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EMBEDDED SYSTEMS

UNIT I

EMBEDDED COMPUTING

1.1 CHALLENGES OF EMBEDDED SYSTEMS:

External constraints are one important source of difficulty in embedded system design. Let’s
consider some important problems that must be taken into account in embedded system design.

How much hardware do we need?

We have a great deal of control over the amount of computing power we apply to our
problem. We cannot only select the type of microprocessor used, but also select the amount of
memory, the peripheral devices , and more. Since we often must meet both performance
deadlines and manufacturing cost constraints ,the choice of hardware is important—too little
hardware and the system fails to meet its deadlines,too much hardware and it becomes too
expensive.

How do we meet deadlines?

The brute force way of meeting a deadline is to speed up the hardware so that the
program runs faster. Of course, that makes the system more expensive. It is also entirely possible
that increasing the CPU clock rate may not make enough difference to execution time, since the
program’s speed may be limited by the memory system.

How do we minimize power consumption?

In battery-powered applications, power consumption is extremely important. Even in non
battery applications, excessive power consumption can increase heat dissipation. One way to
make a digital system consume less power is to make it run more slowly, but naively slowing
down the system can obviously lead to missed deadlines. Careful design is required to slow
down the noncritical parts of the machine for power consumption while still meeting necessary
performance goals.

How do we design for upgradability?

The hardware platform may be used over several product generations, or for several
different versions of a product in the same generation, with few or no changes.However, we want
to be able to add features by changing software. How can we design a machine that will provide
the required performance for software that we haven’t yet written?



Does it really work?

Reliability is always important when selling products—customers rightly expect that
products they buy will work. Reliability is especially important in some applications, such as
safety-critical systems. If we wait until we have a running system and try to eliminate the bugs,
we will be too late—we won’t find enough bugs, it will be too expensive to fix them, and it will
take too long as well. Another set of challenges comes from the characteristics of the
components and systems themselves. If workstation programming is like assembling a machine
on a bench, then embedded system design is often more like working on a car—cramped,
delicate, and difficult. Let’s consider some ways in which the nature of embedded computing
machines makes their design more difficult.

Complex testing: Exercising an embedded system is generally more difficult than typing
in some data. We may have to run a real machine in order to generate the proper data. The timing
of data is often important, meaning that we cannot separate the testing of an embedded computer
from the machine in which it is embedded.

Limited observability and controllability: Embedded computing systems usually do not
come with keyboards and screens. This makes it more difficult to see what is going on and to
affect the system’s operation. We may be forced to watch the values of electrical signals on the
microprocessor bus, for example, to know what is going on inside the system. Moreover, in real-
time applications we may not be able to easily stop the system to see what is going on inside.

Restricted development environments: The development environments for embedded
systems (the tools used to develop software and hardware) are often much more limited than
those available for PCs and workstations. We generally compile code on one type of machine,
such as a PC, and download it onto the embedded system. To debug the code, we must usually
rely on programs that run on the PC or workstation and then look inside the embedded system.

1.2 EMBEDDED SYSTEM DESIGN PROCESS:

This section provides an overview of the embedded system design process aimed at two
objectives. First,it will give us an introduction to the various steps in embedded system design
before we delve into them in more detail. Second, it will allow us to consider the design
methodology itself. A design methodology is important for three reasons. First, it allows us to
keep a scorecard on a design to ensure that we have done everything we need to do, such as
optimizing performance or performing functional tests. Second, it allows us to develop
computer-aided design tools. Developing a single program that takes in a concept for an
embedded system and emits a completed design would be a daunting task, but by first breaking
the process into manageable steps, we can work on automating (or at least semi automating) the
steps one at a time. Third, a design methodology makes it much easier for members of a design
team to communicate. By defining the overall process, team members can more easily
understand what they are supposed to do, what they should receive from other team members at
certain times, and what they are to hand off when they complete their assigned steps. Since most
embedded systems are designed by teams, coordination is perhaps the most important role of a
well-defined design methodology.



Top-down design

Requirements

Specification

Architecture

SystemIntegration

Figure 1.1 summarizes the major steps in the embedded system design process.In this top–down
view, we start with the system requirements. In the next step,

FIGURE 1.1
Major levels of abstraction in the design process.

specification, we create a more detailed description of what we want. But the specification states
only how the system behaves, not how it is built. The details of the system’s internals begin to
take shape when we develop the architecture, which gives the system structure in terms of large
components. Once we know the components we need, we can design those components,
including both software modules and any specialized hardware we need. Based on those
components, we can finally build a complete system. In this section we will consider design from
the top–down—we will begin with the most abstract description of the system and conclude with
concrete details. The alternative is a bottom–up view in which we start with components to
build a system. Bottom–up design steps are shown in the figure as dashed-line arrows. We need
bottom–up design because we do not have perfect insight into how later stages of the design
process will turn out. Decisions at one stage of design are based upon estimates of what will
happen later:
How fast can we make a particular function run?
How much memory will we need?
How much system bus capacity do we need?
If our estimates are inadequate, we may have to backtrack and amend our original decisions to
take the new facts into account. In general, the less experience we have with the design of similar
systems , the more we will have to rely on bottom-up design information to help us refine the



system. But the steps in the design process are only one axis along which we can view embedded
system design. We also need to consider the major goals of the design:

 manufacturing cost;
 performance ( both overall speed and deadlines); and
 power consumption.

We must also consider the tasks we need to perform at every step in the design process. At each
step in the design, we add detail:

 We must analyze the design at each step to determine how we can meet the
specifications.

 We must then refine the design to add detail.
 And we must verify the design to ensure that it still meets all system goals, such as cost,

speed, and so on.

1.2.1 Requirements
Clearly, before we design a system, we must know what we are designing. The initial

stages of the design process capture this information for use in creating the architecture and
components. We generally proceed in two phases: First, we gather an informal description from
the customers known as requirements, and we refine the requirements into a specification that
contains enough information to begin designing the system architecture.

Separating out requirements analysis and specification is often necessary because of the
large gap between what the customers can describe about the system they want and what the
architects need to design the system. Consumers of embedded systems are usually not
themselves embedded system designers or even product designers. Their understanding of the
system is based on how they envision users interactions with the system. They may have
unrealistic expectations as to what can be done within their budgets; and they may also express
their desires in a language very different from system architects’ jargon. Capturing a consistent
set of requirements from the customer and then massaging those requirements into a more formal
specification is a structured way to manage the process of translating from the consumer’s
language to the designer’s.

Requirements may be functional or nonfunctional. We must of course capture the basic
functions of the embedded system, but functional description is often not sufficient. Typical
nonfunctional requirements include:

 Performance: The speed of the system is often a major consideration both for the
usability of the system and for its ultimate cost. As we have noted, performance may be a
combination of soft performance metrics such as approximate time to perform a user-
level function and hard deadlines by which a particular operation must be completed.

 Cost: The target cost or purchase price for the system is almost always a consideration.
Cost typically has two major components: manufacturing cost includes the cost of
components and assembly; nonrecurring engineering (NRE) costs include the personnel
and other costs of designing the system.

 Physical size and weight: The physical aspects of the final system can vary greatly
depending upon the application. An industrial control system for an assembly line may be
designed to fit into a standard-size rack with no strict limitations on weight. A handheld
device typically has tight requirements on both size and weight that can ripple through
the entire system design.



 Power consumption: Power, of course, is important in battery-powered systems and is
often important in other applications as well. Power can be specified in the requirements
stage in terms of battery life—the customer is unlikely to be able to describe the
allowable wattage.

Validating a set of requirements is ultimately a psychological task since it requires
understanding both what people want and how they communicate those needs. One good way to
refine at least the user interface portion of a system’s requirements is to build a mock-up. The
mock-up may use canned data to simulate functionality in a restricted demonstration, and it may
be executed on a PC or a workstation. But it should give the customer a good idea of how the
system will be used and how the user can react to it. Physical, nonfunctional models of devices
can also give customers a better idea of characteristics such as size and weight.

 Name
 Purpose
 Inputs
 Outputs
 Functions
 Performance
 Manufacturing cost
 Power
 Physical size and weight

1.2.2 Specification

The specification is more precise—it serves as the contract between the customer and the
architects. As such, the specification must be carefully written so that it accurately reflects the
customer’s requirements and does so in a way that can be clearly followed during design.

Specification is probably the least familiar phase of this methodology for neophyte
designers, but it is essential to creating working systems with a minimum of designer effort.
Designers who lack a clear idea of what they want to build when they begin typically make
faulty assumptions early in the process that aren’t obvious until they have a working system. At
that point, the only solution is to take the machine apart, throw away some of it, and start again.
Not only does this take a lot of extra time, the resulting system is also very likely to be inelegant,
kludgey, and bug-ridden.

The specification should be understandable enough so that someone can verify that it
meets system requirements and overall expectations of the customer. It should also be
unambiguous enough that designers know what they need to build. Designers can run into
several different types of problems caused by unclear specifications. If the behavior of some
feature in a particular situation is unclear from the specification, the designer may implement the
wrong functionality. If global characteristics of the specification are wrong or incomplete, the
overall system architecture derived from the specification may be inadequate to meet the needs
of implementation.
A specification of the GPS system would include several components:

 Data received from the GPS satellite constellation.



 Map data.
 User interface.
 Operations that must be performed to satisfy customer requests.
 Background actions required to keep the system running, such as operating the GPS

receiver.

1.2.3 Architecture Design
The specification does not say how the system does things, only what the system does.

Describing how the system implements those functions is the purpose of the architecture. The
architecture is a plan for the overall structure of the system that will be used later to design the
components that make up the architecture. The creation of the architecture is the first phase of
what many designers think of as design.

To understand what an architectural description is, let’s look at a sample architecture for
the moving map of Example 1.1. Figure 1.3 shows a sample system architecture in the form of a
block diagram that shows major operations and data flows among them.

This block diagram is still quite abstract—we have not yet specified which operations
will be performed by software running on a CPU, what will be done by special-purpose
hardware, and so on. The diagram does, however, go a long way toward describing how to
implement the functions described in the specification. We clearly see, for example, that we need
to search the topographic database and to render (i.e., draw) the results for the display. We have
chosen to separate those functions so that we can potentially do them in parallel—performing
rendering separately from searching the database may help us update the screen more fluidly.

FIGURE 1.3 BLOCK DIAGRAM FOR THE MOVING MAP



HARDWARE

SOFTWARE

FIG 1.4 HARDWARE AND SOFTWARE ARCHITECTURES FOR THE MOVING MAP

1.2.4 DESIGNING HARDWARE AND SOFTWARE COMPONENTS:

 Must spend time architecting the system before you start coding.
 Some  components are ready-made, some can be modified from existing designs,

others must be designed from scratch.

1.2.5 SYSTEM INTEGRATION

 Put together the components.
o Many bugs appear only at this stage.

 Have a plan for integrating components to uncover bugs quickly, test as much
functionality as early as possible.
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1.4 ARM PROCESSOR

ARCHITECTURE:

VON NEUMANN ARCHITECTURE:
 Memory holds data, instructions.
 Central processing unit (CPU) fetches instructions from memory.
o Separate CPU and memory distinguishes programmable computer.
 CPU registers help out: program counter (PC), instruction register (IR), general-

purpose registers, etc.

HARVARD ARCHITECTURE:



VON NEUMANN VS. HARVARD:

o Harvard can’t use self-modifying code.
o Harvard allows two simultaneous memory fetches.
o Most DSPs use Harvard architecture for streaming data:

 greater memory bandwidth;
 more predictable bandwidth

INSTRUCTION SET CHARACTERISTICS:

 Fixed vs. variable length.
 Addressing modes.
 Number of operands.
 Types of operands.

Data Operations
Arithmetic and logical operations in C are performed in variables. Variables are

implemented as memory locations. Therefore, to be able to write instructions to perform C
expressions and assignments, we must consider both arithmetic and logical instructions as well
as instructions for reading and writing memory. Figure 2.7 shows a sample fragment of C code
with data declarations and several assignment statements. The variables a, b, c, x, y, and z all
become data locations in memory. In most cases data are kept relatively separate from
instructions in the program’s memory image.

In the ARM processor, arithmetic and logical operations cannot be performed directly on
memory locations. While some processors allow such operations to directly reference main
memory, ARM is a load-store architecture—data operands must first be loaded into the CPU
and then stored back to main memory to save the results. Figure 2.8 shows the registers in the
basic ARM programming model. ARM has 16 general-purpose registers, r0 through r15. Except
for r15, they are identical—any operation that can be done on one of them can be done on the
other one also. The r15 register has the same capabilities as the other registers, but it is also used
as the program counter. The program counter should of course not be overwritten for use in data
operations. However, giving the PC the properties of a general-purpose register allows the
program counter value to be used as an operand in computations, which can make certain
programming tasks easier.

The other important basic register in the programming model is the current program
status register (CPSR). This register is set automatically during every arithmetic, logical, or
shifting operation. The top four bits of the CPSR hold the following useful information about the
results of that arithmetic/logical operation:

 The negative (N) bit is set when the result is negative in two’s-complement
arithmetic.

 The zero (Z) bit is set when every bit of the result is zero.
 The carry (C) bit is set when there is a carry out of the operation.
 The overflow(V) bit is set when an arithmetic operation results in an overflow.



int a, b, c, x, y, z;
x =(a +b) - c;
y _a
*
(b _c);

z _(a << 2) | (b & 15);

FIGURE 2.7
A C fragment with data operations.

 Word is 32 bits long.
 Word can be divided into four 8-bit bytes.
 ARM addresses can be 32 bits long.
 Address refers to byte.

o Address 4 starts at byte 4.
 Can be configured at power-up as either little- or bit-endian mode.

ARM STATUS BITS

 Every arithmetic, logical, or shifting operation sets CPSR bits:
o N (negative), Z (zero), C (carry), V (overflow).

 Examples:
o -1 + 1 = 0: NZCV = 0110.
o 231-1+1 = -231: NZCV = 0101.

ARM DATA INSTRUCTIONS
 Basic format:
 ADD r0,r1,r2

o Computes r1+r2, stores in r0.
 Immediate operand:
 ADD r0,r1,#2



 Computes r1+2, stores in r0.
 ADD, ADC : add (w. carry)
 SUB, SBC : subtract (w. carry)
 RSB, RSC : reverse subtract (w. carry)
 MUL, MLA : multiply (and accumulate)

 AND, ORR, EOR
 BIC : bit clear

 LSL, LSR : logical shift left/right
 ASL, ASR : arithmetic shift left/right

 ROR : rotate right
 RRX : rotate right extended with C

DATA OPERATION VARIETIES:

 Logical shift:
o fills with zeroes.

 Arithmetic shift:
o fills with ones.

 RRX performs 33-bit rotate, including C bit from CPSR above sign bit.
 CMP : compare
 CMN : negated compare
 TST : bit-wise test
 TEQ : bit-wise negated test
 These instructions set only the NZCV bits of CPSR.
 MOV, MVN : move (negated)

MOV r0, r1 ; sets r0 to r1

ARM LOAD/STORE INSTRUCTIONS:

 LDR, LDRH, LDRB : load (half-word, byte)
 STR, STRH, STRB : store (half-word, byte)
 Addressing modes:

o register indirect : LDR r0,[r1]
o with second register : LDR r0,[r1,-r2]
o with constant : LDR r0,[r1,#4]

ARM ADR PSEUDO-OP

 Cannot refer to an address directly in an instruction.
 Generate value by performing arithmetic on PC.
 ADR pseudo-op generates instruction required to calculate address:

ADR r1,FOO



PROGRAMMING:

 C:
x = (a + b) - c;

 Assembler:
ADR r4,a ; get address for a
LDR r0,[r4] ; get value of a
ADR r4,b ; get address for b, reusing r4
LDR r1,[r4] ; get value of b
ADD r3,r0,r1 ; compute a+b
ADR r4,c ; get address for c
LDR r2[r4] ; get value of c
SUB r3,r3,r2 ; complete computation of x
ADR r4,x ; get address for x

STR r3[r4] ; store value of x

 C:
y = a*(b+c);

 Assembler:
ADR r4,b ; get address for b
LDR r0,[r4] ; get value of b
ADR r4,c ; get address for c
LDR r1,[r4] ; get value of c
ADD r2,r0,r1 ; compute partial result
ADR r4,a ; get address for a
LDR r0,[r4] ; get value of a
MUL r2,r2,r0 ; compute final value for y
ADR r4,y ; get address for y
STR r2,[r4] ; store y

 C:
z = (a << 2) | (b & 15);

 Assembler:
ADR r4,a ; get address for a
LDR r0,[r4] ; get value of a
MOV r0,r0,LSL 2 ; perform shift
ADR r4,b ; get address for b
LDR r1,[r4] ; get value of b
AND r1,r1,#15 ; perform AND
ORR r1,r0,r1 ; perform OR
ADR r4,z ; get address for z
STR r1,[r4] ; store value for z



ADDITIONAL ADDRESSING MODES:

 Base-plus-offset addressing:
o LDR r0,[r1,#16]
o Loads from location r1+16

 Auto-indexing increments base register:
o LDR r0,[r1,#16]!

 Post-indexing fetches, then does offset:
o LDR r0,[r1],#16

 Loads r0 from r1, then adds 16 to r1.

ARM FLOW OF CONTROL

 All operations can be performed conditionally, testing CPSR:
o EQ, NE, CS, CC, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE

 Branch operation:
B #100

 Can be performed conditionally.

EXAMPLE: IF STATEMENT

 C:
if (a > b) { x = 5; y = c + d; } else x = c - d;

 Assembler:
; compute and test condition
ADR r4,a ; get address for a
LDR r0,[r4] ; get value of a
ADR r4,b ; get address for b
LDR r1,[r4] ; get value for b
CMP r0,r1 ; compare a < b
BGE fblock ; if a >= b, branch to false block

; true block
MOV r0,#5 ; generate value for x
ADR r4,x ; get address for x
STR r0,[r4] ; store x
ADR r4,c ; get address for c
LDR r0,[r4] ; get value of c
ADR r4,d ; get address for d
LDR r1,[r4] ; get value of d
ADD r0,r0,r1 ; compute y
ADR r4,y ; get address for y
STR r0,[r4] ; store y
B after ; branch around false block

; false block
fblock ADR r4,c ; get address for c

LDR r0,[r4] ; get value of c



after ...

ADR r4,d ; get address for d
LDR r1,[r4] ; get value for d
SUB r0,r0,r1 ; compute a-b
ADR r4,x ; get address for x
STR r0,[r4] ; store value of x



; true block
MOVLT r0,#5 ; generate value for x
ADRLT r4,x ; get address for x
STRLT r0,[r4] ; store x
ADRLT r4,c ; get address for c
LDRLT r0,[r4] ; get value of c
ADRLT r4,d ; get address for d
LDRLT r1,[r4] ; get value of d
ADDLT r0,r0,r1 ; compute y
ADRLT r4,y ; get address for y
STRLT r0,[r4] ; store y

EXAMPLE: SWITCH STATEMENT

 C:
switch (test) { case 0: … break; case 1: … }

 Assembler:
ADR r2,test ; get address for test
LDR r0,[r2] ; load value for test
ADR r1,switchtab ; load address for switch table
LDR r1,[r1,r0,LSL #2] ; index switch table

switchtab DCD case0
DCD case1

...

MEMORY AND INPUT / OUTPUT MANAGEMENT

PROGRAMMING INPUT AND OUTPUT:

INPUT AND OUTPUT DEVICES

Input and output devices usually have some analog or non electronic component—for
instance, a disk drive has a rotating disk and analog read/write electronics. But the digital logic in
the device that is most closely connected to the CPU very strongly resembles the logic you
would expect in any computer system. Figure 3.1 shows the structure of a typical I/O device and
its relationship to the CPU. The interface between the CPU and the device’s internals (e.g.,the
rotating disk and read/write electronics in a disk drive) is a set of registers. The CPU talks to the
device by reading and writing the registers. Devices typically have several registers:

 Data registers hold values that are treated as data by the device, such as the
data read or written by a disk.

 Status registers provide information about the device’s operation, such as
whether the current transaction has completed.

Some registers may be read-only, such as a status register that indicates when the device is done,
while others may be readable or writable. Application Example 3.1 describes a classic I/O
device.



