever all FDs in F hold. 

 

– = closure of F is the set of all FDs that are implied by F. 

 

 Armstrong’s Axioms (X, Y, Z are sets of attributes): 

 

– Reflexivity:  If  X  → Y,  then  Y  →  X 
       

– Augmentation:  If  X →  Y, then XZ → YZ  for any Z 
      

– Transitivity: If X  → Y and Y →Z, then  X  →Z 
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 These are sound and complete inference rules for FDs! 

 

 Couple of additional rules (that follow from AA): 

 

– 

 

– 

 

Union: If X → Y  and X → Z, then  X → YZ 

 

Decomposition: If X → YZ, then X → Y and X → Z 

 

 Example:   Contracts(cid,sid,jid,did,pid,qty,value), and: 

 

–  C is the key:  C →CSJDPQV    

–  Project purchases each part using single contract:  

–  JP → C      

–  Dept purchases at most one part from a supplier:  S  

–  D → P      

• JP → C, C → CSJDPQV imply  JP →CSJDPQV 

• SD → P  implies SDJ  → JP   

• SDJ → JP, JP → CSJDPQV  imply SDJ  → CSJDPQV 

 

 Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # 

attrs!) 

 
• Typically, we just want to check if a given FD X Y is in the closure of a set of FDs F. 

 An efficient check:      

– Compute attribute closure of X (denoted ) wrt F:  
      

• Set of all attributes A such that X A is in  

• There is a linear time algorithm to compute this.  

– Check if Y is in     

• Does F = {A → B,  B →C, C D  → E } imply A →   E? 

– i.e, is A  → E in the closure ?  Equivalently, is E in ?  
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Closure of a Set of FDs 

 

 The set of all FDs implied by a given set F of FDs is called the closure of F and is 

denoted as F+. 

 
 An important question is how we can infer, or compute, the closure of a given set F of 

FDs. 

 
 The following three rules, called Armstrong's Axioms, can be applied repeatedly to 

infer all FDs implied by a set F of FDs. 

 
 We use X, Y, and Z to denote sets of attributes over a relation schema R: 

 

 Reflexivity: If X Y, then X !Y. 

 

 Augmentation: If X ! Y, then XZ ! YZ for any Z. 

 

 Transitivity: If X ! Y and Y ! Z, then X ! Z. 

 

 Armstrong's Axioms are sound in that they generate only FDs in F+ when applied to a set 

F of FDs. 

 
 They are complete in that repeated application of these rules will generate all FDs in the 

closure F+. 

 
 It is convenient to use some additional rules while reasoning about F+: 

 

 Union: If X ! Y and X ! Z, then X !YZ. 

 

 Decomposition: If X ! YZ, then X !Y and X ! Z. 

 

 These additional rules are not essential; their soundness can be proved using 

Armstrong's Axioms. 

 
 
 

Attribute Closure 

 

 If we just want to check whether a given dependency, say, X → Y, is in the closure of a 
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set F of FDs, 

 

 we can do so eciently without computing F+. We rst compute the attribute closure X+ 

with respect to F, 

 
 which is the set of attributes A such that X → A can be inferred using the Armstrong 

Axioms. 

 
 The algorithm for computing the attribute closure of a set X of attributes is 

 

 closure = X; 

 

repeat until there is no change: { 

 

if there is an FD U → V in F such that U subset of  closure, 

 

then set closure = closure union of  V} 

 

Normal Forms: 

 

 The normal forms based on FDs are rst normal form (1NF), second normal form (2NF), 

third normal form (3NF), and Boyce-Codd normal form (BCNF). 

 
 These forms have increasingly restrictive requirements: Every relation in BCNF is also in 

3NF, 

 
 every relation in 3NF is also in 2NF, and every relation in 2NF is in 1NF. 

 

 A relation 

 

 is in first normal form if every field contains only atomic values, that is, not lists or 

sets. 

 
 This requirement is implicit in our defition of the relational model. 

 

 Although some of the newer database systems are relaxing this requirement 

 

 2NF is mainly of historical interest. 

 

 3NF and BCNF are important from a database design standpoint.  
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Normal Forms 

 

 Returning to the issue of schema refinement, the first question to ask is whether any 

refinement is needed! 

 
 If a relation is in a certain normal form (BCNF, 3NF etc.), it is known that certain kinds 

 

of problems are avoided/minimized. This can be used to help us decide whether 

decomposing the relation will help 
 
 Role of FDs in detecting redundancy: 

 

– Consider a relation R with 3 attributes, ABC. 

 

 No FDs hold: There is no redundancy here. 

 

• Given A,B: Several tuples could have the same A value, and if so, 
 

they’ll all have the same B value! 

 

First Normal Form: 
 

 1NF (First Normal Form)


 

 a  relation  R  is  in  1NF  if  and  only if  it  has  only single-valued  attributes  (atomic 
 
values) 

 

 EMP_PROJ (SSN, PNO, HOURS, ENAME, PNAME, PLOCATION) 
 
 
 

 

 solution: decompose the relation 

 

EMP_PROJ2 (SSN, PNO, HOURS, ENAME, 

PNAME) LOC (PNO, PLOCATION) 

 

Second Normal Form: 
 

 2NF (Second Normal Form)


 

 a relation R in 2NF if and only if it is in 1NF and every nonkey column depends  
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on a key not a subset of a key 

 

 all nonprime attributes of R must be fully functionally dependent on a whole key(s) of the 

relation, not a part of the key 

 
 no violation: single-attribute key or no nonprime attribute 
 

 2NF (Second Normal Form)


 

• violation: part of a key  nonkey 

 EMP_PROJ2 (SSN, PNO, HOURS, ENAME, PNAME) 
         

 SSN  ENAME 

 PNO  PNAME 

• solution: decompose the relation 

 EMP_PROJ3 (SSN, PNO, HOURS) 
         

 EMP (SSN, ENAME) 
     

 PROJ (PNO, PNAME) 
         

 

Third Normal Form: 
 

 3NF (Third Normal Form)


 

 a relation R in 3NF if and only if it is in 2NF and every nonkey column does not depend on 

another nonkey column 

 

• all nonprime attributes of R must be non-transitively  functionally  dependent on 
 

a key of the relation 

 

 violation: nonkey  nonkey 
 

 3NF (Third Normal Form)


 

• SUPPLIER (SNAME, STREET, CITY, STATE, TAX) 

 

SNAME  STREET, CITY, STATE  
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STATE  TAX (nonkey  nonkey) 

 

SNAME  STATE  TAX (transitive FD) 

 

• solution: decompose the relation 

 

SUPPLIER2 (SNAME, STREET, CITY, STATE) 

 

TAXINFO (STATE, TAX) 

 

 Boyce-Codd Normal Form (BCNF) 

 

• Relation R with FDs F is in BCNF if, for all X A in 

 

– A → X (called a trivial FD), or 

 

– X contains a key for R. 

 

 In other words, R is in BCNF if the only non-trivial FDs that hold over R are key 

constraints. 

 
–No dependency in R that can be predicted using FDs alone. 

 

– If we are shown two tuples that agree upon the X value, we cannot infer the A value in one 

tuple from the A value in the other. 

 

–If example relation is in BCNF, the 2 tuples must be identical(since X is a key). 

 

Third Normal Form (3NF) 

 

• Relation R with FDs F is in 3NF if, for all X → A in 

 

–A  →X  (called a trivial FD), or 

 

–X contains a key for R, or 

 

–A is part of some key for R. 

 

 Minimality of a key is crucial in third condition above! 

 

 If R is in BCNF, obviously in 3NF.  
 
 
 
 
 

112 | P a g e 



BCNF: 

 

 If R is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not 

achievable (e.g., no ``good’’ decomp, or performance considerations). 

 
–Lossless-join, dependency-preserving decomposition of R into a collection of 3NF 

relations always possible. 

 

Properties of Decompositions : 

 

 Suppose that relation R contains attributes A1 ... An. A decomposition of R consists of 

replacing R by two or more relations such that: 

 
– Each new relation scheme contains a subset of the attributes of R (and no attributes that do 

not appear in R), and 

 

–Every attribute of R appears as an attribute of one of the new relations. 

 

 Intuitively, decomposing R means we will store instances of the relation schemes produced 

by the decomposition, instead of instances of R. 

 
 E.g., Can decompose SNLRWH into SNLRH and RW. 

 

Example Decomposition 

 

 Decompositions should be used only when needed. 

 

– SNLRWH has FDs S SNLRWH and R W 

 

– Second FD causes violation of 3NF; W values repeatedly associated with R values. Easiest 

way to fix this is to create a relation RW to store these associations , and to remove W from the 

main schema: 

 

i.e., we decompose SNLRWH into SNLRH and RW 

 

 The information to be stored consists of SNLRWH tuples. If we just store the projections of 

these tuples onto SNLRH and RW, are there any potential problems that we should be aware 

of? 
 
 

 

113 | P a g e 



Problems with Decompositions 

 

 There are three potential problems to consider: 

 

–Some queries become more expensive. 

 

 e.g.,  How much did sailor Joe earn?  (salary = W*H) 

 

– Given instances of the decomposed relations, we may not be able to reconstruct the 

corresponding instance of the original relation! 

 

 Fortunately, not in the SNLRWH example. 

 

– Checking some dependencies may require joining the instances of the decomposed relations.  

 
 

 

 Fortunately, not in the SNLRWH example. 

 

 Tradeoff:  Must consider these issues vs. redundancy. 

 

Lossless Join Decompositions: 

 

 Decomposition of R into X and Y is lossless-join w.r.t. a set of FDs F if, for every 

instance r that satisfies F: 

 
– (r) (r) =  r 

 

• It is always true that r (r) (r) 

 

– In general, the other direction does not hold! If it does, the decomposition is lossless-join. 

