AY 2020-21	J. B. Institute of Engineering and Technology	B.Tech: ECE					
onwards	(UGC Autonomous)	IIIYear – I Sem					
Course Code: J3142	DIGITAL SIGNAL PROCESSING LAB	L	Т	Р	D		
Credits: 1		0	0	2	0		

Course Objectives:

The Student will

- 1. apply theoretical knowledge on a practical basis
- 2. familiarize with knowledge of MATLAB programming & functions.
- 3. analyze and design different signals & filters using MATLAB
- 4. get the basic knowledge of trainer kit TMS320C6713 DSP Processors.
- 5. gain practical knowledge on implementation of different filters.

The programs shall be implemented in software (Using MATLAB / Lab view / C programming/OCTAVE Equivalent) and hardware (Using TI / Analog devices / Motorola / Equivalent DSP processors).

- 1. Generation of Sinusoidal waveform / signal based on recursive difference equations.
- 2. To find DFT / IDFT of given DT signal.
- 3. To find frequency response of a given system given in (Transfer Function/ Differential equation form).
- 4. Implementation of FFT of given sequence
- 5. Determination of Power Spectrum of a given signal(s).
- 6. Implementation of LP FIR filter for a given sequence.
- 7. Implementation of HP FIR filter for a given sequence.
- 8. Implementation of LP IIR filter for a given sequence
- 9. Implementation of HP IIR filter for a given sequence.
- 10. Generation of Sinusoidal signal through filtering.
- 11. Generation of DTMF signals.
- 12. Implementation of Decimation Process
- 13. Implementation of Interpolation Process
- 14. Implementation of I/D sampling rate converters.

- 15. Audio application such as to plot a time and frequency display of microphone plus a cosine using DSP. Read a .wav file and match with their respective spectrograms.
- 16. Noise removal: Add noise above 3 KHz and then remove, interference suppression using 400 Hz tone.
- 17. Impulse response of first order and second order systems.
- **Note: -** Minimum of 12 experiments has to be conducted.

Course Outcomes:

The student will be able to

- 1. work with MATLAB functions.
- 2. analyze and design different signals and filters.
- 3. provide the basic knowledge of trainer kit TMS320C6713 DSP Processors.
- 4. gain practical knowledge on implementation of different filters.
- 5. design new DSP based projects.

CO-PO/PSO Mapping Chart (3/2/1 indicates strength of correlation) 3 – Strong; 2 – Medium; 1 – Weak

Course Outcomes	Program Outcomes (POs)												Program Specific Outcomes*	
(COs)	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	3	1	1						2	3	3
CO2	3	3	3	3	2							2	3	3
CO3	3	3	3	2	1							3	3	3
CO4	3	3	3	2	1							2	3	3
CO5	3	3	3	2	3							3	3	3