Input and Output Primitives

Microprocessors can provide programming support for input and output in two ways: I/O
instructions and memory-mapped I/O. Some architectures, such as the Intel x86, provide special
instructions (in and out in the case of the Intel x86) for input and output. These instructions
provide a separate address space for I/O devices. But the most common way to implement I/O is
by memory mapping—even CPUs that provide I/O instructions can also implement memory-
mapped I/O. As the name implies, memory-mapped I/O provides addresses for the registers in
each I/O device. Programs use the CPU’s normal read and write instructions to communicate
with the devices. Example 3.1 illustrates memory-mapped I/O on the ARM.



Example 3.1

Memory-mapped I/O on ARM

We can use the EQU pseudo-op to define a symbolic name for the memory location of our I/O
device:

DEV1 EQU 0x1000

Given that name, we can use the following standard code to read and write the device register:

LDR r1,#DEV1 ; set up device address
LDR r0,[r1] ; read DEV1
LDR r0,#8 ; set up value to write
STR r0,[r1] ; write 8 to device

The peek function can be written in C as:

int peek(char *location) {
return *location; /* de-reference location pointer */
}

The argument to peek is a pointer that is de-referenced by the C * operator to read the location.
Thus, to read a device register we can write:

#define DEV1 0x1000
...
dev_status = peek(DEV1); /* read device register */

The poke function can be implemented as:

void poke(char *location, char newval) {
(*location) = newval; /* write to location */
}

To write to the status register, we can use the following code:
poke(DEV1,8); /* write 8 to device register */

These functions can, of course, be used to read and write arbitrary memory locations, not just
devices.



Busy-Wait I/O

The most basic way to use devices in a program is busy-wait I/O. Devices are typically
slower than the CPU and may require many cycles to complete an operation. If the CPU is
performing multiple operations on a single device, such as writing several characters to an output
device, then it must wait for one operation to complete befor starting the next one. (If we try to
start writing the second character before the device has finished with the first one, for example,
the device will probably never print the first character.) Asking an I/O device whether it is
finished by reading its status register is often called polling.

MEMORY SYSTEM MECHANISMS:

 Caches.
 Memory management.

CACHES AND CPUS

CACHE OPERATION

 Many main memory locations are mapped onto one cache entry.
 May have caches for:

o instructions;
o data;
o data + instructions (unified).

 Memory access time is no longer deterministic.

 Cache hit: required location is in cache.
 Cache miss: required location is not in cache.
 Working set: set of locations used by program in a time interval.



TYPES OF MISSES

 Compulsory (cold): location has never been accessed.
 Capacity: working set is too large.
 Conflict: multiple locations in working set map to same cache entry.

MEMORY SYSTEM PERFORMANCE

 h = cache hit rate.
 tcache = cache access time, tmain = main memory access time.
 Average memory access time:

o tav = htcache + (1-h)tmain

MULTIPLE LEVELS OF CACHE

MULTI-LEVEL CACHE ACCESS TIME

 h1 = cache hit rate.
 h2 = hit rate on L2.
 Average memory access time:

o tav = h1tL1 + (h2-h1)tL2 +(1- h2-h1)tmain

 Replacement policy: strategy for choosing which cache entry to throw out to make room
for a new memory location.

 Two popular strategies:
o Random.
o Least-recently used (LRU).

CACHE ORGANIZATIONS

 Fully-associative: any memory location can be stored anywhere in the cache (almost
never implemented).

 Direct-mapped: each memory location maps onto exactly one cache entry.
 N-way set-associative: each memory location can go into one of n sets.

CACHE PERFORMANCE BENEFITS



 Keep frequently-accessed locations in fast cache.
 Cache retrieves more than one word at a time.

o Sequential accesses are faster after first access.

DIRECT-MAPPED CACHE

WRITE OPERATIONS

 Write-through: immediately copy write to main memory.
 Write-back: write to main memory only when location is removed from cache.

DIRECT-MAPPED CACHE LOCATIONS

 Many locations map onto the same cache block.
 Conflict misses are easy to generate:

o Array a[] uses locations 0, 1, 2, …
o Array b[] uses locations 1024, 1025, 1026, …
o Operation a[i] + b[i] generates conflict misses.

SET-ASSOCIATIVE CACHE



MEMORY MANAGEMENT UNITS

 Allows programs to move in physical memory during execution.
 Allows virtual memory:

o memory images kept in secondary storage;
o images returned to main memory on demand during execution.

 Page fault: request for location not resident in main memory.

 Requires some sort of register/table to allow arbitrary mappings of logical to physical
addresses.

 Two basic schemes:

o segmented;

o paged.

 Segmentation and paging can be combined (x86).

SEGMENTS AND PAGES



SEGMENT ADDRESS TRANSLATION

PAGE ADDRESS TRANSLATION

 Logical address is divided into two sections including a page number and an offset
 The page no is used as an index into a page table, which stores the physical address

for the start of each page
 The page table is kept in is normally kept in main memory, the address translation

requires memory access.



PAGE TABLE ORGANIZATIONS

CACHING ADDRESS TRANSLATIONS

 Large translation tables require main memory access.
 TLB: cache for address translation.

o Typically small.
 TLB – Translation lookaside buffer

ARM ADDRESS TRANSLATION

MEMORY AND I/O DEVICES AND INTERFACING

 Memory devices.
 I/O devices:

o serial links



o timers and counters
o keyboards
o displays
o analog I/O

MEMORY DEVICES.

MEMORY COMPONENTS

 Several different types of memory:
o DRAM.
o SRAM.
o Flash.

 Each type of memory comes in varying:
o Capacities.
o Widths.

RANDOM-ACCESS MEMORY

 Dynamic RAM is dense, requires refresh.
o Synchronous DRAM is dominant type.
o SDRAM uses clock to improve performance, pipeline memory accesses.

 Static RAM is faster, less dense, consumes more power.

SDRAM OPERATION



READ-ONLY MEMORY

 ROM may be programmed at factory.
 Flash is dominant form of field-programmable ROM.

o Electrically erasable, must be block erased.
o Random access, but write/erase is much slower than read.
o NOR flash is more flexible.

 NAND flash is more dense.

FLASH MEMORY

 Non-volatile memory.
o Flash can be programmed in-circuit.

 Random access for read.
 To write:

o Erase a block to 1.
o Write bits to 0.
o Write is much slower than read.
o ms write, 70 ns read.
o Blocks are large (approx. 1 Mb).
o Writing causes wear that eventually destroys the device.
o Modern lifetime approx. 1 million writes.



TYPES OF FLASH

 NOR:
o Word-accessible read.
o Erase by blocks.

 NAND:
o Read by pages (512-4K bytes).
o Erase by blocks.

 NAND is cheaper, has faster erase, sequential access times.

TIMERS AND COUNTERS

 Very similar:
o a timer is incremented by a periodic signal;
o a counter is incremented by an asynchronous, occasional signal.

 Rollover causes interrupt.

WATCH DOG TIMER

 Watchdog timer is periodically reset by system timer.
 If watchdog is not reset, it generates an interrupt to reset the host.

SWITCH DEBOUNCING

 A switch must be debounced to multiple contacts caused by eliminate mechanical
bouncing:



ENCODED KEYBOARD

 An array of switches is read by an encoder.
 N-key rollover remembers multiple key depressions.

LED

 Must use resistor to limit current:

7-SEGMENT LCD DISPLAY

 May use parallel or multiplexed input.



TYPES OF HIGH-RESOLUTION DISPLAY

 Liquid crystal display (LCD) is dominant form.
 Plasma, OLED, etc.
 Frame buffer holds current display contents.
 Written by processor.
 Read by video.

TOUCHSCREEN

o Includes input and output device.
 Input device is a two-dimensional voltmeter:

TOUCHSCREEN POSITION SENSING

DIGITAL-TO-ANALOG CONVERSION

 Use resistor tree:

FLASH A/D CONVERSION



DUAL-SLOPE CONVERSION

 Use counter to time required to charge/discharge capacitor.
 Charging, then discharging eliminates non-linearities.

INTERRUPT HANDLING:

1. Design an embedded system which controls the track of handling eight trains (Model train
control)(12) [CO1-L1]

In order to learn how to use UML to model systems, we will specify a simple system, a model
train controller, which is illustrated in Figure 1.2.The user sends messages to the train with a
control box attached to the tracks.

The control box may have familiar controls such as a throttle, emergency stop button, and so on.
Since the train receives its electrical power from the two rails of the track, the control box can
send signals to the train over the tracks by modulating the power supply voltage. As shown in the
figure, the control panel sends packets over the tracks to the receiver on the train. The train
includes analog electronics to sense the bits being transmitted and a control system to set the
train motor’s speed and direction based on those commands.

Each packet includes an address so that the console can control several trains on the same track;
the packet also includes an error correction code (ECC) to guard against transmission errors.
This is a one-way communication system the model train cannot send commands back to the
user.



We start by analyzing the requirements for the train control system.We will base our system on
a real standard developed for model trains.We then develop two specifications: a simple, high-
level specification and then a more detailed specification.

Requirements
 Before we can create a system specification, we have to understand the requirements.
 Here is a basic set of requirements for the system:
 The console shall be able to control up to eight trains on a single track.
 The speed of each train shall be controllable by a throttle to at least 63 different levels in

each direction (forward and reverse).
 There shall be an inertia control that shall allow the user to adjust the responsiveness of

the train to commanded changes in speed. Higher inertia means that the train responds
more slowly to a change in the throttle, simulating the inertia of a large train. The inertia
control will provide at least eight different levels.

 There shall be an emergency stop button.
 An error detection scheme will be used to transmit messages. We

can put the requirements into chart format:

We will develop our system using a widely used standard for model train control. We could
develop our own train control system from scratch, but basing our system upon a standard has
several advantages in this case: It reduces the amount of work we have to do and it allows us to
use a wide variety of existing trains and other pieces of equipment.

Model train controller
Control speed of up to eight model trains
Throttle, inertia setting, emergency stop, train number

Train control signals
Set engine speed based upon inertia settings; respond to emergency stop

Can update train speed at least 10 times per second
$50
10W (plugs into wall)
Console should be comfortable for two hands, approximate size of standard
keyboard; weight<2 pounds
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DCC

The Digital Command Control (DCC) was created by the National Model Railroad
Association to support interoperable digitally-controlled model trains.

Hobbyists started building homebrew digital control systems in the 1970s and Marklin
developed its own digital control system in the 1980s. DCC was created to provide a standard
that could be built by any manufacturer so that hobbyists could mix and match components from
multiple vendors.
The DCC standard is given in two documents:
Standard S-9.1, the DCC Electrical Standard, defines how bits are encoded on the rails for

transmission.

Standard S-9.2, the DCC Communication Standard, defines the packets that carry information.



Any DCC-conforming device must meet these specifications. DCC also provides several
recommended practices. These are not strictly required but they provide some hints to
manufacturers and users as to how to best use DCC.

The DCC standard does not specify many aspects of a DCC train system. It doesn’t define the
control panel, the type of microprocessor used, the programming language to be used, or many
other aspects of a real model train system.

The standard concentrates on those aspects of system design that are necessary for
interoperability. Over standardization, or specifying elements that do not really need to be
standardized, only makes the standard less attractive and harder to implement.

The Electrical Standard deals with voltages and currents on the track. While the electrical
engineering aspects of this part of the specification are beyond the scope of the book, we will
briefly discuss the data encoding here.

The standard must be carefully designed because the main function of the track is to carry power
to the locomotives. The signal encoding system should not interfere with power transmission
either to DCC or non-DCC locomotives. A key requirement is that the data signal should not
change the DC value of the rails.

The data signal swings between two voltages around the power supply voltage. As shown in
Figure , bits are encoded in the time between transitions, not by voltage levels. A 0 is at least 100
ms while a 1 is nominally 58ms.

The durations of the high (above nominal voltage) and low (below nominal voltage) parts of a
bit are equal to keep the DC value constant. The specification also gives the allowable variations
in bit times that a conforming DCC receiver must be able to tolerate.

The standard also describes other electrical properties of the system, such as allowable transition
times for signals.

The DCC Communication Standard describes how bits are combined into packets and the
meaning of some important packets.

Some packet types are left undefined in the standard but typical uses are given in Recommended
Practices documents. We can write the basic packet format as a regular expression:



Bit encoding in

DCC PSA (sD) +

E

In this regular expression:
■ P is the preamble, which is a sequence of at least 10 1 bits. The command station
should send at least 14 of these 1 bits, some of which may be corrupted during
transmission.
■ S is the packet start bit. It is a 0 bit.
■ A is an address data byte that gives the address of the unit, with the most significant
bit of the address transmitted first. An address is eight bits long. The addresses
00000000, 11111110, and 11111111 are reserved.
■ s is the data byte start bit, which, like the packet start bit, is a 0.
■ D is the data byte, which includes eight bits. A data byte may contain an address,
instruction, data, or error correction information.
■ E is a packet end bit, which is a 1 bit.

A packet includes one or more data byte start bit/data byte combinations. Note that the
address data byte is a specific type of data byte.

A baseline packet is the minimum packet that must be accepted by all DCC
implementations. More complex packets are given in a Recommended Practice
document.

A baseline packet has three data bytes: an address data byte that gives the intended
receiver of the packet; the instruction data byte provides a basic instruction; and an error
correction data byte is used to detect and correct transmission errors.

The instruction data byte carries several pieces of information. Bits 0–3 provide a 4-bit
speed value. Bit 4 has an additional speed bit, which is interpreted as the least significant
speed bit. Bit 5 gives direction, with 1 for forward and 0 for reverse. Bits 7–8 are set at
01 to indicate that this instruction provides speed and direction.

The error correction data byte is the bitwise exclusive OR of the address and instruction
data bytes.

The standard says that the command unit should send packets frequently since a packet
may be corrupted. Packets should be separated by at least 5 ms.



IMPORTANT QUESTIONS

PART-A(2 MARKS)

1. State the importance of data register and status register.
2. Mention the two ways used for performing input and output operations.
3. Define polling.
4. Define an interrupt.
5. Mention the signals used for by i/o devices for interrupting.
6. Define foreground program.
7. Mention the ways used for generalizing the interrupts to handle multiple devices.
8. Define non maskable interrupts.
9. Define exception.
10. Define trap.
11. Define cache memory.
12. Define cache hit.
13. Define cache miss.
14. Mention the types of cache misses.
15. Mention the different strategies used for writing in a cache.
16. Define page fault.
17. Define DMA.
18. Mention the registers present in the DMA controller.
19. What is a watch dog timer?
20. Define aspect ratio.
21. What is an embedded computer system?
22. Why do we use microprocessors to design a digital system?
23. Mention the challenges in embedded computing system design.
24. Mention the reasons that makes embedded computing machines design difficult.
25. State the importance of design methodology.
26. Mention the major steps in embedded system design process.
27. Mention the major goals of embedded system design.
28. Mention the non functional requirements.
29. Mention the components of GPS system specification.
30. Mention the different types of relationships.
31. What is called a von Neumann machine?
32. What is called a Harvard machine?
33. Mention the characteristics of instructions.
34. State the importance of current program status register (CPSR).
35. Mention the addressing modes of C55x DSP.
36. Define procedure linkage.
37. Define CISC.
38. Define RISC.
39. Mention the features of assembly language.
40. Differentiate big and little endian byte ordering modes.



PART-B(16 MARKS)

1. Explain the concept of interrupts in detail.

2. Explain the working of cache memory in detail.

3. Explain memory mapping and address translation in detail.

4. Explain the working of CPU bus in detail.

5. Explain direct memory access in detail.

6. Explain the various I/O devices in detail.

7. Explain memory devices in detail.

8. Explain the various display devices and the methods of interfacing in detail.

9. Explain about exceptions and trap in detail.

10. Explain about interrupt priority and vector in detail

11. Explain in detail about the challenges in embedded computing system design.

12. Explain in detail about the embedded system design process.

13. Explain in detail about ARM processor.

14. Explain in detail about TI C55x DSP.

15. Explain in detail about the characteristics of embedded computing applications.

16. Explain Structural description in detail.

17. Explain Behavioral description in detail.

18. .Explain Conceptual specification in detail.

19. Explain in detail about 8051 microcontroller.

20. Explain in detail about data operations of ARM processor.



EMBEDDED SYSTEMS
UNIT II

EMBEDDED COMPUTING PLATFORM DESIGN

CPU BUSES:

The bus is the mechanism by which the CPU communicates with memory and devices. A bus is,
at a minimum, a collection of wires, but the bus also defines a protocol by which the CPU, memory,
and devices communicate. One of the major roles of the bus is to provide an interface to memory.

Bus Organization and Protocol:

A bus is a common connection between components in a system.in figure 2.1 shows organization
of a bus. The CPU, memory and I/O devices are all connected to the bus. The signals that make up the
bus provide the necessary communication: Clock, Control, Address and Data.

Fig 2.1 Organization of Bus.

Bus Master: In a typical bus system ,the CPU serves as the Bus master and initiates all transfer.

Four cycle handshake: The basic building block of most bus protocols is the four-cycle handshake,
illustrated in Figure 2.2. The  handshake  ensures  that  when  two  devices  want  to  communicate,
one is ready to transmit and the other is ready to receive.



The handshake uses a pair of wires dedicated to the handshake: enq (meaning enquiry) and ack
(meaning acknowledge). Extra wires are used for the data transmitted during the handshake. The four
cycles are described below.

1. Device 1 raises its output to signal an enquiry, which tells device 2 that it should get ready to listen
for data.

2. When device 2 is ready to receive, it raises its output to signal an acknowledgment. At this point,
devices 1 and 2 can transmit or receive.

3. Once the data transfer is complete, device 2 lowers its output, signaling that it has received the data.

4. After seeing that ack has been released, device 1 lowers its output.

Fig 2.2 The four-cycle handshake.

At the end of the handshake, both handshaking signals are low, just as they were at the start of the
handshake. The system has thus returned to its original state in readiness for another handshake-
enabled data transfer.

Microprocessor buses build on the handshake for communication between the CPU and other
system components. The term bus is used in two ways.



The most basic use is as a set of related wires, such as address wires. However, the term may also
mean a protocol for communicating between components.

To avoid confusion, we will use the term bundle to refer to a set of related signals. The
fundamental bus operations are reading and writing. Figure 2.2 shows the structure of a typical bus that
supports reads and writes.

The major components follow:

■ Clock provides synchronization to the bus components,

■ R/W is true when the bus is reading and false when the bus is writing,

■ Address is an a-bit bundle of signals that transmits the address for an access,

■ Data is an n-bit bundle of signals that can carry data to or from the CPU, and

■ Data ready signals when the values on the data bundle are valid.

Figure 2.3 shows a timing diagram for the example bus. The diagram shows a read and a write. Timing
constraints are shown only for the read operation, but similar constraints apply to the write operation. The
bus is normally in the read mode since that does not change the state of any of the devices or memories.

The CPU can then ignore the bus data lines until it wants to use the results of a read. Notice also that the
direction of data transfer on bidirectional lines is not specified in the timing diagram.

2.3 Timing diagram for the example bus



DMA:

 Standard bus transactions require the CPU to be in the middle of every read and write
transaction. However, there are certain types of data transfers in which the CPU does not need
to be involved.

 For example, a high-speed I/O device may want to transfer a block of data into memory. While
it is possible to write a program that alternately reads the device and writes to memory, it would
be faster to eliminate the CPU’s involvement and let the device and memory communicate
directly. This capability requires that some unit other than the CPU be able to control operations
on the bus.

Fig 2.4 A bus with a DMA controller.

Direct memory access (DMA) is a bus operation that allows reads and writes not controlled by
the CPU. A DMA transfer is controlled by a DMA controller, which requests control of the bus from
the CPU.

After gaining control, the DMA controller performs read and write operations directly between
devices and memory. Figure 2.4 shows the configuration of a bus with a DMA controller. The DMA
requires the CPU to provide two additional bus signals:

■ The bus request is an input to the CPU through which DMA controllers ask for ownership of
the bus.

■ The bus grant signals that the bus has been granted to the DMA controller.

A device that can initiate its own bus transfer is known as a bus master. Devices that do not
have the capability to be bus masters do not need to connect to a bus request and bus grant.