 
 

 

 Definition extended to decomposition into 3 or more relations in a straightforward way. 

 

 It is essential that all decompositions used to deal with redundancy be lossless! (Avoids 

Problem (2).) 
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 Dependency Preserving Decomposition 

 

• Consider CSJDPQV, C is key, JP C  and SD P. 

 

–BCNF decomposition:  CSJDQV and SDP 

 

– Problem: Checking JP C  requires a join! 

 

Dependency preserving decomposition (Intuitive): 

 

– If R is decomposed into X, Y and Z, and we enforce the FDs that hold on X, on Y and on Z, 

then all FDs that were given to hold on R must also hold. (Avoids Problem (3).) 

 

 

 Projection of set of FDs F:  If R is decomposed into X, ... projection of F onto X 
 

enoted FX ) is the set of FDs U V in F
+
 (closure of F ) such that U, V are in X. 

 

 Decomposition of R into X and Y is dependency preserving 
 

if (FX  union FY ) +  = F + 
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– i.e., if we consider only dependencies in the closure F 
+

 that can be checked in X without 

considering Y, and in Y without considering X, these imply all dependencies in F 
+
. 

 

 Important to consider F 
+
, not F, in this definition: 

 

– 

 

– 

 

ABC, A B, B C,  C A, decomposed into AB and BC. 

 

Is this dependency preserving?  Is C A preserved????? 

 

 Dependency preserving does not imply lossless join: 

 

–ABC, AB, decomposed into AB and BC. 

 

 And vice-versa!  (Example?) 

 

Decomposition into BCNF 

 

 Consider relation R with FDs F. If X Y violates BCNF, decompose R into R - Y and 

XY. 

 
– Repeated application of this idea will give us a collection of relations that are in BCNF; 

lossless join decomposition, and guaranteed to terminate. 

 

– e.g., CSJDPQV, key C, JP C, SD P, J S – To deal with SD P, 

decompose into SDP, CSJDQV. 

 
–To deal with JS, decompose CSJDQV into JS and CJDQV 

 

 In general, several dependencies may cause violation of BCNF. The order in which we 

 

``deal with’’ them could lead to very different sets of relations! 

 

BCNF and Dependency Preservation 

 

 In general, there may not be a dependency preserving decomposition into BCNF. 

 

– e.g., CSZ, CS Z,  Z C 

 

–Can’t decompose while preserving 1st FD; not in BCNF. 

 

 Similarly, decomposition of CSJDQV into SDP, JS and CJDQV is not dependency 
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preserving (w.r.t. the FDs JP C, SD P  and J S). 
 

–However, it is a lossless join decomposition. 
 
 
 

– In this case, adding JPC to the collection of relations gives us a dependency preserving 

decomposition. 

 

 JPC tuples stored only for checking FD!  (Redundancy!) 

 

Decomposition into 3NF 

 

 Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a 

lossless join decomp into 3NF (typically, can stop earlier). 

 
 To ensure dependency preservation, one idea: 

 

–If  XY is not preserved, add relation XY. 

 

– Problem  is that  XY  may  violate  3NF! e.g., consider  the  addition  of  CJP to 
 

`preserve’ JP C. What if we also have J C ? 

 

 Refinement:  Instead of the given set of FDs F, use a minimal cover for F. 
 
 
 
 
 

Schema Refinement in Data base Design: 

 

Constraints on an Entity Set 

 

 Consider the Hourly Emps relation again. The constraint that attribute ssn is a key can be 

expressed as an FD: 

 
 { ssn }-> { ssn, name, lot, rating, hourly wages, hours worked} 

 

 For brevity, we will write this FD as S -> SNLRWH, using a single letter to denote each 

attribute 

 
 In addition, the constraint that the hourly wages attribute is determined by the rating 

 

attribute is an  
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FD: R -> W. 

 

Constraints on a Relationship Set 

 

 The previous example illustrated how FDs can help to rene the subjective decisions 

made during ER design, 

 
 but one could argue that the best possible ER diagram would have led to the same nal set 

of relations. 

 
 Our next example shows how FD information can lead to a set of relations that 

 

eliminates some redundancy problems and is unlikely to be arrived at solely through ER 

design. 
 
Identifying Attributes of Entities 

 

 in particular, it shows that attributes can easily be associated with the `wrong' entity set 

during ER design. 

 
 The ER diagram shows a relationship set called Works In that is similar to the Works In 

relationship set 

 
 Using the key constraint, we can translate this ER diagram into two relations: 

 

 Workers(ssn, name, lot, did, since)  
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Identifying Entity Sets 

 

 Let Reserves contain attributes S, B, and D as before, indicating that sailor S has a 

reservation for boat B on day D. 

 
 In addition, let there be an attribute C denoting the credit card to which the reservation is 

charged. 

 
 Suppose that every sailor uses a unique credit card for reservations. This constraint is 

 

expressed by the FD S -> C. This constraint indicates that in relation Reserves, we store the 

credit card number 

 

for a sailor as often as we have reservations for that 

 

 sailor, and we have redundancy and potential update anomalies. 

 

Multivalued Dependencies: 

 

 Suppose that we have a relation with attributes course, teacher, and book, which we 

denote as CTB. 

 
 The meaning of a tuple is that teacher T can teach course C, and book B is a 

recommended text for the course. 

 
 There are no FDs; the key is CTB. However, the recommended texts for a course are 

independent of the instructor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

There are three points to note here:  
 

119 | P a g e 



 
 The relation schema CTB is in BCNF; thus we would not consider decomposing it 

further if we looked only at the FDs that hold over CTB. 

 
 There is redundancy. The fact that Green can teach Physics101 is recorded once per 

 

recommended text for the course. Similarly, the fact that Optics is a text for Physics101 

is recorded once per potential teacher. 

 
 The redundancy can be eliminated by decomposing CTB into CT and CB. 

 

 Let R be a relation schema and let X and Y be subsets of the attributes of R. Intuitively, 

 

 the multivalued dependency X !! Y is said to hold over R if, in every legal 

 

 The redundancy in this example is due to the constraint that the texts for a course are 

independent of the instructors, which cannot be epressed in terms of FDs. 

 
 This constraint is an example of a multivalued dependency, or MVD. Ideally, we 

 

should model this situation using two binary relationship sets, Instructors with attributes 

CT and Text with attributes CB. 
 
 Because these are two essentially independent relationships, modeling them with a 

single ternary relationship set with attributes CTB is inappropriate. 

 
 Three of the additional rules involve only MVDs: 
 
 
 

 

MVD Complementation: If X →→Y, then X →→ R − XY 

 

MVD Augmentation: If X →→ Y and W > Z, then 

 

WX →→ YZ. 

 

 MVD Transitivity: If X →→ Y and Y →→ Z, then 

 

X →→ (Z − Y ). 

 

Fourth Normal Form: 

 

 R is said to be in fourth normal form (4NF) if for every MVD X →→Y that holds over 
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R, one of the following statements is true: 

 

 Y subset of  X or XY = R, or 

 

 X is a superkey. 

 

Join Dependencies: 

 

 A join dependency is a further generalization of MVDs. A join dependency (JD) ∞{ 

 

R1,….. Rn } is said to hold over a relation R if R1,…. Rn is a lossless-join 

decomposition of R. 
 
 An MVD X ->-> Y over a relation R can be expressed as the join dependency ∞ { 

 

XY,X(R−Y)} 

 

 As an example, in the CTB relation, the MVD C ->->T can be expressed as the join 

 

dependency ∞{ CT, CB} 

 

 Unlike FDs and MVDs, there is no set of sound and complete inference rules for JDs. 

 

Fifth Normal Form: 

 

 A relation schema R is said to be in fth normal form (5NF) if for every JD ∞{ R1,…. 
 
 
 

 

 Ri = R for some i, or 

 

 The JD is implied by the set of those FDs over R in which the left side is a key for R. 

 

 The following result, also due to Date and Fagin, identies conditions|again, detected using 

only FD information|under which we can safely ignore JD information. 

 If a relation schema is in 3NF and each of its keys consists of a single attribute,it is also in 

5NF. 

 

Inclusion Dependencies: 

 

 MVDs and JDs can be used to guide database design, as we have seen, although they 
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are less common than FDs and harder to recognize and reason about. 

 

 In contrast, inclusion dependencies are very intuitive and quite common. However, they 

typically have little influence on database design 

 
 The main point to bear in mind is that we should not split groups of attributes that 

participate in an inclusion dependency. 

 
 Most inclusion dependencies in practice are key-based, that is, involve only keys.  
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UNIT-IV 
 

Transaction Management 
 

---------------------------------------------------------------------------------------------------------------- 
 

 ACID Properties 
 
 Need for concurrency control 
 
 Transaction and its properties 
 
 Schedule and Recoverability 
 
 Serializability and schedules 
 
 Concurrency control 
 
 Types of Locks 
 
 Two phase locking 
 
 Deadlock 
 
 Time stamp based concurrency control 
 
 Recovery Techniques 
 
 Immediate update 
 
 Deferred update 
 
 Shadow paging  
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 ACID Properties 
 

Consistency: 
 

Execution of a transaction in isolation (that is, with no other transaction executing 

concurrently) preserves the consistency of the database. This is typically the responsibility of 

the application programmer who codes the transactions. 
 
Atomicity: 
 

Either all operations of the transaction are reflected properly in the database, or none are. 
 

Clearly lack of atomicity will lead to inconsistency in the database. 
 