The DMA controller uses these two signals to gain control of the bus using a classic four-cycle
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The DMA controller uses these two signals to gain control of the bus using a classic four-cycle



handshake. The bus request is asserted by the DMA controller when it wants to control the bus, and the
bus grant is asserted by the CPU when the bus is ready.

The CPU will finish all pending bus transactions before granting control of the bus to the DMA
controller. When it does grant control, it stops driving the other bus signals: R/W, address, and so on.
Upon becoming bus master, the DMA controller has control of all bus signals (except, of course, for
bus request and bus grant).

System Bus Configurations:

A microprocessor system often has more than one bus. As shown in Figure 2.5, high-speed devices may
be connected to a high-performance bus, while lower-speed devices are connected to a different bus. A
small block of logic known as a bridge allows the buses to connect to each other. There are several good
reasons to use multiple buses and bridges:

 Higher-speed buses may provide wider data connections.
 A high-speed bus usually requires more expensive circuits and connectors. The cost of low-speed

devices can be held down by using a lower-speed, lower-cost bus.
 The bridge may allow the buses to operate independently, thereby providing some parallelism in

I/O operations.

Figure 2.5 Multiple Bus system



AMBA Bus

Since the ARM CPU is manufactured by many different vendors, the bus provided off-chip can vary from
chip to chip. ARM has created a separate bus specification for single-chip systems.

The AMBA bus [ARM99A] supports CPUs, memories, and peripherals integrated in a system-on-silicon.
As shown in Figure 2.6,

the AMBA specification includes two buses. The AMBA high-performance bus (AHB) is optimized for
high-speed transfers and is directly connected to the CPU. It supports several high-performance features:
pipelining, burst transfers, split transactions ,and multiple bus masters.

Figure 2.6, ARM-AMBA bus sytem

A bridge can be used to connect the AHB to an AMBA peripherals bus (APB). This bus is designed to be
simple and easy to implement; it also consumes relatively little power. The AHB assumes that all
peripherals act as slaves, simplifying the logic required in both the peripherals and the bus controller. It
also does not perform pipelined operations, which simplifies the bus logic.



MEMORY DEVICES:

There are several varieties of both read-only and read/write memories, each with its own
advantages. After discussing some basic characteristics of memories, we describe RAMs and then
ROMs.

Memory Device Organization

The most basic way to characterize a memory is by its capacity, such as 256 MB. However,
manufacturers usually make several versions of a memory of a given size, each with a different data
width. For example, a 256-MB memory may be available in two versions:

■ As a 64M *4-bit array, a single memory access obtains an 8-bit data item, with a maximum of 226

different addresses.

■ As a 32 M* 8-bit array, a single memory access obtains a 1-bit data item, with a maximum of 223

different addresses.

The height/width ratio of a memory is known as its aspect ratio. The best aspect ratio depends on
the amount of memory required. Internally, the data are stored in a two-dimensional array of memory
cells as shown in Figure 2.7. Because the array is stored in two dimensions, the n-bit address received
by the chip is split into a row and a column address (with n =r+ c).

Fig 2.7 Internal organization of a memory device.

The row and column select a particular memory cell. If the memory’s external width is 1 bit, the
column address selects a single bit; for wider data widths, the column address can be used to select a
subset of the columns. Most memories include an enable signal that controls the tri-stating of data onto
the memory’s pins.



Random-Access Memories:

Random-access memories can be both read and written. They are called random access because,
unlike magnetic disks, addresses can be read in any  order.  Most  bulk  memory  in  modern
systems is dynamic RAM (DRAM). DRAM is very dense; it does, however,  require  that  its
values be refreshed periodically since the values inside the memory cells decay over time.

The dominant form of dynamic RAM today is  the synchronous  DRAMs  (SDRAMs),  which
uses clocks to improve DRAM performance. SDRAMs use Row Address Select (RAS) and
Column Address Select (CAS) signals to break the address into two  parts,  which  select  the
proper row and column in the RAM array. Signal transitions are relative to the SDRAM
clock,which allows the internal SDRAM operations to be pipelined.

Fig 2.8 Timing diagram for a read on a synchronous DRAM.

As shown in Figure 2.8, transitions on the control signals are related to a clock.
RAS_ and CAS_ can therefore become valid at the same time.



o The address lines are not shown in full detail here; some address lines may not be active
depending on the mode in use. SDRAMs use a separate refresh signal to control refreshing.
DRAM has to be refreshed roughly once per millisecond.

o Rather than refresh the entire memory at once, DRAMs refresh part of the memory at a time.
When a section of memory is being refreshed, it cannot be accessed until the refresh is
complete. The memory refresh occurs over fairly few seconds so that each section is refreshed
every few microseconds.

o SDRAMs include registers that control the mode in which the SDRAM operates. SDRAMs
support burst modes that allow several sequential addresses to be accessed by sending only one
address. SDRAMs generally also support an interleaved mode that exchanges pairs ofbytes.

Read-Only Memories:

o Read-only memories (ROMs) are preprogrammed with fixed data. They are very useful in
embedded systems since a great deal of the code, and perhaps some data, does not change over
time. Read-only memories are also less sensitive to radiation induced errors.

o There are several varieties of ROM available. The first-level distinction to be made is between
factory-programmed ROM (sometimes called mask-programmed ROM) and field-
programmable ROM.

o Factory-programmed ROMs are ordered from the factory with particular programming. ROMs
can typically be ordered in lots of a few thousand, but clearly factory programming is useful
only when the ROMs are to be installed in some quantity.

o Field-programmable ROMs, on the other hand, can be programmed in the lab. Flash memory is
the dominant form of field-programmable ROM and is electrically erasable.

o Flash memory uses standard system voltage for erasing and programming, allowing it to be
reprogrammed inside a typical system. This allows applications such as automatic distribution
of upgrades—the flash memory can be reprogrammed while downloading the new memory
contents from a telephone line.

o Early flash memories had to be erased in their entirety; modern devices allow memory to be
erased in blocks. Most flash memories today allow certain blocks to be protected.

o A common application is to keep the boot-up code in a protected block but allow updates to
other memory blocks on the device. As a result, this form of flash is commonly known as boot-
block flash.



DESIGN WITH COMPUTING PLATFORMS

Choosing Platform:
We may assemble hardware and software components from several sources to construct

embedded system platform.

Hardware:
The hardware architecture of an embedded computing system includes several elements,

some of which may be less obvious than others.

1. CPU: An embedded computing system clearly contains a microprocessor. But which one?
There are many different architectures, and even within an architecture we can select
between models that vary in clock speed,  bus data  width, integrated peripherals,  and so
on. The choice of the CPU is one of the most important, but it cannot be made without
considering the software that will execute on the machine.

2. Bus :The choice of a bus is closely tied to that of  a CPU, since the bus  is an  integral part
of the microprocessor. Attention must be paid to the  required data bandwidths to be sure
that the bus can handle the traffic.

3. Memory: The most obvious characteristic of memory is total size, which depends on both
the required data volume and the size of the program instructions. The ratio of ROM to
RAM and selection of DRAM versus SRAM can have a significant influence on the cost of
the system. The speed of the memory will play a large part in determining system
performance.

4. Input and output devices: The user’s view of the input and output mechanisms may not
correspond to the devices connected to the microprocessor. For example, a set of switches
and knobs on  a  front  panel  may  all  be  controlled  by  a  single  microcontroller,  which
is in turn connected to the main CPU.

5. Software: Software components of the platform about both run time components and
support components. Run time components includes the operating system, code libraries and
so on.. Support components include the code development environment, debugging tools



Hardware Design

The design complexity of the hardware platform can vary greatly, from a totally off-the-shelf
solution to a highly customized design.

Fig 2.9 An ARM evaluation board.

At the board level, the first step is to consider evaluation boards supplied by the microprocessor
manufacturer or another company working in collaboration with the manufacturer. Evaluation boards
are sold for many microprocessor systems; they typically include the CPU, some memory, a serial link
for downloading programs, and some minimal number of I/O devices. Figure 2.9 shows an ARM
evaluation board manufactured by Sharp.

The evaluation board may be a complete solution or provide what you need with only slight
modifications. If the evaluation board is supplied by the microprocessor vendor, its design (netlist,
board layout, etc.) may be available from the vendor; companies provide such information to make it
easy for customers to use their microprocessors. If the evaluation board comes from a third party, it
may be possible to contract them to design a new board with your required modifications, or you can
start from scratch on a new board design.

The other major task is the choice of memory and peripheral components. In the case of I/O
devices, there are two alternatives for each device: selecting a component from a catalog or designing
one yourself. When shopping for devices from a catalog, it is important to read data sheets carefully it
may not be trivial to figure out whether the device does what you need it to do.



Intellectual property:

Intellectual property (IP) is something that we can own but not touch: software, netlist and so on.
Just as we need to acquire hardware components to build our system ,we also need to acquire
intellectual property to make the hardware useful.

Some wide range of IP that we use in embedded system design.

 Run time software libraries
 Software development environments
 Schematics ,netlist and other hardware design information.

Development Environments:

Although we may use an evaluation board , much of the software development for an embedded
system is done on a PC or workstation known  as  a host as  illustrated  in  Figure  2.10.  The
hardware on which the code will finally run is known as the target. The host and target are frequently
connected by a USB link, but a higher-speed link such as Ethernet can also beused.

Fig 2.10 Connecting a host and a target system.



The target must include a small amount of software to talk to the host system. That
software will take up some memory, interrupt vectors, and so on,

The host should be able to do the following:

■ load programs into the target,

■ start and stop program execution on the target, and

■ examine memory and CPU registers.

A cross-compiler is a compiler that runs on one type of machine but generates code for
another. After compilation, the executable code is downloaded to the embedded system by a
serial link or perhaps burned in a PROM and plugged in.

The testbench generates inputs to simulate the actions of the input devices; it may also take
the output values and compare them against expected values, providing valuable early
debugging help.

Debugging Techniques

A good deal of software debugging can be done by compiling and executing the code on a PC
or workstation. the resourceful designer has several options available for debugging the
system.

USB port: The USB port found on most evaluation boards is one of the most important
debugging tools. In fact, it is often a good idea to design a USB port into an embedded
system. even if it will not be used in the final product; the serial port can be used not only for
development debugging but also for diagnosing problems in the field.

Breakpoint: Another very important debugging tool is the breakpoint. The simplest form
of a breakpoint is for the user to specify an address at which the program’s execution is to
break. When the PC reaches that address, control is returned to the monitor program

LED: LEDs as debugging devices. As with serial ports, it is often a good idea
to design a few to indicate the system state even if they will not normally be seen
in use. LEDs can be used to show error conditions. a simple flashing LED can
provide a great sense of accomplishment when it first starts to work.

In-Circuit emulator:

 When software tools are insufficient to debug the system, hardware aids
can be deployed to give a clearer view of what is happening when the
system is running. The microprocessor in-circuit emulator (ICE) is a



specialized hardware tool that can help debug software in a working
embedded system.

 At the heart of an in-circuit emulator is a special version of the
microprocessor that allows its internal registers to be read out when it is
stopped.

 The main drawback to in-circuit emulation is that the machine is
specific to a particular microprocessor, even down to the pin out. If you
use several microprocessors, maintaining a fleet of in-circuit emulators
to match can be very expensive.

Logic Analyzer: The logic analyzer as an array of in expensive oscilloscopes—the
analyzer can sample many different signals simultaneously (tens to hundreds) but can display
only 0, 1, or changing values for each.
All these logic analysis channels can be connected to the system to record the activity on
many signals simultaneously. The logic analyzer records the values on the signals into an
internal memory and then displays the results on a display once the memory is full or the run
is aborted.

A typical logic analyzer can acquire data in either of two modes. state and timing modes.

State and timing mode represent different ways of sampling the values.

Timing mode uses an internal clock that is fast enough to take several samples per clock
period in a typical system. It requires more memory to store a given number of system clock
cycles. As a result, On the other hand, it provides greater resolution in the signal for
detecting glitches. Timing mode is typically used for glitch-oriented debugging.

State mode, on the other hand, uses the system’s own clock to control sampling, so it
samples each signal only once per clock cycle. state mode is used for sequentially oriented
problems.



The internal architecture of a logic analyzer is shown in Figure 2.11.

2.11 Architecture of a logic analyzer.

The system’s data signals are sampled at a latch within the logic analyzer; the latch is
controlled by either the system clock or the internal logic analyzer sampling clock, depending
on whether the analyzer is being used in state or timing mode.

Each sample is copied into a vector memory under the control of a state machine. The latch,
timing circuitry, sample memory, and controller must be designed to run at high speed since
several samples per system clock cycle may be required in timing mode.

After the sampling is complete, an embedded microprocessor takes over to control the display
of the data captured in the sample memory.

Logic analyzers typically provide a number of formats for viewing data. One format is a
timing diagram format. Many logic analyzers allow not only customized displays, such as
giving names to signals, but also more advanced display options.

Debugging Challenges

 Logical errors in software can be hard to  track  down,  but  errors  in  real-time
code can create problems that are even harder to diagnose. Real-time programs are
required to finish their work within a certain amount of time; if they run too long,
they can create very unexpected behavior.

 The exact results of missing real-time deadlines depend on the detailed
characteristics of the I/O devices and the nature of the timing violation.  This
makes debugging real-time problems especially difficult.



Consumer Electronics Architecture:
In this section we consider consumer electronics devices as an example of complex
embedded systems and the platforms that support them.

Consumer Electronics Use Cases a nd Requirements:

Although some predict the complete convergence of all consumer electronic functions into a
single device, much as has happened to the personal computer, we still have a variety of
devices with different functions. There is no single platform for consumer electronics
devices, but the architectures in use are organized around some common themes.

This convergence is possible because these devices implement a few basic types of functions
in various combinations: multimedia and communications. The style of multimedia or
communications may vary, and different devices may use different formats, but this causes
variations in hardware and software components within the basic architectural templates.

Functional requirements:
Consumer electronics devices provide several types of services in different combinations:

Multimedia: The media may be audio, still images, or video (which includes both motion
pictures and audio). These multimedia objects are generally stored in compressed form and
must be uncompressed to be played (audio playback, video viewing, etc.).

A large and growing number of standards have been developed for multimedia
compression: MP3, Dolby DigitalTM, and so on for audio; JPEG for still images; MPEG-
2, MPEG-4, H.264, and so on for video.

Data storage and management: Because people want to select what multimedia objects
they save or play, data storage goes hand-in-hand with multimedia capture and display.
Many devices provide PC-compatible file systems so that data can be shared more easily.

Communications: Communications may be relatively simple, such as a USB interface to a
host computer. The communications link may also be more sophisticated, such as an
Ethernet port or a cellular telephone link.

Nonfunctional requirements:

Consumer electronics devices must meet several types of strict nonfunctional requirements
as well. Many devices are battery-operated, which means that they must operate under
strict energy budgets.



A typical battery for a portable device provides only about 75 mW, which must support not
only the processors and digital electronics but also the display, radio, and so on.

Consumer electronics must also be very inexpensive

Use cases:

Let’s consider some basic use cases of some basic operations. Figure 2.12 shows a use case
for selecting and playing a multimedia object (an audio clip, a picture, etc.). Selecting an
object makes use of both the user interface and the file system. Playing also makes use of
the file system as well as the decoding subsystem and I/O subsystem.

Figure 2.12 Use case for playing multimedia.

Figure 2.13 shows a use case for connecting to a client. The connection may be either over a
local connection like USB or over the Internet. While some operations may be performed
locally on the client device, most of the work is done on the host system while the connection
is established.

Figure 2.13 Use case of synchronizing with a host system.



Hardware architectures:

Figure 2.14 shows a functional block diagram of a typical device. The storage system
provides bulk, permanent storage. The network interface may provide a simple USB
connection or a full-blown Internet connection.

Figure 2.14 Hardware architecture of a generic consumer electronics device.

Multiprocessor architectures are common in many consumer multimedia devices. Figure 2.14
shows a two-processor architecture; if more computation is required, more DSPs and CPUs
may be added.

The RISC CPU runs the operating system, runs the user interface, maintains the file system,
and so on. The DSP performs signal processing. The DSP may be programmable in some
systems; in other cases, it may be one or more hardwired accelerators.

Operating systems:

The operating system that runs on the CPU must maintain processes and the file system.
Processes are necessary to provide concurrency—for example, the user wants to be able to
push a button while the device is playing back audio. Depending on the complexity of the
device, the operating system may not need to create tasks dynamically. If all tasks can be
created using initialization code, the operating system can be made smaller and simpler.



FILE SYSTEMS

DOS file systems:

DOS file allocation table (FAT) file systems refer to the file system developed by Microsoft
for early versions of the DOS operating system . FAT can be implemented on flash storage
devices as well as magnetic disks; wear-leveling algorithms for flash memory can be
implemented without disturbing the basic operation of the file system.

Flash memory:

Many consumer electronics devices use flash memory for mass storage. Flash memory is a
type of semiconductor memory that, unlike DRAM or SRAM, provides permanent storage.

Values are stored in the flash memory cell as an electric charge using a specialized capacitor
that can store the charge for years. The flash memory cell does not require an external power
supply to maintain its value.

Furthermore, the memory can be written electrically and, unlike previous generations of
electrically-erasable semiconductor memory, can be written using standard power supply
voltages and so does not need to be disconnected during programming.

Platform-Level PerformanceAnalysis

Bus-based systems add another layer of complication to performance analysis.
Consider the simple system of Figure 2.15. We want to move data from memory to the CPU
to process it. To get the data from memory to the CPU we must:

 read from the memory;
 transfer over the bus to the cache;
 transfer from the cache to the CPU.

Figure 2.15 Platform-level data flows and performance.



Bandwidth as performance

The most basic measure of performance we are interested in is bandwidth—the rate at which
we can move data. Ultimately, if we are interested in real-time performance, we are interested
in real-time performance measured in seconds.

But often the simplest way to measure performance is in units of clock cycles. However,
different parts of the system will run at different clock rates. We have to make sure that we
apply the right clock rate to each part of the performance estimate when we convert from
clock cycles to seconds.
Bus bandwidth:

when we are transferring large blocks of data ,we consider Bus bandwidth.

Consider an image of 320 × 240 pixels with each pixel composed of 3 bytes of data. This
gives a grand total of 230,400 bytes of data. If these images are video frames, we want to
check if we can push one frame through the system within the 1/30 sec that we have to
process a frame before the next one arrives.

Let us assume that we can transfer one byte of data every microsecond, which implies a bus
speed of 1 MHz. In this case, we would require 230,400 μs = 0.23 sec to transfer one frame.
That is more than the 0.033 sec allotted to the data transfer.

We can increase bandwidth in two ways:

 we can increase the clock rate of the bus or we can increase the amount of data
transferred per clock cycle. For example, if we increased the bus to carry four bytes or
32 bits per transfer, we would reduce the transfer time to 0.058 sec.

 If we could also increase the bus clock rate to 2 MHz, then we would reduce the
transfer time to 0.029 sec, which is within our time budget for the transfer.

Bus bandwidth formulas:

Let’s call the bus clock period P and the bus width W. We will put W in units of bytes but we
could use other measures of width as well.

We want to write formulas for the time required to transfer N bytes of data. We will write our
basic formulas in units of bus cycles T, then convert those bus cycle counts to real
time t using the bus clock period P:

t=T P



Memory aspect ratio:

A single memory chip is not solely specified by the number of bits it can hold.

As shown in Figure 2.16, memories of the same size can have different aspect ratios.

For example, a 64-Mbit memory that is one bit wide will present 64 million addresses of one-

bit data.

The same size memory in a 4-bit-wide format will have 16 distinct addresses and an 8-bit-

wide memory will have 8 million distinct addresses.

Figure 2.16 Memory aspect ratios.

Components for Embedded Programs:
In this section, we consider code for three structures or components that are

commonly used in embedded software: the state machine, the circular buffer, and the
queue. State machines are well suited to reactive systems such as user interfaces; circular
buffers and queues are useful in digital signal processing.



State Machines:

When inputs appear intermittently rather than as periodic samples, it is often convenient to
think of the system as reacting to those inputs. The reaction of most systems can be
characterized in terms of the input received and the current state of the system. This leads
naturally to a finite-state machine style of describing the reactive system’s behavior.

Programming Example 5.1 shows how to write a finite-state machine in a high-level
programming language.