Isolation: 
 

When multiple transactions execute concurrently, it should be the case that, for every pair of 

transactions Ti and Tj , it appears to Ti that either Tj finished execution before Ti started, or Tj 

started execution after Ti finished. Thus, each transaction is unaware of other transactions 

executing concurrently with it. The user view of a transaction system requires the isolation 

property, and the property that concurrent schedules take the system from one consistent state 

to another. These requirements are satisfied by ensuring that only serializable schedules of 

individually consistency preserving transactions are allowed. 
 
Durability: 
 

After a transaction completes successfully, the changes it has made to the database persist, even 

if there are system failures. 

 
 

 Need for concurrency control 
 

Ensuring the isolation property of all concurrent transactions is the responsibility of a database 

management system. A way to execute concurrent transactions in serially. However, concurrent 

execution of transactions provides significant performance benefits. 
 

 Transaction and its properties: 
 

Transaction: A transaction is unit of program execution that accesses and updates various 
 

data items.  In general, a transaction is initiated by user program through high level data  
 

manipulation  language  or  programming language  (Example:  SQL,  C,  Java  etc.).  where  it  
 

delimits with start transaction and end transaction. Now the operations in between these two 
 

statements are executed as a transaction. 
 

Transactions access data using two operations: 
 

 Read(X): Which transfers the data item X from the database to local buffer to execute 

the read operation.
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 Write(X): Which transfers the data item X from the local buffer of the transaction to
 

write back to the database. 
 

In real Database system, the write operation temporarily stored in memory and updates later on 
 
disk. 
 
Example: 
 

Bank transactions like credit, debit or transfer of amount from one account to another or 

updates on same account.  

Let Ti be a transaction that transfers 5000 from account A to account B. Initially in account 

A 10000 and account B 20000 balance existed. This can be represented as: 
 
 

 

Transaction ID List of operations 

Ti: Start 

 read(A); 

 A:=A-5000; 

 write(A); 

 Read(B); 

 B=B+5000; 

 write(B); 

 Stop; 
 

Now the ACID properties should hold by transaction Ti : 
 

Consistency: The database is consistent before and after transaction execution of Ti. the 

database remains consistent with sum of A and B at before and after transfer transaction 

executed. i.e  
 
 

Initially before Transaction: 
 

A=10000 and B=20000 
 

A+B =10000+20000=30000 
 

After Transaction (transfer of 5000 from A to B) 
 

A=10000-5000=5000 
 

Let Failure occurs at this point 
 

Now A+B=5000+20000=25000. 
 

Hence, the sum of database content befoe and after is not same as 30000 and 25000 
 
 
 

 

The sum of A and B is unchanged by the execution of the transaction 
 

In general, consistency requirements include: 
 

 Explicitly specified integrity constraints such as primary keys and foreign k  
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 Implicit integrity constraints
 

e.g. sum of balances of all accounts, minus sum of loan amounts must equal value of cash-

in-hand 
 

A transaction must see a consistent database. During transaction execution the database 

may be temporarily inconsistent. When the transaction completes successfully the database 

must be consistent. Erroneous transaction logic can lead to inconsistency. 

 

 

Atomicity: All operations in the transaction should be executed without any failure. Before 

execution of transaction Ti , the A nad B accounts with initial values as 10000 and 20000. 

Suppose during the transfer transaction a failure due to power failure, hardware and 

software errors will occurs. Suppose, after the write(A) and before write(B), a failure 

occurs then the values of A and B are 5000 and 20000. The system destroys 5000 as a 

result of this transaction. Therefore sum(A+B) after and before transactions are not 

consistent, then it leads to inconsistency. 

 

 

Durability: 
 

The durability property guarantees that, once the transaction completes successfully, all the 

updates on the database must be persistent, even if there is a failure after the transaction 

completes. 
 

Ensuring durability is the responsibility of recovery management component. Hence the 

user has been notified about successful completion of transaction, it must be the case with 
  

Initially before Transaction: 
 

A=10000 and B=20000 
 

A+B =10000+20000=30000 
 

After Transaction (transfer of 5000 from A to B) 
 

A=10000-5000=5000 
 

Let Failure occurs at this point 
 

Now A+B=5000+20000=25000. 
 

Hence, the sum of database content before and after is not same as 30000 

and 25000. 
 

no system failure will result no loss of data corresponding to the transfer of funds. 
 

Isolation: 
 

Isolation can be ensured trivially by running transactions serially that is, one after the other.   
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However, executing multiple transactions concurrently has significant benefits, as we 
 

will see later. For concurrent operations of multiple transactions leads to inconsistent state.  
 

Ensuring isolation is the responsibility of concurrency control component. 
 

Let Ti and Tj are two transactions executed concurrently, their operations interleaved in 

desirable way resulting an inconsistent state. 

 

Transaction State: 
 

A transaction must be in one of the following states:  
 

 

Partially committed           Committed 
 
 

 

Active  
 

 

Failed      Active 
 
 
 
 
 

Active State: 
 

The initial state of the transaction while it is executing. 
 

Partially Committed: 
 

After the final statement of the transaction has been executed. 
 

Failed: 
 

The transaction no longer proceed with normal execution, then it is in failed state. 
 

Aborted: 
 

After the transaction has been rolled back and the database has been restored to the prior to 

the state of the transaction. Two options after it has been aborted: 
 

 Restart the transaction can be done only if no internal logical error 


 Kill the transaction
 

Committed: After successful completion of the transaction. 
 

 

4. Schedule and Recoverability 
 

Schedule – A sequences of instructions that specify the chronological order in which  

instructions of concurrent transactions are executed a schedule for a set of transactions must 
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consist of all instructions of those transaction must preserve the order in which the instructions 

appear in each individual transaction. 
 

 A transaction that successfully completes its execution will have a commit instructions as 

the last statement by default transaction assumed to execute commit instruction as its last 

step.

 A transaction that fails to successfully complete its execution will have an abort instruction 

as the last statement.

 

 

Concurrent executions: 
 

Transaction processing system will allow multiple transactions to run concurrently. It leads to 

several problems like inconsistency of the data. Ensuring consistency of concurrent operations 

requires additional work to make serializable. Even though concurrent transactions has two 

major reasons: 
 

 Improved throughput and resource utilization. 
 

 Reduced waiting time. 
 
 
 

Concurrency Control Schemes: 
 

Schedule 1 
 

 Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance from A to B. 
 

 A serial schedule in which T1 is followed by T2 : 
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Schedule 2  

 A serial schedule in which T2 is followed by T1 : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Schedule 1 and schedule 2 are serial schedules. Each schedule consists various transactions,  

where series of instructions belonging to single transaction appear together in one schedule. 

Schedule 3 is example of concurrent transaction. In this two transactions T1 and T2 running 

concurrently. In this the OS may execute a part from T1 and switch to the second transactions 

T2 and then switch back to the first transaction for some time and so on with multiple 

transactions. i.e. CPU time is shared among all the transactions 
 

Schedule 3  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Let T1 and T2 be the transactions defined previously. The following scheme is not a 

serial schedule, but it is equivalent to Schedule 1. 
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Schedule 4 
 

T1 T2 

read(A)  

A:=A-50  

 read(B) 

 temp=A*0.1 

 A;=A-temp 

 write(A) 

 read(B) 

write(A)  

read(B)  

B:=B+50  

write(B)  

 B:=B+temp 

 write(B) 

 

In schedule 4, the CPU slicing is in different way to execute the transactions. It leads to the 

sum of A and B are different from before and after transactions as 950 and 2100. So this leads 

to inconsistent state. 

 

 

5. Serializability and schedules 
 

Basic Assumption – Each transaction preserves database consistency. 
 

Thus serial execution of a set of transactions preserves database consistency. 
 

A (possibly concurrent) schedule is serializable if it is equivalent to a serial schedule.  
 

Different forms of schedule equivalence give rise to the notions of: 
 

1. Conflict Serializability: 
 

A schedule is conflict serializable, if it is conflict equivalent to a serial schedule.  

Let a schedule S, there are two consecutive operations Ii and Ij of transactions Ti and Tj . If 

Ii and Ij refers to different data items, then we can swap Ii and Ij. 
 

If it refers the same data object then the order of two operations deal with four cases as 

given below. 
 

Ii Ij  
   

read(Q) read(Q) The order of Ii and Ij. does not matter 
   

read(Q) write(Q) If Ii comes before Ij then it waits until Ij finish 

  If Ij comes before Ii then no matter of order 
   

write(Q) read(Q) Same as above 
   

write(Q) write(Q) It does not matter order these two execution. 
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Shedule- 3  

In the above schedule, the write(A) of T1 conflicts with the read(A) of T2 . Howerver 

write(A) of T2 does not reflect with read(B) of T1, because the two operations doest not 

refer the same data item. 
  

T1 T2 

 

read(A) 

write(A)  
read(A) 

 
read(B) 

 

write(A) 

 

write(B) 

 

read(B) 

write(B)  
Schedule 5 – schedule 3 after swapping of pair of instructions 

 

T1        T2  
 

read(A) 

write(A) 

read(B) 

write(B)   
read(A)  
write(A) 

read(B) 

write(B) 
 

Schedule 6 – A serial schedule euivallent to schedule 3 
 

Conflicting Instructions 
 

 Instructions li and lj of transactions Ti and Tj respectively, conflict if and only if there exists 

some item Q accessed by both li and lj, and at least one of these instructions wrote Q. 
 

li = read(Q), lj = read(Q). li and lj don’t conflict. 
 

li = read(Q), lj = write(Q). They conflict. 
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li = write(Q), lj = read(Q). They conflict 
 

li = write(Q), lj = write(Q). They conflict 
 

Intuitively, a conflict between li and lj forces a (logical) temporal order between them. If li and 

lj are consecutive in a schedule and they do not conflict, their results would remain the same  

even if they had been interchanged in the schedule. 