 The behavior we want to implement is a simple seat belt controller.
 The controller’s job is to turn on a buzzer if a person sits in a seat and does not fasten

the seat belt within a fixed amount of time.
 This system has three inputs and one output. The inputs are a sensor for the seat to

know when a person has sat down, a seat belt sensor that tells when the belt is
fastened, and a timer that goes off when the required time interval has elapsed.

 The output is the buzzer. Appearing below is a state diagram that describes the seat
belt controller’s behavior.

 The idle state is in force when there is no person in the seat.
 When the person sits down, the machine goes into the seated state and turns on the

timer.
 If the timer goes off before the seat belt is fastened, the machine goes into the buzzer

state.
 If the seat belt goes on first, it enters the belted state.
 When the person leaves the seat, the machine goes back to idle.

We will use a variable named state to hold the current state of the machine and a switch
statement to determine what action to take in each state. Here is the code:



#define IDLE 0

#define SEATED 1

#define BELTED 2

#define BUZZER 3

switch(state) { /* check the current state */

case IDLE:

if (seat){ state = SEATED; timer_on = TRUE; }

/* default case is self-loop */

break;

case SEATED:

if (belt) state = BELTED; /* won’t hear the buzzer */

else if (timer) state = BUZZER; /* didn’t put on belt in time */

/* default case is self-loop */

break;

case BELTED:

if (!seat) state = IDLE; /* person left */

else if (!belt) state = SEATED; /* person still in seat */

break;

case BUZZER:

if (belt) state = BELTED; /* belt is on---turn off buzzer */

else if (!seat) state = IDLE; /* no one in seat--turn off buzzer */

break;

}



Circular Buffers and Stream-Oriented Programming

Data stream style:

The data stream style makes sense for data that comes in regularly and must be processed on
the fly. The FIR filter is a classic example of stream-oriented processing. For each sample,
the filter must emit one output that depends on the values of the last n inputs.

In a typical workstation application, we would process the samples over a given interval by
reading them all in from a file and then computing the results all at once in a batch process. In
an embedded system we must not only emit outputs in real time, but we must also do so using
a minimum amount of memory.

Circular buffer:

The circular buffer is a data structure that lets  us handle streaming data in  an efficient
way. Figure 2.17 illustrates how a circular buffer stores a subset of the data stream. At each
point in time, the algorithm needs a subset of the data stream that forms a window into the
stream.

The window slides with time as we throw out old values no longer needed and add new
values. Because the size of the window does not change, we can use a fixed-size buffer to
hold the current data.

Figure 2.17A circular buffer.



Programming Example:A Circular Buffer in C

Once we build a circular buffer, we can use it in a variety of ways. We will use an array as
the buffer:

#define CMAX 6 /* filter order */

int circ[CMAX]; /* circular buffer */

int pos; /* position of current sample */

The variable pos holds the position of the current sample. As we add new values to the buffer
this variable moves. Here is the function that adds a new value to the buffer:

void circ_update(int xnew) {

/* add the new sample and push off the oldest one */

/* compute the new head value with wraparound; the pos pointer moves from
0 to CMAX-1 */

pos = ((pos == CMAX-1) ? 0 : (pos+1));

/* insert the new value at the new head */

circ[pos] = xnew;

}

We can now write an initialization function. It sets the buffer values to zero. More important,
it sets pos to the initial value. For ease of debugging, we want the first data element to go into
circ[0]. To do this, we set pos to the end of the array so that it is set to zero before the first
element is added:

void circ_init(){

int i;

for (i=0; i<CMAX; i++) /* set values to 0 */

circ[i] = 0;

pos=CMAX-1; /* start at tail so first element will be at 0 */

}

We can also make use of a function to get the i th value of the buffer. This function has to



translate the index in temporal order—zero being the newest value—to its position in the
array:

int circ_get(int i) {

/* get the ith value from the circular buffer */

int ii;

/* compute the buffer position */

ii = (pos - i) % CMAX;

/* return the value */

return circ[ii];

}

QUEUES

Queues are also used in signal processing and event processing. Queues are used whenever
data may arrive and depart at somewhat unpredictable times or when variable amounts of
data may arrive. A queue is often referred to as an elastic buffer.



Models of Programs

In this section, we develop models for programs that are more general than source code. Why
not use the source code directly? First, there are many different types of source code—
assembly languages, C code, and so on—but we can use a single model to describe all of
them.
Our fundamental model for programs is the control/data flow graph (CDFG). (We can also
model hardware behavior with the CDFG.) As the name implies, the CDFG has constructs
that model both data operations (arithmetic and other computations) and control operations
(conditionals).
Part of the power of the CDFG comes from its combination of control and data constructs. To
understand the CDFG, we start with pure data descriptions and then extend the model to
control.

DATA FLOW GRAPHS

A data flow graph is a model of a program with no conditionals. In a high-level
programming language, a code segment with no conditionals—more precisely, with only
one entry and exit point—is known as a basic block.

Figure 2.18 shows a simple basic block. As the C code is executed, we would enter this
basic block at the beginning and execute all the statements.

A basic block in C.

Before we are able to draw the data flow graph for this code we need to modify it slightly. There are
two assignments to the variable x—it appears twice on the left side of an assignment. We need to
rewrite the code in single-assignment form, in which a variable appears only once on the left side.

The basic block in single-assignment form.



As an introduction to the data flow graph, we use two types of nodes in the graph—round nodes
denote operators and square nodes represent values. The value nodes may be either inputs to the basic
block, such as a and b, or variables assigned to within the block, such as w and x1. The data flow graph
for our single-assignment code is shown in Figure 2.18.

Figure 2.18. An extended data flow graph for our sample basic block.

The data flow graph is generally drawn in the form shown in Figure 2.19. Here, the variables are not
explicitly represented by nodes. Instead, the edges are labeled with the variables they represent.

As a result, a variable can be represented by more than one edge. However, the edges are directed and
all the edges for a variable must come from a single source. We use this form for its simplicity and
compactness.



Figure 2.19. Standard data flow graph for our sample basic block.

CONTROL/DATA FLOW GRAPHS

A CDFG uses a data flow graph as an element, adding constructs to describe control. In a
basic CDFG, we have two types of nodes: decision nodes and data flow nodes.

A data flow node encapsulates a complete data flow graph to represent a basic block. We can
use one type of decision node to describe all the types of control in a sequential program.
(The jump/branch is, after all, the way we implement all those high-level control constructs.)

Figure 2.20 shows a bit of C code with control constructs and the CDFG constructed from it.
The rectangular nodes in the graph represent the basic blocks. The basic blocks in the C code
have been represented by function calls for simplicity. The diamond-shaped nodes represent
the conditionals.



Figure 2.20 C code and its CDFG.
Building a CDFG for a while loop is straightforward, as shown in Figure 2.21. The while loop
consists of both a test and a loop body, each of which we know how to represent in a CDFG. We can
represent for loops by remembering that, in C, a for loop is defined in terms of a while loop.



Figure 2.21 A while loop and its CDFG.

Assembly, Linking, andLoading

Assembly and linking are the last steps in the compilation process—they turn a list of instructions into
an image of the program’s bits in memory. Loading actually puts the program in memory so that it
can be executed.

Program generation work flow:

Figure 2.22 highlights the role of assemblers and linkers in the compilation process.. As the figure
shows, most compilers do not directly generate machine code, but instead create the instruction-level
program in the form of human-readable assembly language.

The assembler’s job is to translate symbolic assembly language statements into bit-level
representations of instructions known as object code. The assembler takes care of instruction formats
and does part of the job of translating labels into addresses.

However, because the program may be built from many files, the final steps in determining the
addresses of instructions and data are performed by the linker, which  produces  an executable
binary file.

That file may not necessarily be located in the CPU’s memory, however, unless the linker happens to
create the executable directly in RAM. The program that brings the program into memory for
execution is called a loader.



Figure 2.22 Program generation from compilation through loading.

Absolute and relative addresses

The simplest form of the assembler assumes that the starting address of the assembly language
program has been  specified  by  the  programmer.  The  addresses  in  such  a  program  are  known
as absolute addresses.

Most assemblers therefore allow us to use relative addresses by specifying at the start of the file that
the origin of the assembly language module is to be computed later. Addresses within the module are
then computed relative to the start of the module. The linker is then responsible for translating relative
addresses into addresses.

ASSEMBLERS

When translating assembly code into object code, the assembler must translate opcodes and
format the bits in each instruction, and translate labels into addresses.

Labels make the assembly process more complex, but they are the most important
abstraction provided by the assembler. Labels let the programmer (a human programmer or a
compiler generating assembly code) avoid worrying about the locations of instructions and
data.

Label processing requires making two passes through the assembly source code:

1. The first pass scans the code to determine the address of each label.

2. The second pass assembles the instructions using the label values computed in the first
pass.



Symbol table

As shown in Figure 2.23, the name of each symbol and its address is stored in a symbol
table that is built during the first pass. The symbol table is built by scanning from the first
instruction to the last.

During scanning, the current location in memory is kept in a program location counter
(PLC). Despite the similarity in name to a program counter, the PLC is not used to execute
the program, only to assign memory locations to labels.

For example, the PLC always makes exactly one pass through the program, whereas the
program counter makes many passes over code in a loop.

Figure 2.23 Symbol table processing during assembly.

Thus, at the start of the first pass, the PLC is set to the program’s starting address and the assembler
looks at the first line. After examining the line, the assembler updates the PLC to the next location
(because ARM instructions are four bytes long, the PLC would be incremented by four) and looks at
the next instruction.

If the instruction begins with a label, a new entry is made in the symbol table, which includes the label
name and its value. The value of the label is equal to the current value of the PLC.

At the end of the first pass, the assembler rewinds to the beginning of the assembly language file to
make the second pass. During the second pass, when a label name is found, the label is looked up in
the symbol table and its value substituted into the appropriate place in the instruction.

Symbol table processing during assembly.



Generating a Symbol Table

Object code formats:

The assembler produces an object file that describes the instructions and data in binary format. A
commonly used object file format, originally developed for Unix but now used in other environments
as well, is known as COFF (common object file format). The object file must describe the
instructions, data, and any addressing information and also usually carries along the symbol table for
later use in debugging.

LINKING:

A linker allows a program to be stitched together out of several smaller pieces. The linker
operates on the object files created by the assembler and modifies the assembled code to
make the necessary links between files.

Some labels will be both defined and used in the same file. Other labels will be defined in a single file
but used elsewhere as illustrated in Figure2.24. The place in the file where a label is defined is known
as an entry point.

The place in the file where the label is used is called an external reference.

The main job of the loader is to resolve external references based on available entry points. As a result
of the need to know how definitions and references connect, the assembler passes to the linker not
only the object file but also the symbol table.



Figure2.24. External references and entry points.

Linking process:

The linker proceeds in two phases. First, it determines the address of the start of each object file. The
order in which object files are to be loaded is given by the user, either by specifying parameters when
the loader is run or by creating a load map file that gives the order in which files are to be placed in
memory.

Given the order in which files are to be placed in memory and the length of each object file, it is easy
to compute the starting address of each file.

At the start of the second phase, the loader merges all symbol tables from the object files into a single,
large table. It then edits the object files to change relative addresses into addresses.



Compilation Techniques

Even though we don’t write our own assembly code much of the time, we still care about the
characteristics of the code our compiler generates: its speed, its size, and its power consumption.
Understanding how a compiler works will help us write code and direct the compiler to get the
assembly language implementation we want.

THE COMPILATION PROCESS
It is useful to understand how a high-level language program is translated into instructions:
interrupt handling instructions, placement of data and instructions in memory, etc

We can summarize the compilation process with a formula:

The high-level language program is translated into the lower-level form of instructions; optimizations
try to generate better instruction sequences than would be possible if the brute force technique of
independently translating source code statements were used.

The compilation process is outlined in Figure 2.25. Compilation begins with high-level language code
such as C or C++ and generally produces assembly code. (Directly producing object code simply
duplicates the functions of an assembler, which is a very desirable stand-alone program to have.)

The high-level language program is parsed to break it into statements and expressions. In addition, a
symbol table is generated, which includes all the named objects in the program. Some compilers may
then perform higher-level optimizations that can be viewed as modifying the high-level language
program input without reference to instructions.

Figure 2.25 The compilation process.

Simplifying arithmetic expressions is one example of a machine-independent optimization.
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Understanding how a compiler works will help us write code and direct the compiler to get the
assembly language implementation we want.

THE COMPILATION PROCESS
It is useful to understand how a high-level language program is translated into instructions:
interrupt handling instructions, placement of data and instructions in memory, etc

We can summarize the compilation process with a formula:

The high-level language program is translated into the lower-level form of instructions; optimizations
try to generate better instruction sequences than would be possible if the brute force technique of
independently translating source code statements were used.

The compilation process is outlined in Figure 2.25. Compilation begins with high-level language code
such as C or C++ and generally produces assembly code. (Directly producing object code simply
duplicates the functions of an assembler, which is a very desirable stand-alone program to have.)

The high-level language program is parsed to break it into statements and expressions. In addition, a
symbol table is generated, which includes all the named objects in the program. Some compilers may
then perform higher-level optimizations that can be viewed as modifying the high-level language
program input without reference to instructions.
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Simplifying arithmetic expressions is one example of a machine-independent optimization.



Instruction-level optimizations are aimed at generating code. They may work directly on
real instructions or on a pseudo-instruction format that is later mapped onto the instructions
of the target CPU. This level of optimization also helps modularize the compiler by allowing
code generation to create simpler code that is later optimized.

BASIC COMPILATION METHODS

Statement translation:

Let’s first consider how to translate an expression. A large amount of the code in a typical
application consists of arithmetic and logical expressions. Understanding how to compile a
single expression, as described in the next example, is a good first step in understanding the
entire compilation process.

Compiling an Arithmetic Expression

Consider this arithmetic expression:

x = a*b + 5*(c − d)

The code for the expression can be built by walking the data flow graph. Here is the data flow
graph for the expression.

Here is the resulting ARM code:

; operator 1 (+)

ADR r4,a ; get address for a

MOV r1,[r4] ; load a



ADR r4,b ; get address for b

MOV r2,[r4] ; load b

MUL r3,r1,r2 ; put w into r3

; operator 2 (−)

ADR r4,c ; get address for c

MOV r4,[r4] ; load c

ADR r4,d ; get address for d

MOV r5,[r4] ; load d

SUB r6,r4,r5 ; put z into r6

; operator 3 (*)

MUL r7,r6,#5 ; operator 3, puts y into r7

; operator 4 (+)

ADD r8,r7,r3 ; operator 4, puts x into r8

; assign to x

ADR r1,x

STR r8,[r1] ; assigns to x location

One obvious optimization is to reuse a register whose value is no longer needed. In the case
of the intermediate values w, y, and z, we know that they cannot be used after the end of the
expression (e.g., in another expression) because they have no name in the C program.

However, the final result z may in fact be used in a C assignment and the value reused later in
the program. In this case we would need to know when the register is no longer needed to
determine its best use.

We also need to be able to translate control structures. Because conditionals are controlled by
expressions, the code generation techniques of the last example can be used for those
expressions, leaving us with the task of generating code for the flow of control itself. Figure
2.26 shows a simple example of changing flow of control in C—an if statement, in which the
condition controls whether the true or false branch of the if is taken. Figure 2.26 also shows
the control flow diagram for the if statement.



Figure 2.26 Flow of control in C and control flow diagrams.

Example : Generating Code for a Conditional

Consider this C statement: if (a + b > 0)
x = 5;

else x = 7;
The CDFG for the statement appears below.

ADR r5,a ; get address for a

LDR r1,[r5] ; load a

ADR r5,b ; get address for b

LDR r2,b ; load b

ADD r3,r1,r2

BLE label3 ; true condition falls through branch

; true case

LDR r3,#5 ; load constant

ADR r5,x

STR r3, [r5] ; store value into x

B stmtend ; done with the true case

; false case



label3 LDR r3,#7 ; load constant

ADR r5,x ; get address of x

STR r3,[r5] ; store value into x

stmtend …

2.9.3 COMPILER OPTIMIZATIONS

Basic compilation techniques can generate inefficient code. Compilers use a wide range of
algorithms to optimize the code they generate.

Loop transformations :

Loops are important program structures—although they are compactly described in the
source code, they often use a large fraction of the computation time. Many techniques have
been designed to optimize loops.

A simple but useful transformation is known as loop unrolling, illustrated in the next
example. Loop unrolling is important because it helps expose parallelism that can be used by
later stages of the compiler.

Example: Loop Unrolling

Here is a simple C loop:

for (i = 0; i < N; i++) {

a[i]=b[i]*c[i];

}

If we let N = 4, then we can substitute this straight-line code for the loop:

a[0] = b[0]*c[0];

a[1] = b[1]*c[1];

a[2] = b[2]*c[2];

a[3] = b[3]*c[3];

Rather than unroll the above loop four times, we could unroll it twice. Unrolling
produces this code:

for (i = 0; i < 2; i++) {



a[i*2] = b[i*2]*c[i*2];

a[i*2 + 1] = b[i*2 + 1]*c[i*2 + 1];

}

Loop fusion combines two or more loops into a single loop. For this transformation to be
legal, two conditions must be satisfied. First, the loops must iterate over the same values.
Second, the loop bodies must not have dependencies that would be violated if they are
executed together

Loop distribution is the opposite of loop fusion that is, decomposing a single loop into multiple
loops.

Loop tiling breaks up a loop into a set of nested loops, with each inner loop performing the
operations on a subset of the data.

Dead code elimination:

Dead code is code that can never be executed. Dead code can be generated by programmers,
either inadvertently or purposefully. Dead code can also be generated by compilers. Dead
code can be identified by reachability analysis—finding the other statements or instructions
from which it can be reached.

Register allocation:

Register allocation is a very important compilation phase. Given a block of code, we want to
choose assignments of variables (both declared and temporary) to registers to minimize the
total number of required registers.

Example: Register Allocation

Consider this C code:

w = a + b; /* statement 1 */

x = c + w; /* statement 2 */

y = c + d; /* statement 3 */

A naive register allocation, assigning each variable to a separate register, would require seven
registers for the seven variables in the above code. However, we can do much better by
reusing a register once the value stored in the register is no longer needed.



we can draw a lifetime graph that shows the statements on which each statement is used.
Here is a lifetime graph in which the x axis is the statement number in the C code and the y
axis shows the variables.

By reusing registers once their current values are no longer needed, we can write code that
requires no more than four registers. Here is one register assignment:

a r0
b r1
c r2
d r0
w r3
x r0
y r3

Here is the ARM assembly code that uses the above register assignment:

LDR r0,[p_a] ; load a into r0 using pointer to a (p_a)

LDR r1,[p_b] ; load b into r1

ADD r3,r0,r1 ; compute a + b

STR r3,[p_w] ; w = a + b

LDR r2,[p_c] ; load c into r2

ADD r0,r2,r3 ; compute c + w, reusing r0 for x

STR r0,[p_x] ; x = c + w

LDR r0,[p_d] ; load d into r0

ADD r3,r2,r0 ; compute c + d, reusing r3 for y

STR r3,[p_y] ; y = c + d



Scheduling:

We have some freedom to choose the order in which operations will be performed. We can
use this to our advantage—for example, we may be able to improve the register allocation by
changing the order in which operations are performed, thereby changing the lifetimes of the
variables.

We can keep track of CPU resources during instruction scheduling using a reservation table.

As illustrated in Figure rows in the table represent instruction execution time slots and
columns represent resources that must be scheduled. Before scheduling an instruction to be
executed at a particular time, we check the reservation table to determine whether all
resources needed by the instruction are available at that time.

A reservation table for instruction scheduling.

We can also schedule instructions to maximize performance. As we know, when an
instruction that takes more cycles than normal to finish is in the pipeline, pipeline bubbles
appear that reduce performance.

Software pipelining is a technique for reordering instructions across several loop iterations
to reduce pipeline bubbles. Some instructions take several cycles to complete; if the value
produced by one of these instructions is needed by other instructions in the loop iteration,
then they must wait for that value to be produced.

Program-Level PerformanceAnalysis

Because embedded systems must perform functions in real time, we often need to know how
fast a program runs. The techniques we use to analyze program execution time are also
helpful in analyzing properties such as power consumption.



As illustrated in Figure 2.27, the CPU pipeline and cache act as windows into our program. In
order to understand the total execution time of our program, we must look at execution paths,
which in general are far longer than the pipeline and cache windows. The pipeline and cache
influence execution time, but execution time is a global property of the program.

Figure 2.27 Execution time is a global property of a program.

Difficulties for determining execution time of programs.

 The execution time of a program often varies with the input data values because
those values select different execution paths in the program. For example, loops
may be executed a varying number of times, and different branches may execute
blocks of varying complexity.

 The cache has a major effect on program performance, and once again, the cache’s
behavior depends in part on the data values input to the program.

 Execution times may vary even at the instruction level. Floating-point operations
are the most sensitive to data values, but the normal integer execution pipeline can
also introduce data-dependent variations.

Measuring execution speed:

We can measure program performance in several ways:

 Some microprocessor manufacturers supply simulators for their CPUs. The simulator
runs on a workstation or PC, takes as input an executable for the microprocessor
along with input data, and simulates the execution of that program.

 A timer connected to the microprocessor bus can be used to measure performance of
executing sections of code. The code to be measured would reset and start the timer at
its start and stop the timer at the end of execution. The length of the program that can
be measured is limited by the accuracy of the timer.



 A logic analyzer can be connected to the microprocessor bus to measure the start and
stop times of a code segment. This technique relies on the code being able to produce
identifiable events on the bus to identify the start and stop of execution. The length of
code that can be measured is limited by the size of the logic analyzer’s buffer.

We are interested in the following three different types of performance measures on
programs:

average-case execution time: This is the typical execution time we would expect for
typical data. Clearly, the first challenge is defining typical inputs.

• worst-case execution time: The longest time that the program can spend on any input
sequence is clearly important for systems that must meet deadlines. In some cases, the
input set that causes the worst-case execution time is obvious, but in many cases it is not.

• best-case execution time: This measure can be important in multirate real-time systems

ELEMENTS OF PROGRAM PERFORMANCE

Program execution time can be seen as

The path is the sequence of instructions executed by the program (or its equivalent in the
high-level language representation of the program). The instruction timing is determined
based on the sequence of instructions traced by the program path, which takes into account
data dependencies, pipeline behavior, and caching.

Instruction timing:

Once we know the execution path of the program, we have to measure the execution time of
the instructions executed along that path. The simplest estimate is to assume that every
instruction takes the same number of clock cycles, which means we need only count the
instructions and multiply by the per-instruction execution time to obtain the program’s total
execution time.

However, even ignoring cache effects, this technique is simplistic for the reasons summarized
below.

 Not all instructions take the same amount of time
 Execution times of instructions are not independent.
 The execution time of an instruction may depend on operand values.
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The most direct way to determine the execution time of a program is by measuring it. This
approach is appealing but it does have some drawbacks. First, in order to cause the program
to execute its worst-case execution path, we have to provide the proper inputs to it.

Determining the set of inputs that will guarantee the worst-case execution path is infeasible.
Furthermore, in order to measure the program’s performance on a particular type of CPU, we
need the CPU or its simulator.

Despite these problems, measurement is the most commonly used way to determine the
execution time of embedded software. Worst-case execution time analysis algorithms have
been used successfully in some areas, such as flight control software, but many system design
projects determine the execution time of their programs by measurement.

Program traces:

Most methods of measuring program performance combine the determination of the
execution path and the timing of that path: as the program executes, it chooses a path and we
observe the execution time along that path.

We refer to the record of the execution path of a program as a program trace . Traces can
be valuable for other purposes, such as analyzing the cache behavior of the program.

Measurement issues:

Perhaps the biggest problem in measuring program performance is figuring out a useful set of
inputs to give the program. This problem has two aspects.

First, we have to determine the actual input values. We may be able to use benchmark data
sets or data captured from a running system to help us generate typical values.

The other problem with input data is the software scaffolding that we may need to feed data
into the program and get data out. When we are designing a large system, it may be difficult
to extract out part of the software and test it independently of the other parts of the system.
We may need to add new testing modules to the system software to help us introduce testing
values and to observe testing outputs.

Profiling:

Profiling is a simple method for analyzing software performance. A profiler does not
measure execution time—instead, it counts the number of times that procedures or basic
blocks in the program are executed.

There are two major ways to profile a program: we can modify the executable program by
adding instructions that increment a location every time the program passes that point in the
program;

or we can sample the program counter during execution and keep track of the distribution of
PC values. Profiling adds relatively little overhead to the program and it gives us some useful
information about where the program spends most of its time.



Physical performance measurement:

Physical measurement requires some sort of hardware instrumentation. The most direct
method of measuring the performance of a program would be to watch the program counter’s
value: start a timer when the PC reaches the program’s start, stop the timer when it reaches
the program’s end.

A logic analyzer or an oscilloscope can be used to watch for signals that mark various points
in the execution of the program. However, because logic analyzers have a limited amount of
memory, this approach doesn’t work well for programs with extremely long execution times.

Software PerformanceOptimization

Techniques for optimizing software performance, including both loop and cache
optimizations.

LOOP OPTIMIZATIONS
Loops are important targets for optimization because programs with loops tend to spend a
lot of time executing those loops. There are three important techniques in optimizing
loops: code motion, induction variable elimination, and strength reduction.

Code motion lets us move unnecessary code out of a loop. If a computation’s result does not
depend on operations performed in the loop body, then we can safely move it out of the loop.
A simple example of code motion is also common. Consider this loop:

for (i = 0; i < N*M; i++) {

z[i] = a[i] + b[i];

}

The code motion opportunity becomes more obvious when we draw the loop’s CDFG as
shown in Figure 2.28



The loop bound computation is performed on every iteration during the loop test, even
though the result never changes. We can avoid N × M − 1 unnecessary executions of this
statement by moving it before the loop, as shown in the figure.

Figure 2.28 Code motion in a loop.

An induction variable is a variable whose value is derived from the loop iteration variable’s
value. The compiler often introduces induction variables to help it implement the loop.
Properly transformed, we may be able to eliminate some variables and apply strength
reduction to others.

A nested loop is a good example of the use of induction variables. Here is a simple nested
loop:

for (i = 0; i < N; i++) for

(j = 0; j < M; j++)

z[i][j] = b[i][j];

The compiler uses induction variables to help it address the arrays. Let us rewrite the loop in
C using induction variables and pointers.

for (i = 0; i < N; i++)



for (j = 0; j < M; j++) {

zbinduct = i*M + j;

*(zptr + zbinduct) = *(bptr + zbinduct);

}

Strength reduction helps us reduce the cost of a loop iteration. Consider this assignment:
y = x * 2;

In integer arithmetic, we can use a left shift rather than a multiplication by 2. If the shift is
faster than the multiply, we probably want to perform the substitution.

Cache Optimizations:

A loop nest is a set of loops, one inside the other. Loop nests occur when we process arrays.
A large body of techniques has been developed for optimizing loop nests. Rewriting a loop
nest changes the order in which array elements are accessed.

In this section we concentrate on the analysis of loop nests for cache performance.

Programming Example : Data Realignment and Array Padding.

Assume we want to optimize the cache behavior of the following code:

for (j = 0; j < M; j++) for

(i = 0; i < N; i++)

a[j][i] = b[j][i] * c;

Let us also assume that the a and b arrays are sized with M at 265 and N at 4 and a 256-line,
four-way set-associative cache with four words per line.

Assume that the starting location for a[] is 1024 and the starting location for b[] is 4099.
Although a[0][0] and b[0][0] do not map to the same word in the cache, they do map to the
same block.



As a result, we see the following scenario in execution:

• The access to a[0][0] brings in the first four words of a[].

• The access to b[0][0] replaces a[0][0] through a[0][3] with b[0][3] and the contents of the

three locations before b[].

• When a[0][1] is accessed, the same cache line is again replaced with the first four elements

of a[].

Once the a[0][1] access brings that line into the cache, it remains there for the a[0][2] and

a[0][3] accesses because the b[] accesses are now on the next line. However, the scenario

repeats itself at a[1][0] and every four iterations of the cache.

One way to eliminate the cache conflicts is to move one of the arrays. We do not have to

move it far. If we move b’s start to 4100, we eliminate the cache conflicts.



Program-Level Energy and Power Analysis and Optimization:

Power consumption is a particularly important design metric for battery-powered systems

because the battery has a very limited lifetime.

How much control do we have over power consumption? Ultimately, we must consume the

energy required to perform necessary computations.

However, there are opportunities for saving power:

 We may be able to replace the algorithms with others that do things in clever ways

that consume less power.

 Memory accesses are a major component of power consumption in many applications.

By optimizing memory accesses we may be able to significantly reduce power.

 We may be able to turn off parts of the system—such as subsystems of the CPU,

chips in the system, and so on—when we don’t need them in order to save power.

The first step in optimizing a program’s energy consumption is knowing how much

energy the program consumes. It is possible to measure power consumption for an

instruction or a small code fragment.

The technique, illustrated in Figure 2.29, executes the code under test over and over in a

loop. By measuring the current flowing into the CPU, we are measuring the power

consumption of the complete loop, including both the body and other code.

Figure 2.29, Measuring energy consumption for a piece of code.



Measuring energy consumption for a piece of code.

Several factors contribute to the energy consumption of the program:

• Energy consumption varies somewhat from instruction to instruction.

• The sequence of instructions has some influence.

• The opcode and the locations of the operands also matter.

Energy optimization:

How can we optimize a program for low power consumption? The best overall advice is

that

high performance = low power.

Generally speaking, making the program run faster also reduces energy consumption.

A few optimizations mentioned previously for performance are also often useful for

improving energy consumption:

A few optimizations mentioned previously for performance are also often useful for

improving energy consumption:

 Try to use registers efficiently.

 Analyze cache behavior to find major cache conflicts. Restructure the code to

eliminate as many of these as you can:

 For instruction conflicts, if the offending code segment is small, try to rewrite the

segment to make it as small as possible so that it better fits into the cache.

 For scalar data conflicts, move the data values to different locations to reduce

conflicts.

 For array data conflicts, consider either moving the arrays or changing your array

access patterns to reduce conflicts.

 Software pipelining reduces pipeline stalls, thereby reducing the average energy

per instruction.



EMBEDDED SYSTEMS
UNIT III

PROCESSES AND OPERATING SYSTEMS

MULTIPLE TASKS AND PROCESSES:

Most embedded systems require functionality and timing that is too complex to embody
in a single program. We break the system into multiple tasks in order to manage when things
happen. In this section we will develop the basic abstractions that will be manipulated by the
RTOS to build multirate systems.

Tasks and Processes

Many (if not most) embedded computing systems do more than one thing—that is, the
environment can cause mode changes that in turn cause the embedded system to behave quite
differently. For example, when designing a telephone answering machine, we can define
recording a phone call and operating the user’s control panel as distinct tasks, because they
perform logically distinct operations and they must be performed at very different rates. These
different tasks are part of the system’s functionality, but that application-level organization of
functionality is often reflected in the structure of the program as well.

A process is a single execution of a program. If we run the same program two different
times, we have created two different processes. Each process hasits own state that includes not
only its registers but all of its memory. In some OSs, the memory management unit is used to
keep each process in a separate address space. In others, particularly lightweight RTOSs, the
processes run in the same address space. Processes that share the same address space are often
called threads.

To understand why the separation of an application into tasks may be reflected in the
program structure, consider how we would build a stand-alone compression unit based on the
compression algorithm. As shown in Figure, this device is connected to serial ports on both ends.
The input to the box is an uncompressed stream of bytes. The box emits a compressed string of
bits on the output serial line, based on a predefined compression table. Such a box may
be used, for example, to compress data being sent to a modem. The program’s need to receive
and send data at different rates—for example, the program may emit 2 bits for the first byte and
then 7 bits for the second byte will obviously find itself reflected in the structure of the code. It is
easy to create irregular, ungainly code to solve this problem; a more elegant solution is to create
a queue of output bits, with those bits being removed from the queue and sent to the serial port in
8-bit sets. But beyond the need to create a clean data structure that simplifies the control structure
of the code,we must also ensure that we process the inputs and outputs at the proper rates. For
example, if we spend too much time in packaging and emitting output characters, we may drop
an input character. Solving timing problems is a more challenging problem.

The text compression box provides a simple example of rate control problems. A control panel
on a machine provides an example of a different type of rate control problem,the asynchronous
input. The control panel of the compression box may, for example,include a compression mode
button that disables or enables compression, so that the input text is passed through unchanged
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when compression is disabled. We certainly do not know when the user will push the
compression mode button—the button may be depressed asynchronously relative to the arrival
of characters for compression. We do know, however, that the button will be depressed at a
much lower rate than characters will be received, since it is not physically possible for a person
to repeatedly depress a button at even slow serial line rates. Keeping up with the input and output
data while checking on the button can introduce some very complex control code into the
program. Sampling the button’s state too slowly can cause the machine to miss a button
depression entirely, but sampling it too frequently and duplicating a data value can cause the
machine to incorrectly compress data. One solution is to introduce a counter into the main
compression loop, so that a subroutine to check the input button is called once every n times the
compression loop is executed. But this solution does not work when either the compression loop
or the button-handling routine has highly variable execution times—if the execution time of
either varies significantly, it will cause the other to execute later than expected, possibly causing
data to be lost. We need to be able to keep track of these two different tasks separately, applying
different timing requirements to each. This is the sort of control that processes allow. The above
two examples illustrate how requirements on timing and execution rate can create major
problems in programming. When code is written to satisfy several different timing requirements
at once, the control structures necessary to get any sort of solution become very complex very
quickly. Worse, such complex control is usually quite difficult to verify for either functional or
timing properties.

Uncompressed Compressed
Data data

CONTEXT SWITCHING



In computing, a context switch is the process of storing and restoring the state (context) of a
process so that execution can be resumed from the same point at a later time. This enables
multiple processes to share a single CPU and is an essential feature of a multitasking operating
system. What constitutes the context is determined by the processor and the operating system.

Context switches are usually computationally intensive, and much of the design of operating
systems is to optimize the use of context switches. Switching from one process to another
requires a certain amount of time for doing the administration - saving and loading registers and
memory maps, updating various tables and lists etc.

A context switch can mean a register context switch, a task context switch, a stack frame switch,
a thread context switch, or a process context switch.

Multitasking

Most commonly, within some scheduling scheme, one process needs to be switched out of the
CPU so another process can run. This context switch can be triggered by the process making
itself unrunnable, such as by waiting for an I/O or synchronization operation to complete. On a
pre-emptive multitasking system, the scheduler may also switch out processes which are still
runnable. To prevent other processes from being starved of CPU time, preemptive schedulers
often configure a timer interrupt to fire when a process exceeds its time slice. This interrupt
ensures that the scheduler will gain control to perform a context switch.

Interrupt handling

Modern architectures are interrupt driven. This means that if the CPU requests data from a disk,
for example, it does not need to busy-wait until the read is over; it can issue the request and
continue with some other execution. When the read is over, the CPU can be interrupted and
presented with the read. For interrupts, a program called an interrupt handler is installed, and it
is the interrupt handler that handles the interrupt from the disk.

When an interrupt occurs, the hardware automatically switches a part of the context (at least
enough to allow the handler to return to the interrupted code). The handler may save additional
context, depending on details of the particular hardware and software designs. Often only a
minimal part of the context is changed in order to minimize the amount of time spent handling
the interrupt. The kernel does not spawn or schedule a special process to handle interrupts, but
instead the handler executes in the (often partial) context established at the beginning of interrupt
handling. Once interrupt servicing is complete, the context in effect before the interrupt occurred
is restored so that the interrupted process can resume execution in its proper state.

User and kernel mode switching

When a transition between user mode and kernel mode is required in an operating system, a
context switch is not necessary; a mode transition is not by itself a context switch. However,
depending on the operating system, a context switch may also take place at this time.



Steps

In a switch, the state of the first process must be saved somehow, so that, when the scheduler
gets back to the execution of the first process, it can restore this state and continue.

The state of the process includes all the registers that the process may be using, especially the
program counter, plus any other operating system specific data that may be necessary. This data
is usually stored in a data structure called a process control block (PCB), or switchframe.

In order to switch processes, the PCB for the first process must be created and saved. The PCBs
are sometimes stored upon a per-process stack in kernel memory (as opposed to the user-mode
call stack), or there may be some specific operating system defined data structure for this
information.

Since the operating system has effectively suspended the execution of the first process, it can
now load the PCB and context of the second process. In doing so, the program counter from the
PCB is loaded, and thus execution can continue in the new process. New processes are chosen
from a queue or queues. Process and thread priority can influence which process continues
execution, with processes of the highest priority checked first for ready threads to execute.

Software vs hardware context switching

Context switching can be performed primarily by software or hardware. Some processors, like
the Intel 80386 and its successors,[1] have hardware support for context switches, by making use
of a special data segment designated the Task State Segment or TSS. A task switch can be
explicitly triggered with a CALL or JMP instruction targeted at a TSS descriptor in the global
descriptor table. It can occur implicitly when an interrupt or exception is triggered if there's a
task gate in the interrupt descriptor table. When a task switch occurs the CPU can automatically
load the new state from the TSS. As with other tasks performed in hardware, one would expect
this to be rather fast; however, mainstream operating systems, including Windows and Linux,[2]

do not use this feature.

This is due to mainly two reasons:

1. hardware context switching does not save all the registers (only general purpose registers,
not floating point registers — although the TS bit is automatically turned on in the CR0
control register, resulting in a fault when executing floating point instructions and giving
the OS the opportunity to save and restore the floating point state as needed).

2. associated performance issues, e.g., software context switching can be selective and store
only those registers that need storing, whereas hardware context switching stores nearly
all registers whether they are required or not.

SCHEDULING POLICY



In computer science, scheduling is the method by which threads, processes or data flows are
given access to system resources (e.g. processor time, communications bandwidth). This is
usually done to load balance and share system resources effectively or achieve a target quality of
service. The need for a scheduling algorithm arises from the requirement for most modern
systems to perform multitasking (executing more than one process at a time) and multiplexing
(transmit multiple data streams simultaneously across a single physical channel).

The scheduler is concerned mainly with:

 Throughput - The total number of processes that complete their execution per time unit.
 Latency, specifically:

o Turnaround time - total time between submission of a process and its completion.
o Response time - amount of time it takes from when a request was submitted until

the first response is produced.
 Fairness - Equal CPU time to each process (or more generally appropriate times

according to each process' priority and workload).
 Waiting Time - The time the process remains in the ready queue.

In practice, these goals often conflict (e.g. throughput versus latency), thus a scheduler will
implement a suitable compromise. Preference is given to any one of the above mentioned
concerns depending upon the user's needs and objectives.

In real-time environments, such as embedded systems for automatic control in industry (for
example robotics), the scheduler also must ensure that processes can meet deadlines; this is
crucial for keeping the system stable. Scheduled tasks can also be distributed to remote devices
across a network and managed through an administrative back end.

Types of operating system schedulers

Operating systems may feature up to three distinct types of scheduler, a long-term scheduler
(also known as an admission scheduler or high-level scheduler), a mid-term or medium-term
scheduler and a short-term scheduler. The names suggest the relative frequency with which these
functions are performed. The scheduler is an operating system module that selects the next jobs
to be admitted into the system and the next process to run.

Process scheduler

Long-term scheduling

The long-term, or admission scheduler, decides which jobs or processes are to be admitted to the
ready queue (in the Main Memory); that is, when an attempt is made to execute a program, its
admission to the set of currently executing processes is either authorized or delayed by the long-
term scheduler . Thus, this scheduler dictates what processes are to run on a system, and the
degree of concurrency to be supported at any one time - i.e.: whether a high or low amount of
processes are to be executed concurrently, and how the split between I/O intensive and CPU
intensive processes is to be handled. The long term scheduler is responsible for controlling the



degree of multiprogramming . In modern operating systems, this is used to make sure that real
time processes get enough CPU time to finish their tasks. Without proper real time scheduling,
modern GUIs would seem sluggish.

Long-term scheduling is also important in large-scale systems such as batch processing systems,
computer clusters, supercomputers and render farms. In these cases, special purpose job
scheduler software is typically used to assist these functions, in addition to any underlying
admission scheduling support in the operating system..