 

 

Conflict Serializability 
 

 If a schedule S can be transformed into a schedule S´ by a series of swaps of non-

conflicting instructions, we say that S and S´ are conflict equivalent. 
 
 We say that a schedule S is conflict serializable if it is conflict equivalent to a serial 

schedule 
 
 
 
 
 
 

 

Schedule 3 can be transformed into Schedule 6, a serial schedule where T2 follows T1, by 

series of swaps of non-conflicting instructions. Therefore Schedule 3 is conflict serializable. 

 

Example of a schedule that is not conflict serializable: 
 

We are unable to swap instructions in the above schedule to obtain either the 

serial schedule < T3, T4 >, or the serial schedule < T4, T3 >. 

 

 

2. View Serializability: 
 

Let S and S  ́be two schedules with the same set of transactions. S and S´ are view 

equivalent if the following three conditions are met, for each data item Q, 
 

If in schedule S, transaction Ti reads the initial value of Q, then in schedule S’ also 

transaction Ti must read the initial value of Q. 

If in schedule S transaction Ti executes read(Q), and that value was produced by transaction 
 

Tj (if any), then in schedule S’ also transaction Ti must read the value of Q that was produced by the 

same write(Q) operation of transaction Tj . 
 

The transaction (if any) that performs the final write(Q) operation in schedule S must also 

perform the final write(Q) operation in schedule S’. 
 

As can be seen, view equivalence is also based purely on reads and writes alone.  
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 A schedule S is view serializable if it is view equivalent to a serial schedule.


 Every conflict serializable schedule is also view serializable.


 Below is a schedule which is view-serializable but not conflict serializable.




 What serial schedule is above equivalent to?


 Every view serializable schedule that is not conflict serializable has blind writes.


 Other Notions of Serializability 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The schedule below produces same outcome as the serial schedule < T1, T5 >, yet is not 

conflict equivalent or view equivalent to it. 

Determining such equivalence requires analysis of operations other than read and write.  
 

Recoverability: 
 

 Recoverable schedule — if a transaction Tj reads a data item previously written by a  

transaction Ti , then the commit operation of Ti appears before the commit operation of 
 

Tj.  

The following schedule (Schedule 11) is not recoverable if T9 commits 

immediately after the read 
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If T8 should abort, T9 would have read (and possibly shown to the user) an inconsistent 

database state. Hence, database must ensure that schedules are recoverable. 

Cascading Rollbacks: 
 

Cascading rollback – a single transaction failure leads to a series of transaction 
 

rollbacks. Consider the following schedule where none of the transactions has yet 

committed (so the schedule is recoverable) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

If T10 fails, T11 and T12 must also be rolled back. 
 

 Can lead to the undoing of a significant amount of work 
 

Cascadeless schedules — cascading rollbacks cannot occur; for each pair of transactions Ti 

and Tj such that Tj reads a data item previously written by Ti, the commit operation of Ti 

appears before the read operation of Tj. 
 

 Every cascadeless schedule is also recoverable 
 
 It is desirable to restrict the schedules to those that are cascadeless 
 

Concurrency Control 
 

 A database must provide a mechanism that will ensure that all possible schedules are 
 

– either conflict or view serializable, and 
 

– are recoverable and preferably cascadeless 
 

 A policy in which only one transaction can execute at a time generates serial schedules, but 

provides a poor degree of concurrency 
 
– Are serial schedules recoverable/cascadeless? 
 

 Testing a schedule for serializability after it has executed is a little too late! 
 
 Goal – to develop concurrency control protocols that will assure serializability. 
 
 
 

Implementation of Isolation: 
 

 Schedules must be conflict or view serializable, and recoverable, for the sake of  
 

 

134 | P a g e 



database consistency, and preferably cascadeless. 
 

 A policy in which only one transaction can execute at a time generates serial schedules, 

but provides a poor degree of concurrency. 
 
 Concurrency-control schemes tradeoff between the amount of concurrency they allow 

and the amount of overhead that they incur. 
 
 Some schemes allow only conflict-serializable schedules to be generated, while others 

allow view-serializable schedules that are not conflict-serializable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Testing for Serializability:  
 
 
 
 
 
 
 
 
 
 
 

 

 Consider some schedule of a set of transactions T1, T2, ..., Tn 
 
 Precedence graph — a direct graph where the vertices are the transactions (names).  

 We draw an arc from Ti to Tj if the two transaction conflict, and Ti accessed the data item 

on which the conflict arose earlier. 

 We may label the arc by the item that was accessed. 
 

 

Test for Conflict Serializability 
 

 A schedule is conflict serializable if and only if its precedence graph is acyclic. 
 

 Cycle-detection algorithms exist which take order n
2
 time, where n is the number of 
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– 

vertices in the graph. 
 

(Better algorithms take order n + e where e is the number of edges.)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 If precedence graph is acyclic, the serializability order can be obtained by a topological 
 

sorting of the graph. 
 

–This is a linear order consistent with the partial order of the graph. 
 

– For example, a serializability order for Schedule A would be 
 

T5  T1  T3  T2  T4 
 

 Are there others? 
 

Test for View Serializability 
 

 The precedence graph test for conflict serializability cannot be used directly to test for 

view serializability.


o Extension to test for view serializability has cost exponential in the size of the 

precedence graph. 


 The problem of checking if a schedule is view serializable falls in the class of NP-

complete problems. Thus existence of an efficient algorithm is extremely unlikely.


 However practical algorithms that just check some sufficient conditions for view 

serializability can still be used.

 Concurrency Control: 
 

Concurrency Control vs. Serializability Tests 
 

 Concurrency-control protocols allow concurrent schedules, but ensure that the 

schedules are conflict/view serializable, and are recoverable and cascadeless .
 
 
 

 

136 | P a g e 



 
 Concurrency control protocols generally do not examine the precedence graph as it is 

being created


 Instead a protocol imposes a discipline that avoids nonseralizable schedules. 


 Different concurrency control protocols provide different tradeoffs between the 

amount of concurrency they allow and the amount of overhead that they incur.


 Tests for serializability help us understand why a concurrency control protocol is 

correct.
 
Weak Levels of Consistency 
 

 Some applications are willing to live with weak levels of consistency, allowing


 schedules that are not serializable


o E.g. a read-only transaction that wants to get an approximate total balance of all 
 Accounts.




 E.g. database statistics computed for query optimization can be approximate (why?)


 

o Such transactions need not be serializable with respect to other transactions 
 

 Tradeoff accuracy for performance


 Levels of Consistency in SQL-92
 

 

Serializable — default 
 

Repeatable read — only committed records to be read, repeated reads of same record must  

return same value. However, a transaction may not be serializable – it may find some records 

inserted by a transaction but not find others. 
 
Read committed — only committed records can be read, but successive reads of record may 

return different (but committed) values. 
 
Read uncommitted — even uncommitted records may be read. 
 

Transaction Definition in SQL Data manipulation language must include a construct for 

specifying the set of actions that comprise a transaction. 
 

 In SQL, a transaction begins implicitly. 
 

 A transaction in SQL ends by: 
 

 Commit work commits current transaction and begins a new one. 
 

 Rollback work causes current transaction to abort. 
 

 In almost all database systems, by default, every SQL statement also commits implicitly 

if it executes successfully Implicit commit can be turned off by a database directive 
 

E.g. in JDBC, connection.setAutoCommit(false);  
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 Types of Locks 
 

There are various modes to lock data items. They are 
 

 Shared(S): If a transaction Ti has shared mode lock on data item Q then Ti can 

read but not write Q. lock-S(Q) instruction is used in shared mode.


 Exclusive(X): If a transaction has obtained an exclusive mode lock on data item
 

Q, then Ti can perform both read and write. lock-X(Q) instruction is used to lock 

in exclusive mode. 
 
A lock is a mechanism to control concurrent access to a data item. Lock requests are made to 

concurrency-control manager. Transaction can proceed only after request is granted. 
 

Lock-compatibility matrix  
 
 
 
 
 
 
 
 
 
 
 

A transaction may be granted a lock on an item if the requested lock is compatible with 
 

locks already held on the item by other transactions Any number of transactions can hold 

shared locks on an item, but if any transaction holds an exclusive on the item no other 

transaction may hold any lock on the item. If a lock cannot be granted, the requesting 

transaction is made to wait till all incompatible locks held by other transactions have been released. 

The lock is then granted. 

Example of a transaction performing locking:   

T1: T2: T3: T4: 

lock-X(B); lock-S(A); lock-X(B); lock-S(A); 

read (B); read (A); read (B); read (A); 

B:=B-50; unlock(A); B:=B-50; lock-S(B); 

write(B);  write(B); read (B); 

unlock(B); lock-S(B);  display(A+B); 

 read (B); lock-X(A); unlock(A); 

lock-X(A); unlock(B); read (A); unlock(B); 

read (A); display(A+B) A:=A+50;  

A:=A+50;  write(A);  

write(A);    

unlock(A);  unlock(B);  

  unlock(A);  
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Locking as above is not sufficient to guarantee serializability — if A and B get updated in-

between the read of A and B, the displayed sum would be wrong. 
 
A locking protocol is a set of rules followed by all transactions while requesting and releasing 

locks. Locking protocols restrict the set of possible schedules. Consider the partial schedule 

 

Neither T3 nor T4 can make progress — executing lock-S(B) causes T4 to wait for T3 to release 

its lock on B, while executing lock-X(A) causes T3 to wait for T4 to release its lock on A. Such 

a situation is called a deadlock. To handle a deadlock one of T3 or T4 must be rolled back and 

its locks released. The potential for deadlock exists in most locking protocols. Deadlocks are a 

necessary evil. 
 