Medium term scheduling

Scheduler temporarily removes processes from main memory and places them on secondary
memory (such as a disk drive) or vice versa. This is commonly referred to as "swapping out" or
"swapping in" (also incorrectly as "paging out" or "paging in"). The medium-term scheduler may
decide to swap out a process which has not been active for some time, or a process which has a
low priority, or a process which is page faulting frequently, or a process which is taking up a
large amount of memory in order to free up main memory for other processes, swapping the
process back in later when more memory is available, or when the process has been unblocked
and is no longer waiting for a resource. [Stallings, 396] [Stallings, 370]

In many systems today (those that support mapping virtual address space to secondary storage
other than the swap file), the medium-term scheduler may actually perform the role of the long-
term scheduler, by treating binaries as "swapped out processes" upon their execution. In this
way, when a segment of the binary is required it can be swapped in on demand, or "lazy loaded".
[Stallings, 394]

Short-term scheduling

The short-term scheduler (also known as the CPU scheduler) decides which of the ready, in-
memory processes are to be executed (allocated a CPU) after a clock interrupt, an I/O interrupt,
an operating system call or another form of signal. Thus the short-term scheduler makes
scheduling decisions much more frequently than the long-term or mid-term schedulers - a
scheduling decision will at a minimum have to be made after every time slice, and these are very
short. This scheduler can be preemptive, implying that it is capable of forcibly removing
processes from a CPU when it decides to allocate that CPU to another process, or non-
preemptive (also known as "voluntary" or "co-operative"), in which case the scheduler is unable
to "force" processes off the CPU.

A preemptive scheduler relies upon a programmable interval timer which invokes an interrupt
handler that runs in kernel mode and implements the scheduling function.

Dispatcher

Another component that is involved in the CPU-scheduling function is the dispatcher. The
dispatcher is the module that gives control of the CPU to the process selected by the short-term
scheduler. This function involves the following:



 Switching context
 Switching to user mode
 Jumping to the proper location in the user program to restart that program.

Dispatcher analyses the values from Program counter and fetches instructions, loads data into
registers.

The dispatcher should be as fast as possible, since it is invoked during every process switch.
During the context switches, the processor is idle for a fraction of time. Hence, unnecessary
context switches should be avoided. The time it takes for the dispatcher to stop one process and
start another running is known as the dispatch latency. [Galvin, 155].

Network scheduler

Main article: Network scheduler

Disk scheduler

Main article: I/O scheduling

Job scheduler

Main article: Job scheduler

Examples are cron, at, systemd.

Scheduling disciplines

Scheduling disciplines are algorithms used for distributing resources among parties which
simultaneously and asynchronously request them. Scheduling disciplines are used in routers (to
handle packet traffic) as well as in operating systems (to share CPU time among both threads and
processes), disk drives (I/O scheduling), printers (print spooler), most embedded systems, etc.

The main purposes of scheduling algorithms are to minimize resource starvation and to ensure
fairness amongst the parties utilizing the resources. Scheduling deals with the problem of
deciding which of the outstanding requests is to be allocated resources. There are many different
scheduling algorithms. In this section, we introduce several of them.

In packet-switched computer  networks and  other statistical  multiplexing,  the  notion  of a
scheduling algorithm is used as an alternative to first-come first-served queuing of data packets.

The simplest best-effort scheduling algorithms are round-robin, fair queuing (a max-min fair
scheduling algorithm), proportionally fair scheduling and maximum throughput. If differentiated
or guaranteed quality of service is offered, as opposed to best-effort communication, weighted
fair queuing may be utilized.



In advanced packet radio wireless networks such as HSDPA (High-Speed Downlink Packet
Access ) 3.5G cellular system, channel-dependent scheduling may be used to take advantage of
channel state information. If the channel conditions are favourable, the throughput and system
spectral efficiency may be increased. In even more advanced systems such as LTE, the
scheduling is combined by channel-dependent packet-by-packet dynamic channel allocation, or
by assigning OFDMA multi-carriers or other frequency-domain equalization components to the
users that best can utilize them.

First in first out

Main article: First In First Out

Also known as First Come, First Served (FCFS), is the simplest scheduling algorithm, FIFO
simply queues processes in the order that they arrive in the ready queue.

 Since context switches only occur upon process termination, and no reorganization of the
process queue is required, scheduling overhead is minimal.

 Throughput can be low, since long processes can hold the CPU
 Turnaround time, waiting time and response time can be high for the same reasons above
 No prioritization occurs, thus this system has trouble meeting process deadlines.
 The lack of prioritization means that as long as every process eventually completes, there

is no starvation. In an environment where some processes might not complete, there can
be starvation.

 It is based on Queuing
 Here is the C-code for FCFS

Shortest remaining time

Main article: Shortest remaining time

Similar to Shortest Job First (SJF). With this strategy the scheduler arranges processes with the
least estimated processing time remaining to be next in the queue. This requires advanced
knowledge or estimations about the time required for a process to complete.

 If a shorter process arrives during another process' execution, the currently running
process may be interrupted (known as preemption), dividing that process into two
separate computing blocks. This creates excess overhead through additional context
switching. The scheduler must also place each incoming process into a specific place in
the queue, creating additional overhead.

 This algorithm is designed for maximum throughput in most scenarios.
 Waiting time and response time increase as the process's computational requirements

increase. Since turnaround time is based on waiting time plus processing time, longer
processes are significantly affected by this. Overall waiting time is smaller than FIFO,
however since no process has to wait for the termination of the longest process.

 No particular attention is given to deadlines, the programmer can only attempt to make
processes with deadlines as short as possible.



 Starvation is possible, especially in a busy system with many small processes being run.
 This policy is no more in use.
 To use this policy we should have at least two processes of different priority

Fixed priority pre-emptive scheduling

Main article: Fixed priority pre-emptive scheduling

The OS assigns a fixed priority rank to every process, and the scheduler arranges the processes in
the ready queue in order of their priority. Lower priority processes get interrupted by incoming
higher priority processes.

 Overhead is not minimal, nor is it significant.
 FPPS has no particular advantage in terms of throughput over FIFO scheduling.
 If the number of rankings is limited it can be characterized as a collection of FIFO

queues, one for each priority ranking. Processes in lower-priority queues are selected
only when all of the higher-priority queues are empty.

 Waiting time and response time depend on the priority of the process. Higher priority
processes have smaller waiting and response times.

 Deadlines can be met by giving processes with deadlines a higher priority.
 Starvation of lower priority processes is possible with large amounts of high priority

processes queuing for CPU time.

Round-robin scheduling

Main article: Round-robin scheduling

The scheduler assigns a fixed time unit per process, and cycles through them.

 RR scheduling involves extensive overhead, especially with a small time unit.
 Balanced throughput between FCFS and SJF, shorter jobs are completed faster than in

FCFS and longer processes are completed faster than in SJF.
 Poor average response time, waiting time is dependent on number of processes, and not

average process length.
 Because of high waiting times, deadlines are rarely met in a pure RR system.
 Starvation can never occur, since no priority is given. Order of time unit allocation is

based upon process arrival time, similar to FCFS.

Multilevel queue scheduling

Main article: Multilevel feedback queue

This is used for situations in which processes are easily divided into different groups. For
example, a common division is made between foreground (interactive) processes and
background (batch) processes. These two types of processes have different response-time



requirements and so may have different scheduling needs. It is very useful for shared memory
problems.

Scheduling optimization problems

 Open-shop scheduling
 Job Shop Scheduling
 Flow Shop Scheduling Problem

Manual scheduling

Main article: Manual scheduling

A very common method in embedded systems is to manually schedule jobs. This can for
example be done in a time-multiplexed fashion. Sometimes the kernel is divided in three or more
parts: Manual scheduling, preemptive and interrupt level. Exact methods for scheduling jobs are
often proprietary.

 No resource starvation problems.
 Very high predictability; allows implementation of hard real-time systems.
 Almost no overhead.
 May not be optimal for all applications.
 Effectiveness is completely dependent on the implementation.

How to choose a scheduling algorithm

When designing an operating system, a programmer must consider which scheduling algorithm
will perform best for the use the system is going to see. There is no universal “best” scheduling
algorithm, and many operating systems use extended or combinations of the scheduling
algorithms above. For example, Windows NT/XP/Vista uses a multilevel feedback queue, a
combination of fixed priority preemptive scheduling, round-robin, and first in first out. In this
system, threads can dynamically increase or decrease in priority depending on if it has been
serviced already, or if it has been waiting extensively. Every priority level is represented by its
own queue, with round-robin scheduling amongst the high priority threads and FIFO among the
lower ones. In this sense, response time is short for most threads, and short but critical system
threads get completed very quickly. Since threads can only use one time unit of the round robin
in the highest priority queue, starvation can be a problem for longer high priority threads.

Operating system process scheduler implementations

The algorithm used may be as simple as round-robin in which each process is given equal time
(for instance 1 ms, usually between 1 ms and 100 ms) in a cycling list. So, process A executes
for 1 ms, then process B, then process C, then back to process A.

More advanced algorithms take into account process priority, or the importance of the process.
This allows some processes to use more time than other processes. The kernel always uses



whatever resources it needs to ensure proper functioning of the system, and so can be said to
have infinite priority. In SMP(symmetric multiprocessing) systems, processor affinity is
considered to increase overall system performance, even if it may cause a process itself to run
more slowly. This generally improves performance by reducing cache thrashing.

Windows

Very early MS-DOS and Microsoft Windows systems were non-multitasking, and as such did
not feature a scheduler. Windows 3.1x used a non-preemptive scheduler, meaning that it did not
interrupt programs. It relied on the program to end or tell the OS that it didn't need the processor
so that it could move on to another process. This is usually called cooperative multitasking.
Windows 95 introduced a rudimentary preemptive scheduler; however, for legacy support opted
to let 16 bit applications run without preemption.[1]

Windows NT-based operating systems use a multilevel feedback queue. 32 priority levels are
defined, 0 through to 31, with priorities 0 through 15 being "normal" priorities and priorities 16
through 31 being soft real-time priorities, requiring privileges to assign. 0 is reserved for the
Operating System. Users can select 5 of these priorities to assign to a running application from
the Task Manager application, or through thread management APIs. The kernel may change the
priority level of a thread depending on its I/O and CPU usage and whether it is interactive (i.e.
accepts and responds to input from humans), raising the priority of interactive and I/O bounded
processes and lowering that of CPU bound processes, to increase the responsiveness of
interactive applications.[2] The scheduler was modified in Windows Vista to use the cycle
counter register of modern processors to keep track of exactly how many CPU cycles a thread
has executed, rather than just using an interval-timer interrupt routine.[3] Vista also uses a priority
scheduler for the I/O queue so that disk defragmenters and other such programs don't interfere
with foreground operations.[4]

Mac OS

Mac OS 9 uses cooperative scheduling for threads, where one process controls multiple
cooperative threads, and also provides preemptive scheduling for MP tasks. The kernel schedules
MP tasks using a preemptive scheduling algorithm. All Process Manager processes run within a
special MP task, called the "blue task". Those processes are scheduled cooperatively, using a
round-robin scheduling algorithm; a process yields control of the processor to another process by
explicitly calling a blocking function such as WaitNextEvent. Each process has its own copy of
the Thread Manager that schedules that process's threads cooperatively; a thread yields control of
the processor to another thread by calling YieldToAnyThread or YieldToThread.[5]

Mac OS X uses a multilevel feedback queue, with four priority bands for threads - normal,
system high priority, kernel mode only, and real-time.[6] Threads are scheduled preemptively;
Mac OS X also supports cooperatively scheduled threads in its implementation of the Thread
Manager in Carbon.[5]

AIX



In AIX Version 4 there are three possible values for thread scheduling policy :

 First In First Out : Once a thread with this policy is scheduled, it runs to completion
unless it is blocked, it voluntarily yields control of the CPU, or a higher-priority thread
becomes dispatchable. Only fixed-priority threads can have a FIFO scheduling policy.

 Round Robin: This is similar to the AIX Version 3 scheduler round-robin scheme based
on 10ms time slices. When a RR thread has control at the end of the time slice, it moves
to the tail of the queue of dispatchable threads of its priority. Only fixed-priority threads
can have a Round Robin scheduling policy.

 OTHER This policy is defined by POSIX1003.4a as implementation-defined. In AIX
Version 4, this policy is defined to be equivalent to RR, except that it applies to threads
with non-fixed priority. The recalculation of the running thread's priority value at each
clock interrupt means that a thread may lose control because its priority value has risen
above that of another dispatchable thread. This is the AIX Version 3 behavior.

Threads are primarily of interest for applications that currently consist of several asynchronous
processes. These applications might impose a lighter load on the system if converted to a
multithreaded structure.

AIX 5 implements the following scheduling policies: FIFO, round robin, and a fair round robin.
The FIFO policy has three different implementations: FIFO, FIFO2, and FIFO3. The round robin
policy is named SCHED_RR in AIX, and the fair round robin is called SCHED_OTHER. This
link provides additional information on AIX 5 scheduling:

Linux

Linux 2.4

In Linux 2.4, an O(n) scheduler with a multilevel feedback queue with priority levels ranging
from 0-140 was used. 0-99 are reserved for real-time tasks and 100-140 are considered nice task
levels. For real-time tasks, the time quantum for switching processes was approximately 200 ms,
and for nice tasks approximately 10 ms.[citation needed] The scheduler ran through the run queue ofall
ready processes, letting the highest priority processes go first and run through their time slices,
after which they will be placed in an expired queue. When the active queue is empty the expired
queue will become the active queue and vice versa.

However, some Enterprise Linux distributions such as SUSE Linux Enterprise Server replaced
this scheduler with a backport of the O(1) scheduler (which was maintained by Alan Cox in his
Linux 2.4-ac Kernel series) to the Linux 2.4 kernel used by the distribution.

Linux 2.6.0 to Linux 2.6.22

From versions 2.6 to 2.6.22, the kernel used an O(1) scheduler developed by Ingo Molnar and
many other kernel developers during the Linux 2.5 development. For many kernel in time frame,
Con Kolivas developed patch sets which improved interactivity with this scheduler or even
replaced it with his own schedulers.



Since Linux 2.6.23

Con Kolivas's work, most significantly his implementation of "fair scheduling" named "Rotating
Staircase Deadline", inspired Ingo Molnár to develop the Completely Fair Scheduler as a
replacement for the earlier O(1) scheduler, crediting Kolivas in his announcement.[7]

The Completely Fair Scheduler (CFS) uses a well-studied, classic scheduling algorithm called
fair queuing originally invented for packet networks. Fair queuing had been previously applied to
CPU scheduling under the name stride scheduling.

The fair queuing CFS scheduler has a scheduling complexity of O(log N), where N is the number
of tasks in the runqueue. Choosing a task can be done in constant time, but reinserting a task
after it has run requires O(log N) operations, because the run queue is implemented as a red-
black tree.

CFS is the first implementation of a fair queuing process scheduler widely used in a general-
purpose operating system.

The Brain Fuck Scheduler (BFS) is an alternative to the CFS.

FreeBSD

FreeBSD uses a multilevel feedback queue with priorities ranging from 0-255. 0-63 are reserved
for interrupts, 64-127 for the top half of the kernel, 128-159 for real-time user threads, 160-223
for time-shared user threads, and 224-255 for idle user threads. Also, like Linux, it uses the
active queue setup, but it also has an idle queue.[9]

NetBSD

NetBSD uses a multilevel feedback queue with priorities ranging from 0-223. 0-63 are reserved
for time-shared threads (default, SCHED_OTHER policy), 64-95 for user threads which entered
kernel space, 96-128 for kernel threads, 128-191 for user real-time threads (SCHED_FIFO and
SCHED_RR policies), and 192-223 for software interrupts.

Solaris

Solaris uses a multilevel feedback queue with priorities ranging from 0-169. 0-59 are reserved
for time-shared threads, 60-99 for system threads, 100-159 for real-time threads, and 160-169 for
low priority interrupts. Unlike Linux, when a process is done using its time quantum, it's given a
new priority and put back in the queue.



POSIX real time operating system.
Real-time Systems A real-time system is one where the timeliness of the result of a calculation is
important]. Examples include military weapons systems, factory control systems, and Internet
video and audio streaming. Real time systems are typically categorized into two classes: hard and
soft. In a hard real-time system the time deadlines must be met or the result of a calculation is
invalid. For example in a missile tracking system, if the missile is delayed it may miss its intended
target. The timing constraints in a soft real-time system are not as stringent. There is still some
utility to the result of a calculation if it does not meet its timing deadline. Internet audio/video
streaming is an example of a soft real-time system. If a packet of data is late or lost the quality of
the audio/video is degraded, but the stream may still be audible.

POSIX profiles Embedded systems typically have space and resource limitations, and an
operating system that includes all the features of POSIX may not be appropriate. The
POSIX 1003.13 profile standard was defined to address these types of systems. POSIX
1003.13 does not contain any additional features; instead it groups the functions from
existing POSIX standards into units of functionality. The profiles are based on whether
or not an operating system supports more than one process and a file system. The four
current profiles are summarized in Table.

POSIX real-time extensions

POSIX 1003.1b, as well as 1003.1d and 1003.1j define extensions useful for
development of real-time systems. Functions defined in the original real-time extension
standard 1003.1b are supported across a wider number of operating systems than the
other two specifications. For this reason this paper focuses on POSIX 1003.1b.

The following features constitute the bulk of the features defined in POSIX
1003.1b:

• Timers: Periodic timers, delivery is accomplished using POSIX signals
• Priority scheduling: Fixed priority preemptive scheduling with a minimum of

32 priority levels
• Real-time signals: Additional signals with multiple levels of priority 

Semaphores: Named and memory counting semaphores
• Memory queues: Message passing using named queues
• Shared memory: Named memory regions shared between multiple processes
• Memory locking: Functions to prevent virtual memory swapping of physical

memory pages.

POSIX threads

In POSIX, threads are implemented in an independent specification, which
means that their specification is independent of the other real-time features . Because of
this there are a number of features from the real-time specification that are carried over



to the thread specification. For example priority scheduling is done on a per-thread basis,
but is handled in a similar manner as scheduling in POSIX 1003.1b. A thread’s priority
and scheduling policy is typically specified when it is created. The POSIX thread
specification defines functionality and/or makes modifications to POSIX in the
following areas:

• Thread control: Creation, deletion and management of individual threads

• Priority scheduling: POSIX real-time scheduling extended to include
scheduling on a per thread basis; the scheduling scope is either done globally across all
threads in all processes, or performed locally within each process

• Mutexes: Used to guard critical sections of code; mutexes also include support
for priority inheritance and priority ceiling protocols to help prevent priority inversions

• Condition variables: Used in conjunction with mutexes, condition variables can
be used to create a monitor synchronization structure

• Signals: Ability to deliver signals to individual threads

INTER PROCESS COMMUNICATION MECHANISMS
Processes often need to communicate with each other. Interprocess communication

mechanisms are provided by the operating system as part of the process abstraction. In general, a
process can send a communication in one of two ways: blocking or nonblocking. After sending a
blocking communication, the process goes into the waiting state until it receives a response.
Nonblocking communication allows the process to continue execution after sending the
communication. Both types of communication are useful. There are two major styles of
interprocess communication: shared memory and message passing. The two are logically
equivalent—given one, you can build an interface that implements the other. However, some
programs may be easier to write using one rather than the other. In addition, the hardware
platform may make one easier to implement or more efficient than the other.

Shared Memory Communication

Figure illustrates how shared memory communication works in a bus-based system. Two
components, such as a CPU and an I/O device, communicate through a shared memory location.
The software on the CPU has been designed to know the address of the shared location;the
shared location has also been loaded into the proper register of the I/O device. If, as in the figure,
the CPU wants to send data to the device, it writes to the shared location. The I/O device then
reads the data from that location. The read and write operations are standard and can be
encapsulated in a procedural interface.



Fig : Shared memory communication implemented on a bus

As an application of shared memory, let us consider the situation of Figure in which the
CPU and the I/O device want to communicate through a shared memory block. There must be a
flag that tells the CPU when the data from the I/O device is ready. The flag, an additional shared
data location, has a value of 0 when the data are not ready and 1 when the data are ready. The
CPU, for example,would write the data, and then set the flag location to 1. If the flag is used only
by the CPU, then the flag can be implemented using a standard memory write operation. If the
same flag is used for bidirectional signaling between the CPU and the I/O device, care must be
taken. Consider the following scenario:
1. CPU reads the flag location and sees that it is 0.
2. I/O device reads the flag location and sees that it is 0.
3. CPU sets the flag location to 1 and writes data to the shared location.
4. I/O device erroneously sets the flag to 1 and overwrites the data left by the CPU.

The above scenario is caused by a critical timing race between the two programs. To avoid such
problems, the microprocessor bus must support an atomic test-and set operation, which is
available on a number of microprocessors. The test-and-set operation first reads a location and
then sets it to a specified value. It returns the result of the test. If the location was already set,
then the additional set has no effect but the test-and-set instruction returns a false result. If the
location was not set, the instruction returns true and the location is in fact set. The bus supports
this as an atomic operation that cannot be interrupted.

MESSAGE PASSING:

Message passing communication complements the shared memory model. As shown in Figure,
each communicating entity has its own message send/receive unit. The message is not stored on
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the communications link, but rather at the senders/receivers at the end points. In contrast, shared
memory communication can be seen as a memory block used as a communication device, in
which all the data are stored in the communication link/memory. Applications in which units
operate relatively autonomously are natural candidates for message passing communication. For
example, a home control system has one microcontroller per household device—lamp,
thermostat, faucet, appliance, and so on. The devices must communicate relatively infrequently;
furthermore, their physical separation is large enough that we would not naturally think of them
as sharing a central pool of memory. Passing communication packets among the devices is a
natural way to describe coordination between these devices. Message passing is the natural
implementation of communication in many 8-bit microcontrollers that do not normally operate
with external memory.

SIGNALS

Another form of interprocess communication commonly used in Unix is the signal. A signal is
simple because it does not pass data beyond the existence of the signal itself. A signal is
analogous to an interrupt, but it is entirely a software creation. A signal is generated by a process
and transmitted to another process by the operating system. A UML signal is actually a
generalization of the Unix signal. While a Unix signal carries no parameters other than a
condition code, a UML signal is an object . As such, it can carry parameters as object attributes.
Figure shows the use of a signal in UML. The sigbehavior( ) behavior of the class is responsible



Someclass

Sigbehavoir()

for throwing the signal, as indicated by send . The signal object is indicated by the signal
stereotype.

USE OF A UML SIGNAL

EVALUATING OPERATING SYSTEM PERFORMANCE

The scheduling policy does not  tell us  all that  we  would  like to  know about the
performance of a real system running processes. Our analysis  of scheduling policies
makes some simplifying assumptions:

We    have    assumed    that     context    switches    require     zero time. Although it is
often reasonable to neglect context switch time when it is much smaller than the
process execution time, context switching can add significant delay in some cases.

We   have   assumed    that    we    know    the    execution    time    of the processes. In
fact, we learned in Section 5.6 that program time is not a single number, but can be
bounded by  worst-case  and best-case execution times.

We probably determined worst-case or best-case times for the processes in
isolation.But, in fact, they interact with each other in the cache. Cache conflicts among
processes can drastically degrade process execution time.

The zero-time context  switch  assumption  used  in  the  analysis  of  RMS  is not
correct—we  must execute instructions to save and  restore context, and  we must
execute additional instructions to implement the scheduling policy. On the other  hand,
context  switching   can   be   implemented  efficiently—context switching need not kill
performance.
The effects of nonzero context  switching time  must  be  carefully analyzed  in the
context of a particular implementation to be sure that the predictions of an ideal
scheduling policy are sufficiently accurate.

In  most  real-time  operating  systems,  a  context  switch  requires  only  a few
hundred  instructions, with  only  slightly  more  overhead  for  a  simple real- time
scheduler  like  RMS.  When  the overhead  time is very small relative to the task
periods, then the zero-time context switch assumption is often   a reasonable
approximation.   Problems   are   most   likely   to manifest themselves in the highest-
rate processes, which are often the most critical in anycase. Completely  checking  that
all  deadlines  will  be  met  with  nonzero context switching time requires checking all

p:integer
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aSig



possible schedules for processes and including  the context switch time at each
preemption or process initiation. However, assuming an average number of context
switches per process and computing CPU utilization can provide at least an estimate
of how close the system is to CPU capacity.

POWER OPTIMIZATION STRATEGY FOR PROCESSES

The RTOS and system architecture can use static and dynamic power management
mechanisms to help manage the system’s power consumption. A power management
policy is a strategy for determining when to perform certain power management
operations. A power management policy in general examines the state of the system to
determine when to take actions.

However,  the  overall  strategy  embodied   in   the   policy   should   be  designed
based on the characteristics of the static and dynamic power management mechanisms.

Going into a low-power mode  takes  time;  generally,  the  more  that is shut off, the
longer the delay incurred during restart. Because power-down and power-up are not
free, modes should be changed carefully. Determining when to switch into and out of a
power-up mode requires an analysis of the overall system activity.

 Avoiding a power-down mode can cost unnecessary power.
 Powering down too soon can cause severe performance penalties.

Re-entering run mode typically costs a considerable amount of time. Astraightforward
method is to power up the system when  a  request  is  received. This works as long as
the delay in handling the request  is acceptable. A more sophisticated technique is
predictive shutdown.
The goal is to predict when the next request will be made and to start the system just
before that time, saving the requestor the start-up time. In general, predictive shutdown
techniques are probabilistic they make guesses about activity patterns based on a
probabilistic model of expected behaviour. Because they rely on statistics, they may not
always correctly guess the time of the next activity.

This can cause two types ofproblems:

The requestor may have to wait for an activity period. In the worst case, the
requestor may not make a deadline due to the delay incurred by system start-up. The
system may restart itself when no activity is imminent. As a result, thesystem will
waste power.

Clearly, the choice of a good probabilistic model of  service requests  is important.
The policy mechanism should also not be too complex, since the power it consumes to
make decisions is part of the total system power budget.

Several predictive techniques are possible. A very simple technique is to use fixed
times. For instance, if the system does not receive inputs during an interval of length
Ton, it shuts down; a powered-down system waits for a period Toff before returning
to the power-on mode.



Fig An L-shaped usage distribution.

The choice of Toff and  Ton  must  be  determined  by experimentation. Srivastava
and Eustace [Sri94] found one useful rule for graphics terminals. They plotted the
observed idle time (Toff) of a graphics terminal versus the immediately preceding
active time (Ton).The  result  was  an L-shaped distribution as illustrated in  Figure .
In this distribution, the idle period after a long active  period  is  usually very short,
and the length of the idle period after a short active period is uniformly distributed.

Based   on   this   distribution,   they   proposed   a   shut   down   threshold that
depended on the length of the last active  period—they shut down when  the active
period length was below a threshold, putting the system in the vertical portion of the L
distribution. The Advanced Configuration and Power Interface (ACPI) is an open
industry standard for power management services. It is designed to be compatible with
a wide variety of OSs. It was targeted initially to PCs. The role of ACPI in the system
is illustrated in Figure .



Fig The advanced configuration and power interface and its relationship to a
complete system.

ACPI  provides  some  basic  power  management   facilities  and   abstracts the
hardware  layer,  the  OS  has   its   own   power   management   module that
determines the policy, and the OS  then  uses  ACPI to  send  the  required controls to
the hardware and to observe the  hardware’s  state  as input to the power manager.

ACPI supports the following five basic global power states:

 G3, the mechanical off state, in which the system consumes no power.
 G2, the soft off state, which requires a full OS reboot to restore the machine to

working condition. This state has four substates:
 S1, a low wake-up latency state with no loss of system context;
 S2, a low wake-up latency state with a loss of CPU and system cache state;
 S3, a low wake-up latency state in which all system state except for main

memory is lost; and S4, the lowest-power sleeping state, in which all devices
are turnedoff.

 G1, the sleeping state, in which the system  appears to be off and the time required
to return to working condition is inversely proportional to power consumption.

 G0, the working state, in which the system is fully usable.
 The legacy state, in which the system does not comply with ACPI.



IMPORTANT QUESTIONS
PART-A (2 MARKS)

1. Define process.

2. Define thread.

3. Mention the requirements on processes.

4. Define period.

5. Define task graph.

6. Define initiation time and completion time.

7. Mention the various scheduling states of a process.

8. Define scheduling policy.

9. Define utilization.

10. Define time quantum.

11. Define context switching.

12. Mention the two ways of assigning priority to a process.

13. Define rate monolithic scheduling.

14. Define earliest deadline first scheduling.

15. Define priority inversion.

16. Mention the two different styles used for inter process communication.

17. Define signal.

18. Define response time.

19. Define PCB.

20. Define critical instant.



PART– B(16 MARKS)

1. Explain multiple tasks and multiple processes in detail.

2. Explain the various scheduling policies in detail.

3. Explain Preemptive real time operating system in detail.

4. Explain Non-Preemptive real time operating systems in detail.

5. Explain priority based scheduling in detail.

6. Explain the various inter process communication mechanism in detail.

7. Explain the various types of Performance issues.



EMBEDDED SYSTEMS
SYSTEM DESIGN TECHNIQUES AND NETWORKS

UNIT-4
What do you mean by quality and quality assurance related to embedded systems

The quality of a product or service can be judged by how well it satisfies its intended
function. A product can be of low quality for several reasons, such as it was shoddily
manufactured, its components were improperly designed, its architecture was poorly
conceived, and the product’s requirements were poorly understood.

Quality must be designed in. the bugs cannot be tested enough to
deliver a high-quality product. The quality assurance (QA) process is vital for
the delivery of a satisfactory system.

Give examples of internet enabled system.

List the OSI layers from lowest to highest level of abstraction.
The OSI layers from lowest to highest level of abstraction are described below:

i. Physical layer
ii. Data link layer
iii. Network layer
iv. Transport layer
v. Session layer
vi. Presentation layer
vii. Application layer.

What is a distributed embedded architecture
In a distributed embedded system several processing elements are connected by a

network that allows them to communicate. More than one computer or group of computer
and PEs are connected via network that forms distributed embedded systems.

What are the merits of embedded distributed architecture?
 Error identification is easier.
 It has more cost effective performance.
 Deadliness for processing the data is short.

 6. Differentiate counter semaphore and binary semaphores.



Counter semaphores Binary semaphores
Which allows an arbitrary resource count called Which are restricted to values of 0
counting. and 1 are called binary.
Synchronization   of   object   that   can   have Synchronization by two states
arbitrarily large number of states. (a) Not taken (b) Taken.

What is priority inheritance?
Priority inheritance is a method of eliminating priority inversion, using this a process

scheduling algorithm will increase the priority of a process to the maximum priority of any
process waiting for any resource on which the process has a resource lock.

Briefly discuss about the design methodologies for an embedded computing system.

The design methodologies for an embedded computing system:
The goal of a design process is to create a product that does something useful. Typical

specifications for a product will include functionality (e.g., cell phone), manufacturing cost (must have a
retail price below $200), performance (must power up within 3 s), power consumption (must run for 12 h
on two AA batteries), or other properties. Of course, a design process has several important goals
beyond function, performance, and power. Three of these goals are summarized below.

 Time-to-market: Customers always want new features. The product that comes out first can win the
market, even setting customer preferences for future generations of the product. The profitable
market life for some products is 3–6 months—if you are 3 months late, you will never make money.


 Design cost: Many consumer products are very cost sensitive. Industrial buyers are also increasingly

concerned about cost. The costs of designing the system are distinct from manufacturing cost—the
cost of engineers’ salaries, computers used in design, and so on must be spread across the units
sold. In some cases, only one or a few copies of an embedded system may be built, so design costs
can dominate manufacturing costs. Design costs can also be important for high-volume consumer
devices when time-to-market pressures cause teams to swell in size.




 Quality: Customers not only want their products fast and cheap, they also want them to
be right. A design methodology that cranks out shoddy products will soon be forced out
of the marketplace. Correctness, reliability, and usability must be explicitly addressed
from the beginning of the design job to obtain a high-quality product at the end.

Design Flows:
A design flow is a sequence of steps to be followed during a design. Some of the

steps can be performed by tools, such as compilers or CAD systems; other steps can be
performed by hand. In this section we look at the basic characteristics of design flows.

The waterfall model introduced by Royce [Dav90], the first model proposed for the software development
process. The waterfall development model consists of five major phases: requirements analysis determines the
basic characteristics of the system; architecture design decomposes the functionality into major



components; coding implements the pieces and integrates them; testing uncovers bugs; and maintenance
entails deployment in the field, bug fixes, and upgrades. The waterfall model gets its name from the largely
one-way flow of work and information from higher levels of abstraction to more detailed design steps.

The waterfall model of software development.

The spiral model of software design.

The spiral model is an alternative model of software development. The first cycles at the top of
the spiral are very small and short, while the final cycles at the spiral’s bottom add detail learned from
the earlier cycles of the spiral. The spiral model is more realistic than the waterfall model because
multiple iterations are often necessary to add enough detail to complete a design. However, a spiral
methodology with too many spirals may take too long when design time is a major requirement.

Successive Refinement Design:
A successive refinement design methodology is an approach in which the system is built several

times. A first system is used as a rough prototype, and successive models of the system are further refined.
This methodology makes sense when you are relatively unfamiliar with the application domain for which you



are building the system. Refining the system by building several increasingly complex systems allows you to
test out architecture and design techniques. The various iterations may also be only partially completed; for
example, continuing an initial system only through the detailed design phase may teach you enough to help
you avoid many mistakes in a second design iteration that is carried through to completion.

A successive refinement development model.

A simple hardware/software design methodology:
Embedded computing systems often involve the design of hardware as well as software. Even if you

aren’t designing a board, you may be selecting boards and plugging together multiple hardware components
as well as writing code. Figure shows a design methodology for a combined hardware/software project.
Front-end activities such as specification and architecture simultaneously consider hardware and software
aspects. Similarly, back-end integration and testing consider the entire system. In the middle, however,
development of hardware and software components can go on relatively independently—while testing of one
will require stubs of the other, most of the hardware and software work can proceed relatively independently.

A simple hardware/software design methodology.
The implementation phase of a flow is itself a complete flow from specification through testing. In such a

large project, each flow will probably be handled by separate people or teams. The teams must rely on each
other’s results. The component teams take their requirements from the team handling the next higher level of
abstraction, and the higher-level team relies on the quality of design and testing performed by the component
team. Good communication is vital in such large projects. When designing a large system along with many



people, it is easy to lose track of the complete design flow and have each designer take a
narrow view of his or her role in the design flow.

Concurrent engineering attempts to take a broader approach and optimize the total flow. Reduceddesign
time is an important goal for concurrent engineering, but it can help with any aspect of the design that cuts across
the design flow, such as reliability, performance, power consumption, and so on. It tries to eliminate “over-the-wall”
design steps, in which one designer performs an isolated task and then throws the result over the wall to the next
designer, with little interaction between the two. In particular, reaping the most benefits from concurrent
engineering usually requires eliminating the wall between design and manufacturing.

A hierarchical design flow for an embedded system.

Concurrent engineering efforts are comprised of several elements:

■ Cross-functional teams include members from various disciplines involved in the
process, including manufacturing, hardware and software design, marketing, and so forth.

■ Concurrent product realization process activities are at the heart of concurrent
engineering. Doing several things at once, such as designing various subsystems
simultaneously, is critical to reducing design time.

■ Incremental information sharing and use helps minimize the chance that concurrent product realization
will lead to surprises. As soon as new information becomes available, it is shared and integrated into the design.
Cross functional teams are important to the effective sharing of information in a timely fashion.

■ Integrated project management ensures that someone is responsible for the entire
project, and that responsibility is not abdicated once one aspect of the work is done.

■ Early and continual supplier involvement helps make the best use of suppliers’ capabilities.
■ Early and continual customer focus helps ensure that the product best meets customers’ needs.

Discuss in detail about the network based embedded system.

NETWORKS FOR EMBEDDED SYSTEMS:



Networks for embedded computing span a broad range of requirements; many of those
requirements are very different from those for general-purpose networks. Some networks are
used in safety-critical applications, such as automotive control. Some networks, such as those
used in consumer electronics systems, must be very inexpensive. Other networks, such as
industrial control networks, must be extremely rugged and reliable.

Several interconnect networks have been developed especially for distributed embedded computing:

■ The I2C bus is used in microcontroller-based systems.

■ The Controller Area Network (CAN) bus was developed for automotive electronics. It
provides megabit rates and can handle large numbers of devices.

■ Ethernet and variations of standard Ethernet are used for a variety of control appliations.

The I2C Bus:

 The I2C bus [Phi92] is a well-known bus commonly used to link microcontrollers into
systems. It has even been used for the command interface in an MPEG-2 video chip
[van97]; while a separate bus was used for high-speed video data, setup information
was transmitted to the on-chip controller through an I2C bus interface.


 I2C is designed to be low cost, easy to implement, and of moderate speed (up to

100 KB/s for the standard bus and up to 400 KB/s for the extended bus).


 As a result, it uses only two lines: the serial data line (SDL) for data and the
serial clockline (SCL), which indicates when valid data are on the data line.
Figure 4.6 shows thestructure of a typical I2C bus system.


 Every node in the network is connected to both SCL and SDL. Some nodes may

be able to act as bus masters and the bus may have more than one master.
Other nodes may act as slaves that only respond to requests from masters.


 The basic electrical interface to the bus is shown in Figure 4.7.The bus does

not define particular voltages to be used for high or low so that either bipolar
or MOS circuits can be connected to the bus.


 Both bus signals use open collector/open drain circuits.1 A pull-up resistor

keeps the default state of the signal high, and transistors are used in each
bus device to pull down the signal when a 0 is to be transmitted.


 The Open collector/open drain signaling allows several devices to simultaneously

write the bus without causing electrical damage. The open collector/open drain
circuitry allows a slave device to stretch a clock signal during a read from a slave.
The master is responsible for generating the SCL clock, but the slave can stretch the
low period of the clock (but not the high period) if necessary.


 The I2C interface on a microcontroller can be implemented with varying percentages

of the functionality in software and hardware [Phi89]. As illustrated in Figure, a
typical system has a 1-bit hardware interface with routines for byte level functions.



 The I2C device takes care of generating the clock and data. The application
code calls routines to send an address, send a data byte, and so on, which
then generates the SCL and SDL, acknowledges, and so forth.


 One of the microcontroller’s timers is typically used to control the length of bits on the bus.
 Interrupts may be used to recognize bits. However, when used in master

mode, polled I/O may be acceptable if no other pending tasks can be
performed, since masters initiate their own transfers.

Ethernet


Ethernet is very widely used as a local area network for general-purpose
computing. Because of its ubiquity and the low cost of Ethernet interfaces, it
has seen significant use as a network for embedded computing.







Ethernet is particularly useful when PCs are used as platforms, making it
possible to use standard components, and when the network does not
have to meet rigorous real-time requirements.






The physical organization of an Ethernet is very simple, as shown in figure.
The network is a bus with a single signal path; the Ethernet standard allows
for several different implementations such as twisted pair and coaxial cable.



Ethernet organization.


Unlike the I2C bus,nodes on the Ethernet are not synchronized they can send
their bits at any time. I2C relies on the fact that a collision can be detected
and quashed within a single bit time thanks to synchronization.






But since Ethernet nodes are not synchronized, if two nodes decide to transmit at the
same time, the message will be ruined. The Ethernet arbitration scheme is known as
Carrier Sense Multiple Access with Collision Detection (CSMA/CD).

Field bus


Manufacturing systems require networked sensors and actuators. Field
bus (http://www.fieldbus.org) is a set of standards for industrial control
and instrumentation systems.






The H1 standard uses a twisted-pair physical layer that runs at 31.25 MB/s. It is
designed for device integration and process control. The High Speed Ethernet
standard is used for backbone networks in industrial plants. It is based on the
100 MB/s Ethernet standard. It can integrate devices and subsystems.



NETWORK-BASED DESIGN:

 Designing a distributed embedded system around a network
inwvwowl.vanenasunsivoemrzitey.com the same design tasks we faced in
accelerated systems. We must schedule computations in time and
allocate them to PEs. Scheduling and allocation of communication are
important additional design tasks required for many distributed networks.