Starvation is also possible if concurrency control manager is badly designed. For example: A 

transaction may be waiting for an X-lock on an item, while a sequence of other transactions 

request and are granted an S-lock on the same item. The same transaction is repeatedly rolled 

back due to deadlocks. Concurrency control manager can be designed to prevent starvation. 

 

 

 Two phase locking 
 

Rigorous two-phase locking is even stricter: here all locks are held till commit/abort. 
 

In this protocol transactions can be serialized in the order in which they commit. 
 

There can be conflict serializable schedules that cannot be obtained if two-phase locking is 

used. However, in the absence of extra information (e.g., ordering of access to data), two-hase 

locking is needed for conflict serializability in the following sense: 
 
Given a transaction Ti that does not follow two-phase locking, we can find a transaction Tj that 

uses two-phase locking, and a schedule for Ti and Tj that is not conflict serializable. Lock 

Conversions: 

 

Two-phase locking with lock conversions: 
 

–First Phase: 
 

can acquire a lock-S on item 

can acquire a lock-X on item 
 

can convert a lock-S to a lock-X (upgrade) 
 

–Second Phase: can release 

a lock-S 
 

can release a lock-X 
 

can convert a lock-X to a lock-S  (downgrade)  
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Two-Phase Locking Protocol 

This protocol ensures conflict-serializable schedules. 
 

Phase 1: Growing Phase 
 

 transaction may obtain locks 
 

 transaction may not release locks 

Phase 2: Shrinking Phase 
 

 transaction may release locks 
 

 transaction may not obtain locks 
 

The protocol assures serializability. It can be proved that the transactions can be 
 

serialized in the order of their lock points  (i.e. the point where a transaction acquired its 
 

final lock). 
 

Two-phase locking does not ensure freedom from deadlocks. Cascading roll-back is possible 
 

under two-phase locking. To avoid this, follow a modified protocol called strict two-phase 
 

locking. Here a transaction must hold all its exclusive locks till it commits/ 
 

This protocol assures serializability. But still relies on the programmer to insert the various 
 

locking instructions. 
 

Automatic Acquisition of Locks : 
 

A transaction Ti issues the standard read/write instruction, without explicit locking calls.  
 

The operation read(D) is processed as: 

 

if Ti has a lock on D 

then 

read(D) 

else begin 

if necessary wait until no other 

transaction has a lock-X on D  
grant Ti a lock-S on D; 

read(D) 

end 

write(D) is processed as: 

if Ti has a lock-X on D 

then 

write(D) 

else begin  
if necessary wait until no other trans. has any lock on 

D, if Ti has a lock-S on D  
then 

upgrade lock on D to lock-X 

else 

grant Ti a lock-X on D  
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write(D) 

end;  
All locks are released after commit or abort Implementation of Locking 
 

A lock manager can be implemented as a separate process to which transactions send lock and 

unlock requests 
 

The lock manager replies to a lock request by sending a lock grant messages (or a message 

asking the transaction to roll back, in case of a deadlock) The requesting transaction waits 

until its request is answered 
 
The lock manager maintains a data-structure called a lock table to record granted locks and 

pending requests 
 
The lock table is usually implemented as an in-memory hash table indexed on the name of 

the data item being locked 

 

 

 Deadlock: A deadlock is a condition wherein two or more tasks are waiting for each other in 

order to be finished but none of the task is willing to give up the resources that other task 

needs. In this situation no task ever gets finished and is in waiting state forever. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

10. Time stamp based concurrency control 

 

Each transaction is issued a timestamp when it enters the system. If an old transaction Ti has 

time-stamp TS(Ti), a new transaction Tj is assigned time-stamp TS(Tj) such that TS(Ti) 

<TS(Tj). The protocol manages concurrent execution such that the time-stamps determine the 

serializability order. In order to assure such behavior, the protocol maintains for each data Q 

two timestamp values: 
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 W-timestamp(Q) is the largest time-stamp of any transaction that executed write(Q) 

successfully. 
 

 R-timestamp(Q) is the largest time-stamp of any transaction that executed read(Q) 

successfully. 
 

The timestamp ordering protocol ensures that any conflicting read and write operations 

are executed in timestamp order. Suppose a transaction Ti issues a read(Q) 
 

o If TS(Ti)  W-timestamp(Q), then Ti needs to read a value of Q that was already 

overwritten. Hence, the read operation is rejected, and Ti is rolled back. 
 

 If  TS(Ti) W-timestamp(Q),  then  the  read  operation  is  executed,  and  R- 
 

timestamp(Q) is set to max(R-timestamp(Q), TS(Ti)).Suppose that transaction Ti 

issues write(Q). 
 

 If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was needed 

previously, and the system assumed that that value would never be produced. 

 

 If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q. 

Hence, this write operation is rejected, and Ti is rolled back.Otherwise, the write 

operation is executed, and W-timestamp(Q) is set to TS(Ti). 

 
 
 
 

 Recovery Techniques 
 

To see where the problem has occurred we generalize the failure into various categories, 

as follows: 

 

Transaction failure:When a transaction is failed to execute or it reaches a point after which it  

cannot be completed successfully it has to abort. This is called transaction failure. Where only 

few transaction or process are hurt. 
 

Recovery and Atomicity: 
 

Modifying the database without ensuring that the transaction will commit may leave the 

database in an inconsistent state. 
 

Consider transaction Ti that transfers $50 from account A to account B; goal is either to 

perform all database modifications made by Ti or none at all. 

Several output operations may be required for Ti (to output A and B). A failure may occur after 

one of these modifications have been made but before all of them are made. 
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To ensure atomicity despite failures, we first output information describing the modifications to 

stable storage without modifying the database itself. Two approaches for recovery are log-

based recovery, and shadow-paging. Assume (initially) that transactions run serially, that is, 

one after the other. 
 
Recovery Algorithms 
 

Recovery algorithms are techniques to ensure database consistency and transaction atomicity 

and durability despite failures. Recovery algorithms have two parts: 
 

 Actions taken during normal transaction processing to ensure enough information exists 

to recover from failures 
 

 Actions taken after a failure to recover the database contents to a state that ensures 

atomicity, consistency and durability. 
 

Log-Based Recovery: 
 

A log is kept on stable storage. 
 

The log is a sequence of log records, and maintains a record of update activities on the 

database. Log record has 3 fields: 
 
 Transaction Identifier: Unique identifier of the transaction that performed write operation. 
 
 Data item identifier: Unique identification of the data item written 
 
 Old value: Value of the item prior to the write 
 
 New value: Value of the item after write transaction 
 

Various log records are:  

 <Ti  start> log record Before Ti executes write(X), 
 

 <Ti, X, V1, V2> is written, where V1 is the value of X before the write, and V2 is the 

value to be written to X. Log record notes that Ti has performed a write on data item 

Xj Xj had value V1 before the write, and will have value V2 after the write. 
 

 <Ti  commit> Transaction Ti has committed 
 

 <Ti  abort> Transaction Ti has aborted 
 

 

 Deferred database modification 
 
 Immediate database modification  
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12. Immediate update 
 

Immediate Database Modification 
 

The immediate database modification scheme allows database updates of an uncommitted 

transaction to be made as the writes are issued since undoing may be needed, update logs must 

have both old value and new value Update log record must be written before database item is 

written. Assume that the log record is output directly to stable storage can be extended to 

postpone log record output, so long as prior to execution of an output(B) operation for a data 

block B, all log records corresponding to items B must be flushed to stable storage. 
 

 Output of updated blocks can take place at any time before or after transaction commit 
 

 Order in which blocks are output can be different from the order in which they are 
 

written. 
 

Recovery procedure has two operations instead of one: 
 

undo(Ti) restores the value of all data items updated by Ti to their old values, going backwards 

from the last log record for Ti 

redo(Ti) sets the value of all data items updated by Ti to the new values, going forward from 

the first log record for Ti 
 

Both operations must be idempotent, i.e., even if the operation is executed multiple times the 

effect is the same as if it is executed once. Needed since operations may get re-executed during 

recovery. 
 

When recovering after failure:  

Transaction Ti needs to be undone if the log contains the record 

<Ti start>, but does not contain the record <Ti commit>. 
 

Transaction Ti needs to be redone if the log contains both the record <Ti start> and the record 

<Ti commit>. 
 
Undo operations are performed first, then redo operations. 
 

Example: Immediate Database Modification 
 

Crashes can occur while the transaction is executing the original updates, or while recovery 

action is being taken example transactions T0 and T1 (T0 executes before T1): 
 

T0: 
 

read (A)  
 - A - 50 

Write (A) 
read (B)  
B:- B + 50 

write (B) 

 

T1 : 
 
read (C)  
C:-C- 100 

write (C)  
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Let accounts A, B and C initially has 1000, 2000 and 700 respectively. The log entry of both 

the transactions are: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Below we show the log as it appears at three instances of time. Recovery actions in each case 

above are: 
 

 undo (T0): B is restored to 2000 and A to 1000. 
 

 undo (T1) and redo (T0): C is restored to 700, and then A and B are set to 950 and 2050 

respectively. 
 

 redo (T0) and redo (T1): A and B are set to 950 and 2050 respectively. Then C is set to 600 
 

 

13. Deferred update 
 

Deferred Database Modification 
 

The deferred database modification scheme records all modifications to the log, but 
 

defers all the writes to after partial commit. 
 

Assume that transactions execute serially 
 

 <Ti  start>transaction Ti started. 
 

A write(X) operation results in a log record  :  

 <Ti, X, V> being written, where V is the new value for X 
 

Note: old value is not needed for this scheme 
 

The write is not performed on X at this time, but is deferred. 
 

When Ti partially commits, 
 

 <Ti commit> is written to the log 
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Finally, the log records are read and used to actually execute the previously deferred 

writes. During recovery after a crash, a transaction needs to be redone if and only if 

both 

 <Ti  start> and<Ti commit> are there in the log. 
 

 

Redoing a transaction Ti  

 < redoTi> sets the value of all data items updated by the transaction to the new  

values. 
 

Crashes can occur while the transaction is executing the original updates, or while 

recovery action is being taken example transactions T0 and T1 (T0 executes before T1): 
 

T0: 
 

read (A)  
 - A - 50 

Write (A) 
read (B)  
B:- B + 50 
write (B) 

 

T1 : 
 
read (C)  
C:-C- 100 

write (C) 

 
Let accounts A,B and C initially has 1000, 2000 and 700 respectively. The log entry of both the 

transactions are: 
 

<T0  start> 
 

<T0, A, 950> 
 

<T0, B, 2050> 
 

<T0, commit> 
 

<T1  start> 
 

<T1, C, 600> 
 

<T1, commit> 
 
 
 

14. Shadow paging 
 

Shadow paging is an alternative to log-based recovery; this scheme is useful if transactions 

execute serially 
 
Idea: maintain two page tables during the lifetime of a transaction –the current page table, and 

the shadow page table 
 
Store the shadow page table in nonvolatile storage, such that state of the database prior to 

transaction execution may be recovered. 
 
Shadow page table is never modified during execution  
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To start with, both the page tables are identical. Only current page table is used for data item 

accesses during execution of the transaction. 
 
Whenever any page is about to be written for the first time, A copy of this page is made onto an 

unused page. 
 
The current page table is then made to point to the copy 

The update is performed on the copy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

To commit a transaction : 
 

 Flush all modified pages in main memory to disk 
 
 Output current page table to disk 

 
 Make the current page table the new shadow page table, as follows: 

 
 keep a pointer to the shadow page table at a fixed (known) location on disk. 

 
 to make the current page table the new shadow page table, simply update the 

pointer to point to current page table on disk 
 

 Once pointer to shadow page table has been written, transaction is committed. 
 

 No recovery is needed after a crash — new transactions can start right away, 

using the shadow page table. 
 

 Pages not pointed to from current/shadow page table should be freed (garbage 

collected). 
 

 Advantages of shadow-paging over log-based schemes 
 

 no overhead of writing log records 
 

 recovery is trivial  
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 Disadvantages : 
 

 Copying the entire page table is very expensive 
 

 Can be reduced by using a page table structured like a B
+

-tree 
 

 No need to copy entire tree, only need to copy paths in the tree that lead 
 

to updated leaf nodes 
 

 Commit overhead is high even with above extension 
 

 Need to flush every updated page, and page table 
 

 Data gets fragmented (related pages get separated on disk) 
 

 After every transaction completion, the database pages containing old 

versions of modified data need to be garbage collected 
 

 Hard to extend algorithm to allow transactions to run concurrently 
 Easier to extend log based schemes
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UNIT-V 
 

Data Storage and Query Processing  
 

 Record storage and primary file organization 
 

 Secondary storage devices 
 

 Operations on files 
 

 Heap File 
 

 Sorted files 
 

 Hashing techniques 
 

 Index structures for files 
 

 Different types of indexes 
 

 B tree and B+ tree 
 

 Query processing  
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 Record storage and primary file organization 

Storage Hierarchy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

primary storage: Fastest media but volatile (cache, main memory). 
 

secondary storage: next level in hierarchy, non-volatile, moderately fast access time 

also called on-line storage 
 
E.g. flash memory, magnetic disks 
 

tertiary storage: lowest level in hierarchy, non-volatile, slow access time 

also called off-line storage 
 
E.g. magnetic tape, optical storage 
 

File organization: Method of arranging a file of records on external storage. Record id (rid) is 

sufficient to physically locate record. 
 
The database is stored as a collection of files.  Each file is a sequence of records.  A record is a  
 

sequence of fields. 
 

One approach: 
 

 assume record size is fixed


 each file has records of one particular type only


 different files are used for different relations
 

This case is easiest to implement; will consider variable length records later. 
 

Fixed-Length Records 
 

 Store record i starting from byte n * (i – 1), where n is the size of each record.Record 

access is simple but records may cross blocks.
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 Modification: do not allow records to cross block boundaries

 Deletion of record i: alternatives:

 move records i + 1, . . ., n to i, . . . , n – 1

 move record n to i

 do not move records, but link all free records on a free list 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Variable-Length Records 
 

 Variable-length records arise in database systems in several ways:
 Storage of multiple record types in a file.
 Record types that allow variable lengths for one or more fields such as strings (varchar) 
 Record types that allow repeating fields (used in some older data models). 
 Attributes are stored in order
 Variable length attributes represented by fixed size (offset, length), with actual data 

stored after all fixed length attributes
 Null values represented by null-value bitmap 

 
 
 
 
 
 
 
 
 
 
 

 

Organization of Records in Files 
 

 Heap – a record can be placed anywhere in the file where there is space 
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 Sequential – store records in sequential order, based on the value of the search key of each 

record

 Hashing – a hash function computed on some attribute of each record; the result specifies 

in which block of the file the record should be placed

 Records of each relation may be stored in a separate file. In a multitable clustering file 

organization records of several different relations can be stored in the same file

 Motivation: store related records on the same block to minimize I/O




 Operations on files 
 

 

Secondary storage devices 
 

Disks: Can retrieve random page at fixed cost.But reading several consecutive pages 

is much cheaper than reading them in random order 
 

Tapes: Can only read pages in sequence. Cheaper than disks; used for archival storage. 

Sequential File Organization 

 Suitable for applications that require sequential processing of the entire file

 The records in the file are ordered by a search-key

 Deletion – use pointer chains

 Insertion –locate the position where the record is to be inserted
 

 if there is free space insert there 
 

 if no free space, insert the record in an overflow block 
 

 In either case, pointer chain must be updated 
 

 Need to reorganize the file from time to time to restore sequential order  
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Indexes are data structures that allow us to find the record ids of records with given values in  

index search key fields 
 
Architecture: Buffer manager stages pages from external storage to main memory buffer pool. 
 

File and index layers make calls to the buffer manager. 
 

Alternative File Organizations: 
 

Many alternatives exist, each ideal for some situations, and not so good in others: 
 

Heap (random order) files: Suitable when typical access is a file scan retrieving all records. 
 

Sorted Files:  Best if records must be retrieved in some order, or only a `range’  of records is 
 

needed. 
 

Indexes: Data structures to organize records via trees or hashing. 
 

Like sorted files, they speed up searches for a subset of records, based on values in certain 

(“search key”) fields. Updates are much faster than in sorted files. 
 

Primary and secondary Indexes: 
 

 Primary vs. secondary: If search key contains primary key, then called primary index. 

Unique index: Search key contains a candidate key.
 

Clustered and uncluttered: 
 

If order of data records is the same as, or `close to’, order of data entries, then called clustered 

index. 
 

 Alternative 1 implies clustered; in practice, clustered also implies Alternative 

1 (since sorted files are rare).


 A file can be clustered on at most one search key.


 Cost of retrieving data records through index varies greatly based on whether index is 

clustered or not!
 
Clustered vs. Unclustered Index 
 

 Suppose that Alternative (2) is used for data entries, and that the data records are stored 

in a Heap file. 
 
 To build clustered index, first sort the Heap file (with some free space on 

each page for future inserts).
 
 
 
 
 
 
 
 
 
 
 

 

153 | P a g e 



 
 

Index entries  
direct search for 
data entries 

 

 

UNCLUSTERED 
 

Data entries Data entries   
(Index File) 

 

(Data file) 
 

            

            
            

Data Records   Data Records 
             

 
 
 

 

Overflow pages may be needed for inserts. to’, but 

not identical to, the sort order.) 

 
 
 

 

(Thus, order of data recs is `close 

 

Index Data Structures: 
 

 An index on a file speeds up selections on the search key fields for the index. 
 
 Any subset of the fields of a relation can be the search key for an index on the 

relation. 
 
 Search key is not the same as key (minimal set of fields that uniquely identify a record in a  

relation). 
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Non-leaf 
Pages 

 
 

 

Leaf  
Pages 

 

(Sorted by search key) 
 
 
 

index entry 
  

P K 
1 P 1 

 K 2 P 2 
 K m P m 

 
0      

 
 

 

 An index contains a collection of data entries, and supports efficient retrieval of all data 

entries k* with a given key value k. 
 

 Given data entry k*, we can find record with key k in at most one disk I/O. 
 

(Details soon …) 
 

 

B+ Tree Indexes 
 

Example B+ 
 

Tree  
 

Ro 

ot  1   

Entries <= 
7
 

17
 5  1  

3 
 

3    5 7 8   1416   

*   * * *   *  *   

 
 

 Note how data 
 entries   

Entries >    

172 in3 leaf level are 
7  0    

2224 27 29 33 3438 39 

*  * * * * *  * * 
 
 
 
 

 

 Find 28*? 29*? All > 15* and < 30* 
 

 Insert/delete:  Find data entry in leaf, then change it. Need to adjust parent sometimes.  
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–And change sometimes bubbles up the tree 
 

Hash-Based Indexing: 
 
 

 Hash-Based Indexes 
 
 Good for equality selections. 
 
 Index is a collection of buckets. 
 

–   Bucket = primary page plus zero or more overflow pages. 
 

–   Buckets contain data entries. 
 
 Hashing function h: h(r) = bucket in which (data entry for) record r belongs. h looks at 

the search key fields of r. No need for “index entries” in this scheme. 
 
 Alternatives for Data Entry k* in Index 
 
 In a data entry k* we can store: 
 

– Data record with key value k, or 
 

– <k, rid of data record with search key value k>, or 
 

– <k, list of rids of data records with search key k> 
 

 Choice of alternative for data entries is orthogonal to the indexing technique used to 

locate data entries with a given key value k. 
 

Tree Based Indexing: 
 

–Examples of indexing techniques: B+ trees, hash-based structures 
 

–Typically, index contains auxiliary information that directs searches to the desired 

data entries 
 
 Alternative 1: 
 

–If this is used, index structure is a file organization for data records (instead of a Heap file 

or sorted file). 
 

–At most one index on a given collection of data records can use Alternative 1. (Otherwise, data records 

are duplicated, leading to redundant storage and potential inconsistency.) 
 
–If data records are very large, # of pages containing data entries is high. 
 

Implies size of auxiliary information in the index is also large, typically. 
 

 Alternatives 2 and 3: 
 

–Data entries typically much smaller than data records. So, better than 
 

Alternative 1 with large data records, especially if search keys are small. 

(Portion of index structure used to direct search, which depends on size of data 

entries, is much smaller than with Alternative 1.) 
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–Alternative 3 more compact than Alternative 2, but leads to variable sized data entries 

even if search keys are of fixed length. 
 
 Cost Model for Our Analysis 
 

We ignore CPU costs, for simplicity: 
 

– B: The number of data pages 
 

– R: Number of records per page 
 

– D: (Average) time to read or write disk page 
 

– Measuring number of page I/O’s ignores gains of pre-fetching a sequence of 
 

pages; thus, even I/O cost is only approximated. 
 

– Average-case analysis; based on several simplistic assumptions. 
 

Comparison of File Organizations: 
 

 Heap files (random order; insert at eof) 
 
 Sorted files, sorted on <age, sal> 
 
 Clustered B+ tree file, Alternative (1), search key <age, sal> 
 
 Heap file with unclustered B + tree index on search key <age, sal> 
 
 Heap file with unclustered hash index on search key <age, sal> 
 

Operations to Compare 
 

 Scan: Fetch all records from disk 
 
 Equality search 
 
 Range selection 
 
 Insert a record 
 
 Delete a record 
 

Assumptions in Our Analysis 
 

 Heap Files: 
 

– Equality selection on key; exactly one match. 
 

 Sorted Files: 
 

– Files compacted after deletions. 
 

 Indexes: 
 

– 
 

– 
 

• 
 

– 
 

• 

 

Alt (2), (3): data entry size = 10% size of record 
 

Hash: No overflow buckets. 
 

80% page occupancy => File size = 1.25 data size 
 

Tree: 67% occupancy (this is typical). 
 

Implies file size = 1.5 data size 
 

 Scans:  
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– Leaf levels of a tree-index are chained. 
 

– Index data-entries plus actual file scanned for unclustered indexes. 
 

 Range searches: 
 

We use tree indexes to restrict the set of data records fetched, but ignore hash 

indexes. 
 
 
 
 
 
 

 

  (a) Scan (b) Equality (c ) Range (d) Insert (e) Delete 
      

(1) Heap BD 0.5BD BD 2D Search 
      +D 

(2) Sorted BD Dlog 2B D(log 2 B + Search Search 
    # pgs with + BD +BD 

    match recs)   
(3)  1.5BD Dlog F  1.5B D(log F 1.5B Search Search 

Clustered   + # pgs w. + D +D 

    match recs)   
(4) Unclust. BD(R+0.15) D(1 + D(log F 0.15B Search Search 

Tree index  log F 0.15B) + # pgs w. + 2D + 2D 

    match recs)   
(5) Unclust. BD(R+0.125) 2D BD Search Search 

Hash index    + 2D + 2D 
 
 
 

 

 Understanding the Workload 
 
 For each query in the workload: 
 

 Which relations does it access? 
 

 Which attributes are retrieved? 
 

 Which attributes are involved in selection/join conditions? How selective are these 

conditions likely to be? 
 
 For each update in the workload: 
 

 Which attributes are involved in selection/join conditions? How selective are these 

conditions likely to be? 
 

 The type of update (INSERT/DELETE/UPDATE), and the attributes that are affected. 
 

 

Choice of Indexes 
 

 What indexes should we create? 
 

 Which relations should have indexes?  What field(s) should be the search key?  
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Should we build several indexes? 
 

 For each index, what kind of an index should it be? 
 

 

Clustered? Hash/tree? 
 

 One approach: Consider the most important queries in turn. Consider the best plan using 

the current indexes, and see if a better plan is possible with an additional index. If so, 

create it. 
 

– Obviously, this implies that we must understand how a DBMS evaluates queries 

and creates query evaluation plans! 
 

–   For now, we discuss simple 1-table queries. 
 
 Before creating an index, must also consider the impact on updates in the workload! 
 

– Trade-off: Indexes can make queries go faster, updates slower. Require disk 

space, too. 

 
 

Index Selection Guidelines 
 

 Attributes in WHERE clause are candidates for index keys. 
 

 Exact match condition suggests hash index. 
 

 Range query suggests tree index. 
 

 Clustering is especially useful for range queries; can also help on equality queries if 

there are many duplicates. 
 
 Multi-attribute search keys should be considered when a WHERE clause contains 

several conditions. 
 

 Order of attributes is important for range queries. 
 

 Such indexes can sometimes enable index-only strategies for important queries. 
 

For index-only strategies, clustering is not important!  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

159 | P a g e 



 

Examples of composite key 
 

indexes using lexicographic order.  
 
 
 

 

11,80   11 
12,10 

nameage sal 
12 

12,20 12 
13,75 bob 12 10 13 

<age, sal> cal 11 80 <age> 
 joe 12 20  

10,12 sue 13 75 10 

20,12 Data records 20 
75,13   75 
80,11 

sorted by name 
80 

<sal, age> <sal> 
  

Data entries 
 

sorted by <sal> 
 

 

 Composite Search Keys: Search on a combination of fields. 
 

 Equality query: Every field value is equal to a constant value. E.g. wrt <sal,age> 

index: 
 

age=20 and sal =75 
 

 Range query: Some field value is not a constant. E.g.: 

age =20; or age=20 and sal > 10 
 
 Data entries in index sorted by search key to support range queries. 
 

 Lexicographic order, or Spatial order. 
 
 Composite Search Keys 
 
 To retrieve Emp records with age=30 AND sal=4000, an index on <age,sal> would be 

better than an index on age or an index on sal. 
 

 Choice of index key orthogonal to clustering etc. 
 
 If condition is: 20<age<30 AND 3000<sal<5000: 
 

 Clustered tree index on <age,sal> or <sal,age> is best. 
 
 If condition is:  age=30  AND 3000<sal<5000: 
 

 Clustered <age,sal> index much better than <sal,age> index! 
 
 Composite indexes are larger, updated more often.  
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 Index-Only Plans 
 
 A number of queries can be answered without retrieving any tuples from one or more of the 

relations involved if a suitable index is available. 
 
Summary 
 

 Many alternative file organizations exist, each appropriate in some situation. 
 
 If selection queries are frequent, sorting the file or building an index is important. 
 

 Hash-based indexes only good for equality search. 
 

 Sorted files and tree-based indexes best for range search; also good for equality search. 

(Files rarely kept sorted in practice; B+ tree index is better.) 
 
 Index is a collection of data entries plus a way to quickly find entries with given key values.  
 
 Data entries can be actual data records, <key, rid> pairs, or <key, rid-list> pairs. 
 

– Choice orthogonal to indexing technique used to locate data entries with a given 

key value. 
 
 Can have several indexes on a given file of data records, each with a different search key. 
 
 Indexes can be classified as clustered vs. unclustered, primary vs. secondary, and dense vs. 

sparse. Differences have important consequences for utility/performance. 
 
 As for any index, 3 alternatives for data entries k*: 
 

 Data record with key value k 
 

 <k, rid of data record with search key value k> 
 

 <k, list of rids of data records with search key k> 
 
 Choice is orthogonal to the indexing technique used to locate data entries k*. 
 

 

 Different types of indexes
 

Indexing mechanisms used to speed up access to desired data. 
 

E.g., author catalog in library 
 

Search Key - attribute to set of attributes used to look up records in a file. 
 

An index file consists of records (called index entries) of the form  
 

search-key pointer 
 

 

Index files are typically much smaller than the original file 
 

Two basic kinds of indices: 
 

Ordered indices: search keys are stored in sorted order  
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Hash indices: search keys are distributed uniformly across “buckets” using a “hash 

function”. Index Evaluation Metrics 
 
Access types supported efficiently. E.g., records with a specified value in the attribute or 

records with an attribute value falling in a specified range of values. 
 

 Access time 
 

 Insertion time 
 

 Deletion time 
 

 Space overhead 
 

Ordered indices: In an ordered index, index entries are stored sorted on the search key value. 
 

E.g., author catalog in library. 
 

Primary index: in a sequentially ordered file, the index whose search key specifies the 

sequential order of the file. Also called clustering index. The search key of a primary index is 

usually but not necessarily the primary key. 
 
Secondary index: an index whose search key specifies an order different from the 

sequential order of the file. Also called non-clustering index. Index-sequential file: 

ordered sequential file with a primary index. 
 
Hash Function: 
 

A bucket is a unit of storage containing one or more records (a bucket is typically a disk 

block). In a hash file organization we obtain the bucket of a record directly from its search-

key value using a hash function. 
 
Hash function h is a function from the set of all search-key values K to the set of all 

bucket addresses B. 
 
Hash function is used to locate records for access, insertion as well as deletion. 
 

Records with different search-key values may be mapped to the same bucket; thus entire 

bucket has to be searched sequentially to locate a record. Example: 

 

There are 10 buckets, 
 

The binary representation of the ith character is assumed to be the integer i. 
 

The hash function returns the sum of the binary representations of the characters modulo 10 
 

E.g. h( Music) = 1 h(History) = 2 
 

h(Physics) = 3 h(Elec. Eng.) = 3 
 

Hash file organization of instructor file, using dept_name as key  
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Hash Indices: 
 

Hashing can be used not only for file organization, but also for index-structure creation. 
 

A hash index organizes the search keys, with their associated record pointers, into a hash 

file structure. 
 

Strictly speaking, hash indices are always secondary indices 
 

if the file itself is organized using hashing, a separate primary hash index on it 

using the same search-key is unnecessary. 
 

However, we use the term hash index to refer to both secondary index structures 

and hash organized files. 
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Hash Based Indexing: 
 

 

 Bucket: Hash file stores data in bucket format. Bucket is considered a unit of storage.  

Bucket typically stores one complete disk block, which in turn can store one or more 

records.



 Hash Function: A hash function h, is a mapping function that maps all set of search-

keys K to the address where actual records are placed. It is a function from search 

keyto bucket addresses.

 

Static Hashing: 

 

In static hashing, when a search-key value is provided the hash function always computes the 

same address. For example, if mod-4 hash function is used then it shall generate only 5 values. 

The output address shall always be same for that function. The numbers of buckets provided 

remain same at all times. 
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[Image: Static Hashing] 

 

Operation: 

 

 Insertion: When a record is required to be entered using static hash, the hash function h, 

computes the bucket address for search key K, where the record will be stored. 



Bucket address = h(K) 



 Search: When a record needs to be retrieved the same hash function can be used to  

retrieve the address of bucket where the data is stored.
 Delete: This is simply search followed by deletion operation.

 

Bucket Overflow: 

 

The condition of bucket-overflow is known as collision. This is a fatal state for any static hash 
function. In this case overflow chaining can be used. 

 

 Overflow Chaining: When buckets are full, a new bucket is allocated for the same 

hash result and is linked after the previous one. This mechanism is called Closed 
Hashing. 
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[Image: Overflow chaining] 

 

Linear Hashing: 
 

 

 Linear Probing: When hash function generates an address at which data is already 

stored, the next free bucket is allocated to it. This mechanism is called Open Hashing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

[Image: Linear Probing] 

 

For a hash function to work efficiently and effectively the following must match: 

 

 Distribution of records should be uniform

 Distribution should be random instead of any ordering

 

Extendable Hashing: 
 

Dynamic Hashing 

 

Problem with static hashing is that it does not expand or shrink dynamically as the size of 

database grows or shrinks. Dynamic hashing provides a mechanism in which data buckets are 

added and removed dynamically and on-demand. Dynamic hashing is also known as 

extended hashing. 

 

Hash function, in dynamic hashing, is made to produce large number of values and only a few 

are used initially. 
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[Image: Dynamic Hashing] 

 

Organization 

 

The prefix of entire hash value is taken as hash index. Only a portion of hash value is used for 

computing bucket addresses. Every hash index has a depth value, which tells it how many bits 

are used for computing hash function. These bits are capable to address 2n buckets. When all 

these bits are consumed, that is, all buckets are full, then the depth value is increased linearly 

and twice the buckets are allocated. 

 

Operation 

 

 Querying: Look at the depth value of hash index and use those bits to compute the 

bucket address.


 Update: Perform a query as above and update data.


 Deletion: Perform a query to locate desired data and delete data.


 Insertion: compute the address of bucket
 

 If the bucket is already full 
 

 Add more buckets


 Add additional bit to hash value


 Re-compute the hash function
 

 Else 
 

 Add data to the bucket
 

 If all buckets are full, perform the remedies of static hashing. 
 
 

Hashing is not favorable when the data is organized in some ordering and queries require range 

of data. When data is discrete and random, hash performs the best. 
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Hashing algorithm and implementation have high complexity than indexing. All 

hash operations are done in constant time. 
 

Extendable Vs. Linear Hashing: 
 

Benefits of extendable hashing: 
 

 hash performance doesn’t degrade with growth of file 
 

 minimal space overhead 
 

Disadvantages of extendable hashing: 
 

 extra level of indirection (bucket address table) to find desired record


 bucket address table may itself become very big (larger than memory) 

o need a tree structure to locate desired record in the structure!


 Changing size of bucket address table is an expensive operation
 

Linear hashing: is an alternative mechanism which avoids these disadvantages at the 

possible cost of more bucket overflows 
 
 B tree and B+ tree 
 

B+-tree indices are an alternative to indexed-sequential files.  
Disadvantage of indexed-sequential files 

 

Performance degrades as file grows, since many overflow blocks get created. 
 

Periodic reorganization of entire file is required. 
 

Advantage of B
+

-tree index files: 
 

Automatically reorganizes itself with small, local, changes, in the face of 

insertions and deletions. 
 

Reorganization of entire file is not required to maintain performance. 
 

(Minor) disadvantage of B
+

-trees: 
 

Extra insertion and deletion overhead, space overhead. 
 

Advantages of B
+

-trees outweigh disadvantages 
 

B
+

-trees are used extensively 
 

 

Example of B+Tree:  
 
 
 
 
 
 
 
 

 

168 | P a g e 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

B
+

-tree properties: 
 

 All paths from root to leaf are of the same length


 Each node that is not a root or a leaf has between n/2 and n children.


 A leaf node has between (n–1)/2 and n–1 values


Special cases: If the root is not a leaf, it has at least 2 children. 


 If the root is a leaf (that is, there are no other nodes in the tree), it can have between 0 

and (n–1) values.

B
+

-Tree Node Structure 
 

 Typical node 
 
 

 

 Ki are the search-key values


 Pi are pointers to children (for non-leaf nodes) or pointers to records or buckets of 

records (for leaf nodes).

 The search-keys in a node are ordered


 K1 < K2 < K3 < . . . < Kn–1


 (Initially assume no duplicate keys, address duplicates later)

 

Properties of a leaf node: 
 

 For i = 1, 2, . . ., n–1, pointer Pi points to a file record with search-key value Ki,


 If Li, Lj are leaf nodes and i < j, Li’s search-key values are less than or equal to 

Lj’s search-key values
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 Pn points to next leaf node in search-key order
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example of B
+

-tree File Organization 
 

 Good space utilization important since records use more space than pointers. 


 To improve space utilization, involve more sibling nodes in redistribution during splits 

and merges


 Involving 2 siblings in redistribution (to avoid split / merge where possible) results in 

each node having at least entries
 

B-Tree Index Files 
 

 Similar to B+-tree, but B-tree allows search-key values to appear only once; eliminates 

redundant storage of search keys.


 Search keys in nonleaf nodes appear nowhere else in the B-tree; an additional pointer 

field for each search key in a nonleaf node must be included.


 Generalized B-tree leaf node


 Non leaf node – pointers Bi are the bucket or file record pointers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

B – tree indexing  
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 Advantages of B-Tree indices:
 

 May use less tree nodes than a corresponding B
+

-Tree. 
 

 Sometimes possible to find search-key value before reaching leaf node. 
 

 Disadvantages of B-Tree indices:


 Only small fraction of all search-key values are found early 
 

 Non-leaf nodes are larger, so fan-out is reduced. Thus, B-Trees typically have 

greater depth than corresponding B
+

-Tree 

 Insertion and deletion more complicated than in B
+

-Trees 
 

 Implementation is harder than B
+

-Trees. 
 

 Typically, advantages of B-Trees do not out weigh disadvantages.

 Query processing 
 

Basic steps in Query Processing: 
 

 Parsing and translation 
 

 Optimization 
 

 Evaluation  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Parsing and translation 
 

 Translate the query into its internal form. This is then translated into relational algebra. 


 Parser checks syntax, verifies relations
 

Evaluation 
 

 The query-execution engine takes a query-evaluation plan, executes that plan, and 

returns the answers to the query.
 

Optimization 
 

A relational algebra expression may have many equivalent expressions  
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E.g., 
 

salary75000(salary(instructor)) is equivalent to 
 

salary(salary75000(instructor)) 
 

Each relational algebra operation can be evaluated using one of several different algorithms 

Correspondingly, a relational-algebra expression can be evaluated in many ways. 
 

Annotated expression specifying detailed evaluation strategy is called an evaluation-plan. 

E.g., can use an index on salary to find instructors with salary < 75000, 
 

or can perform complete relation scan and discard instructors with salary  75000 

Query Optimization: Amongst all equivalent evaluation plans choose the one with lowest 
 

cost. Cost is estimated using statistical information from the database catalog. e.g. number 

of tuples in each relation, size of tuples, etc. 
 

Measures of Query Cost 
 

 Cost is generally measured as total elapsed time for answering query 

a. Many factors contribute to time cost 
 

 disk accesses, CPU, or even network communication 
 

 Typically disk access is the predominant cost, and is also relatively easy to estimate. 
 

 

a. Number of seeks * average-seek-cost 
 

b. Number of blocks read * average-block-read-cost 
 

 Number of blocks written * average-block-write-cost 
 

 Cost to write a block is greater than cost to read a block 
 

 data is read back after being written to ensure that the write was successful 
 

 For simplicity we just use the number of block transfers from disk and the number of 
seeks as the cost measures  

 tT – time to transfer one block


 tS – time for one seek
 Cost for b block transfers plus S seeks 

 * tT + S * tS  
o  We ignore CPU costs for simplicity 

 Real systems do take CPU cost into account
 We do not include cost to writing output to disk in our cost formulae  
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