Many embedded networks are designed for low cost and therefore do not provide
excessively high communication speed. If we are not careful, the network can
become the bottleneck in system design. In this section we concentrate on design
tasks unique to network-based distributed embedded systems.





We know how to analyze the execution time of programs and systems of processes
on single CPUs, but to analyze the performance of networks we must know how to
determine the delay incurred by transmitting messages. Let us assume for the
moment that messages are sent reliably we do not have to retransmit a message.






The message delay for a single message with no contention (as would be
the case in a point-to-point connection) can be modeled as



tm = tx + tn + tr


where tx is the transmitter-side overhead, tn is the network transmission time,
and tr is the receiver-side overhead. In I2C, tx and tr are negligible relative to tn






If messages can interfere with each other in the network, analyzing communication
delay becomes difficult. In general, because we must wait for the network to become
available and then transmit the message, we can write the message delay as



ty = td+ tm

where td is the network availability delay incurred waiting for the
network to become available. The main problem, therefore, is calculating
td. That value depends on the type of arbitration used in the network.


If the network uses fixed-priority arbitration, the network availability delay
is unbounded for all but the highest-priority device. Since the highest-
priority device always gets the network first, unless there is an
application-specific limit on how long it will transmit before relinquishing
the network, it can keep blocking the other devices indefinitely.






If the network uses fair arbitration, the network availability delay is bounded.
In the case of round-robin arbitration, if there are N devices, then the worst
case network availability delay is N(tx+tarb),where tarb is the delay incurred for
arbitration. tarb is usually small compared to transmission time.






Of course,a round-robin arbitrated network puts all communications at the
same priority. This does not eliminate the priority inversion problem
because processes still have priorities. Thus far we have assumed a
single-hop network: A message is received at its intended destination
directly from the source,without going through any other network node.



 It is possible to build multihop networks in which messages are routed
through network nodesto get to their destinations. (Using a multistage
network does not necessarily mean using a multihop network—the stages
in a multistage network are generally much smaller than the network
PEs.) Figure shows an example of a multihop communication.


The hardware platform has two separate networks ( perhaps so that
communications between subsets of the PEs do not interfere),but there is
no direct path from M1 to M5.The message is therefore routed through
M3, which reads it from one network and sends it on to the other one.



 Analyzing delays through multihop systems is very difficult. For
example,the time that the message is held at M3 depends on both the
computational load of M3 and the other messages that it must handle.


 If there is more than one network,we must allocate communications to

the networks. We may establish multiple networks so that lower-
priority communications can be handled separately without interfering
with high-priority communications on the primary network.




 Scheduling and allocation of computations and communications are
clearly interrelated. If we change the allocation of computations, we
change not only the scheduling of processes on those PEs but also
potentially the schedules of PEs with which they communicate.


 For example, if we move a computation to a slower PE, its results will be

available later, which may mean rescheduling both the process that uses
the value and the communication that sends the value to its destination.


Write notes on internet enabled systems.
Explain networks for embedded systems and Internet-enabled embedded system.
Explain how Internet can be used by embedded computing systems.
Discuss about Internet enabled systems and architecture of distributed embedded systems.

INTERNET-ENABLED SYSTEMS:

Some very different types of distributed embedded system are rapidly emerging the

Internet- enabled embedded system and Internet appliances. The Internet is
notwell suited to the real- time tasks that are the bread and butter of embedded computing,
but it does provide a rich environment for non–real-time interaction. In this section we will
discuss the Internet and how it can be used by embedded computing systems.



Internet

 The Internet Protocol (IP) [Los97, Sta97A] is the fundamental protocol on the Internet.
It provides connectionless, packet-based communication. Industrial automation has
long been a good application area for Internet-based embedded systems.


 Information appliances that use the Internet are rapidly becoming another use of IP

in embedded computing. Internet protocol is not defined over a particular physical
implementation it is an internetworking standard. Internet packets are assumed to
be carried by some other network, such as an Ethernet. In general, an Internet
packet will travel over several different networks from source to destination.


 The IP allows data to flow seamlessly through these networks from one end user to

another. The relationship between IP and individual networks is illustrated in Figure
4.6. IP works at the network layer.


 When node A wants to send data to node B, the application’s data pass through

several layers of the protocol stack to send to the IP. IP creates packets for routing
to the destination, which are then sent to the data link and physical layers. A node
that transmits data among different types of networks is known as a router.


 The router’s functionality must go up to the IP layer, but since it is not running

applications, it does not need to go to higher levels of the OSI model.


 In general, a packet may go through several routers to get to its destination. At the
destination, the IP layer provides data to the transport layer and ultimately the
receiving application.


 As the data pass through several layers of the protocol stack, the IP packet data are

encapsulated in packet formats appropriate to each layer.


 The basic format of an IP packet is shown in figure. The header and data payload are both of
variable length. The maximum total length of the header and data payload is 65,535 bytes.


 An Internet address is a number (32 bits in early versions of IP, 128 bits in IPv6).

The IP address is typically written in the form xxx.xx.xx.xx. The names by which
users and applications typically refer to Internet nodes, such as foo.baz.com, are
translated into IP addresses via calls to a Domain Name Server, one of the higher-
level services built on top of IP.


 The fact that IP works at the network layer tells us that it does not guarantee that a

packet is delivered to its destination. Furthermore, packets that do arrive may come
out of order. This is referred to as best-effort routing.



 Since routes for data may change quickly with subsequent along very different paths
with different delays, real-time performance of IP can be hard to predict.


 The Transmission Control Protocol (TCP) is one such example. It provides a

connection oriented service that ensures that data arrive in the appropriate order, and it
uses an acknowledgment protocol to ensure that packets arrive. Because many higher -
level services are built on top of TCP, the basic protocol is often referred to as TCP/IP.


 The figure shows the relationships between IP and higher-level Internet services.

Using IP as the foundation, TCP is used to provide File Transport Protocol for
batch file transfers, Hypertext Transport Protocol (HTTP) for Worldwide Web
service, Simple Mail Transfer Protocol for email, and Telnet for virtual terminals.


 A  separate  transport  protocol, User  Datagram  Protocol,  is  used  as  the  basis  for  the  network

management provided by the Simple Network Management Protocol



Internet Applications

 The Internet provides a standard way for an embedded system to act in
concert with other devices and with users, such as:


 One of the earliest Internet-enabled embedded systems was the laser printer.

High-end laser printers often use IP to receive print jobs from host machines.


 Portable Internet devices can display Web pages, read email, and
synchronize calendar information with remote computers.


 A home control system allows the homeowner to remotely monitor and control

home cameras, lights, and so on.


 Although there are higher-level services that provide more time-sensitive
delivery mechanisms for the Internet, the basic incarnation of the Internet is
not well suited on hard real-time operations. However, IP is a very good way
to let the embedded system talk to other systems.


 IP provides a way for both special-purpose and standard programs (such as Web

browsers) to talk to the embedded system. This non–real-time interaction can be
used to monitor the system, set its configuration, and interact with it.

7. Discuss in detail about the distributed embedded architecture. (16) (N/D – 14)
8. Discuss in detail about the distributed embedded architecture with neat sketch. (16) (N/D – 13) A

distributed embedded system can be organized in many different ways, but its basic

units are the PE and the network as illustrated in Figure. A PE may be an instruction set
processor such as a DSP, CPU, or microcontroller, as well as a nonprogrammable unit
such as the ASICs used to implement PE 4. An I/O device such as PE 1 (which we call
here a sensor or actuator, depending on whether it provides input or output) may also be
a PE, so long as it can speak the network protocol to communicate with other PEs.

The network in this case is a bus, but other network topologies are also possible. It is
also possible that the system can use more than one network, such as when relatively
independent functions require relatively little communication among them. We often refer to
the connection between PEs provided by the network as a communication link.

The system of PEs and networks forms the hardware platform on which the application

runs. However, unlike the system bus of Chapter 4, the distributed embedded system does not

have memory on the bus (unless a memory unit is organized as an I/O device that speaks the

network protocol). In particular, PEs do not fetch instructions over the network as they do on the

microprocessor bus. We take advantage of this fact when analyzing network performance—the

speed at which PEs can communicate over the bus would be difficult if not



impossible to predict if we allowed arbitrary instruction and data fetches as we
do on microprocessor buses.

An important advantage of a distributed system with several CPUs is that one part of
the system can be used to help diagnose problems in another part. Whether you are
debugging a prototype or diagnosing a problem in the field, isolating the error to one part of
the system can be difficult when everything is done on a single CPU. If you have several
CPUs in the system, you can use one to generate inputs for another and to watch its output.

Network Abstractions
Networks are complex systems. Ideally, they provide high-level services while hiding

many of the details of data transmission from the other components in the system. The seven
layers of the OSI model, shown in figure, are intended to cover a broad spectrum of networks
and their uses. Some networks may not need the services of one or more layers because the
higher layers may be totally missing or an intermediate layer may not be necessary. However,

any data network should fit into the OSI model.

The OSI model layers.

The OSI layers from lowest to highest level of abstraction are described below.

 Physical: The physical layer defines the basic properties of the
interface between systems, including the physical connections ( plugs
and wires), electrical properties, basic functions of the electrical and
physical components, and the basic procedures for exchanging bits.

 Data link: The primary purpose of this layer is error detection and control
across a single link. However, if the network requires multiple hops over
several data links, the data link layer does not define the mechanism for
data integrity between hops, but only within a single hop.

 Network: This layer defines the basic end-to-end data transmission service.
 The network layer is particularly important in multi-hop networks.



 Transport: The transport layer defines connection-oriented services that
ensure that data are delivered in the proper order and without errors across
multiple links. This layer may also try to optimize network resource utilization.

 Session: A session provides mechanisms for controlling the interaction of end
user services across a network, such as data grouping and check pointing.

 Presentation: This layer defines data exchange formats and provides
transformation utilities to application programs.

 Application: The application layer provides the application interface
betweethe network and end-user programs.

Although it may seem that embedded systems would be too simple to require use of the OSI

model, the model is in fact quite useful. Even relatively simple embedded networks provide

physical, data link, and network services. An increasing number of embedded systems provide

Internet service that requires implementing the full range of functions in the OSI model.

Hardware and Software Architectures:
Distributed embedded systems can be organized in many different ways depending

upon the needs of the application and cost constraints. One good way to understand possible
architectures is to consider the different types of interconnection networks that can be used.

A point-to-point link establishes a connection between exactly two PEs. Point to-
point links are simple to design precisely because they deal with only two components. We do
not have to worry about other PEs interfering with communication on the link. The figure
below shows a simple example of a distributed embedded system built from point-to-point
links. The input signal is sampled by the input device and passed to the first digital filter, F1,
over a point-to-point link. The results of that filter are sent through a second point-to-point link
to filter F2. The results in turn are sent to the output device over a third point-to-point link.A
digital filtering system requires that its outputs arrive at strict intervals, which means that the
filters must process their inputs in a timely fashion. Using point-to-point connections allows
both F1 and F2 to receive a new sample and send a new output at the same time without
worrying about collisions on the communications network.

A signal processing system built from print-to-point links.

It is possible to build a full-duplex, point-to-point connection that can be used
for simultaneous communication in both directions between the two PEs. (A
halfduplex connection allows for only one-way communication.) A bus is a more
general form of network since it allows multiple devices to be connected to it. Like a
microprocessor bus, PEs connected to the bus have addresses. Communications on
the bus generally take the form of packets as illustrated in Figure.



Format of a typical message on a bus.
A packet contains an address for the destination and the data to be delivered.

It frequently includes error detection/correction information such as parity. It also may
include bits that serve to signal to other PEs that the bus is in use, such as the
header shown in the figure. The data to be transmitted from one PE to another may
not fit exactly into the size of the data payload on the packet. It is the responsibility of
the transmitting PE to divide its data into packets; the receiving PE must of course
reassemble the complete data message from the packets.

Distributed system buses must be arbitrated to control simultaneous access, just
as with microprocessor buses. Arbitration scheme types are summarized below.

 Fixed-priority arbitration always gives priority to competing devices in the same
way. If a high-priority and a low-priority device both have long data transmissions
ready at the same time, it is quite possible that the low-priority device will not be
able to transmit anything until the high-priority device has sent all its data packets.


 Fair arbitration schemes make sure that no device is starved. Round-robin arbitration is

the most commonly used of the fair arbitration schemes. The PCI bus requires that the

arbitration scheme used on the bus must be fair, although it does not specify a particular

arbitration scheme. Most implementations of PCI use round-robin arbitration.

A bus has limited available bandwidth. Since all devices connect to the bus,
communications can interfere with each other. Other network topologies can be used to
reduce communication conflicts. At the opposite end of the generality spectrum from the bus
is the crossbar network shown in Figure crossbar not only allows any input to be connected to
any output, it also allows all combinations of input/output connections to be made. Many other
networks have been designed that provide varying amounts of parallel communication at
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varyinghardware costs. The second figure shows an
example multistage network.



EMBEDDED SYSTEMS
UNIT V- CASE STUDY

5.1 DATA COMPRESSOR:

A data compressor that takes in data with a constant number of bits per data element and
puts out a compressed data stream in which the data is encoded in variable-length symbols.

Requirements and Algorithm

We use the Huffman coding technique. We require some understanding of how our
compression code fits into a larger system. Figure 5.1 shows a collaboration diagram for the
data compression process.

The data compressor takes in a sequence of input symbols and then produces a stream of
output symbols. Assume for simplicity that the input symbols are one byte in
length.Theoutput symbols are variable length, so we have to choose a format in which to
deliver the output data.

Delivering each coded symbol separately is tedious, since we would have to supply the length
of each symbol and use external code to pack them into words.

On the other hand, bit-by-bit delivery is almost certainly too slow. Therefore,we will rely on
the data compressor to pack the coded symbols into an array. There is not a one-to-one
relationship between the input and output symbols,and we may have to wait for several input
symbols before a packed output word comes out.

Fig 5.1 UML collaboration diagram for the data compressor

Huffman coding for text compression

Text compression algorithms aim at statistical reductions in the volume of data. One
commonly used compression algorithm is Huffman coding which makes use of
informationon the frequency of characters to assign variable-length codes to characters. If
shorter bit sequences are used to identify more frequent characters, then the length of the total
sequence will be reduced.

As a simple example of Huffman coding, assume that these characters have the following
probabilities Pof appearance in a message:



We build the code from the bottom up. After sorting the characters by probability, we create
a new symbol by adding a bit. We then compute the joint probability of finding either one of
those characters and re-sort the table. The result is a tree that we can read top down to find
the character codes. The coding tree for our example appears below.we obtain the following
coding of the characters:

Requirements:

Name Data compression module
Purpose Code module for Huffman data compression
Inputs Encoding table, uncodedbyte-size input symbols
Outputs Packed compressed output symbols
Functions Huffman coding
Performance Requires fast performance
Manufacturing cost N/A
Power N/A
Physical size and weight N/A
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Specification:

Let’s refine the description of Figure 5.1 to come up with a more complete specification for
our data compression module.That collaboration diagram concentrates on the steady-state
behavior of the system. For a fully functional system, we have to provide the following
additional behavior.

■ We have to be able to provide the compressor with a new symbol table.
■ We should be able to flush the symbol buffer to cause the system to release all pending
symbols that have been partially packed. We may want to do this when we change the
symbol table or in the middle of an encoding session to keep a transmitter busy.

Class Diagram:

A class description for this refined understanding of the requirements on the module is shown
in Figure 5.2. The class’s buffer and current-bit behavior keep track of the state of the
encoding,and the table attribute provides the current symbol table. The class has three
methods as follows:

■ Encode performs the basic encoding function. It takes in a 1-byte input symbol and
returnstwo values: a boolean showing whether it is returning a full buffer and, if the boolean
is true, the full buffer itself.
■ New-symbol-table installs a new symbol table into the object and throws away the
currentcontents of the internal buffer.
■ Flush returns the current state of the buffer, including the number of valid bits in
thebuffer.



Fig 5.2 Definition of the data compressor class

We also need to define classes for the data buffer and the symbol table. These classes are
shown in Figure 5.3.The data-buffer will be used to hold both packed symbols and unpacked
ones (such as in the symbol table).

Fig 5.3 Additional class definition for the data compressor

It defines the buffer itself and the length of the buffer. We have to define a data type because
the longest encoded symbol is longer than an input symbol. The longest Huffman code for an
eight-bit input symbol is 256 bits. (Ending up with a symbol this long happens only when the
symbol probabilities have the proper values.)

The insert function packs a new symbol into the upper bits of the buffer; it also puts the
remaining bits in a new buffer if the current buffer is overflowed. The Symbol-table class
indexesthe encoded version of each symbol.

The class defines an access behavior for the table; it also defines a load behavior to create a
new symbol table. The relationships between these classes are shown in Figure 5.4—a data
compressor object includes one buffer and one symbol table.



Fig 5.4 Relationship between classes in the data compressor

Figure 5.5 shows a state diagram for the encode behavior. It shows that most of the effort
goes into filling the buffers with variable-length symbols.

Fig 5.5 State diagram for encode behavior

Figure 5.6shows a state diagram for insert.

Fig 5.6 State diagram for insert behavior

5.2 ALARM CLOCK
An alarm clock, We use a microprocessor to read the clock’s buttons and update the

time display. Since we now have an understanding of I/O,we work through the steps of the
methodology to go from a concept to a completed and tested system.

The basic functions of an alarm clock are well understood and easy to enumerate. Figure
5.7 illustrates the front panel design for the alarm clock.
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Fig 5.7 Front panel of the Alarm clock
Requirements

Name Alarm clock.
Purpose 24-h digital clock with a single alarm.

Inputs Six push buttons: set time, set alarm, hour,
minute, alarm on, alarm off.

Outputs Four-digit, clock-style output. PM indicator
light. Alarm ready light. Buzzer.
Default mode: The display shows the current
time. PM light is on from noon to midnight.

Hour and minute buttons are used to advance
time and alarm, respectively. Pressing one of
these buttons increments the hour/minute once.

Depress set time button: This button is held
down while hour/minute buttons are pressed to

Functions
set time. New time is automatically shown on
display.

Depress set alarm button: While this button is
held down, display shifts to current alarm
setting; depressing hour/ minute buttons sets
alarm value in a manner similar to setting time.

Alarm on: puts clock in alarm-on state, causes
clock to turn on buzzer when current time
reaches alarm time, turns on alarm ready light.
Alarm off: turns off buzzer, takes clock out of
alarm-on state, turns off alarm ready light

Performance Displays hours and minutes but not seconds.
Consumer product range. Cost will be dominated

Manufacturing cost by the microprocessor system, not the buttons or
display
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Power
Powered by AC through a standard power
supply.

Physical size and weight Small enough to fit on a nightstand with
expected weight for an alarm clock.

Specification:

Figure 5.8 shows the basic classes for the alarm clock.We have three classes that
represent physical elements: Lights* for all the digits and lights, Buttons* for all the buttons,
and Speaker* for the sound output.

Fig 5.8 Class diagram for the Alarm clock

The details of the low-level user interface classes are shown in Figure 5.9

The Buzzer* class allows the buzzer to be turned off; we will use analog electronics to
generate the buzz tone for the speaker.

The Buttons* class provides read-only access to the current state of the buttons.

The Lights* class allows us to drive the lights. However, to save pins on the display, Lights*
provides signals for only one digit, along with a set of signals to indicate which digit is
currently being addressed.



Fig 5.9 Details of Low level Class for the Alarm clock

We generate the display by scanning the digits periodically. That function is performed by
the Display class, which makes the display appear as an unscanned, continuous display to the
rest of the system.

The Mechanism class is described in Figure 5.10. This class keeps track of the current time,
the current alarm time, whether the alarm has been turned on, and whether it is currently
buzzing.
The clock shows the time only to the minute, but it keeps internal time to the second. The
time is kept as discrete digits rather than a single integer to simplify transferring the time to
the display.
The class provides two behaviors, both of which run continuously. First, scan-keyboard is
responsible for looking at the inputs and updating the alarm and other functions as requested
by the user. Second, update-time keeps the current time accurate.
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Fig 5.10 The mechanism class

Figure 5.11 shows the state diagram for update-time. This behavior is straightforward, but it
must do several things. It is activated once per second and must update the seconds clock. If
it has counted 60 s, it must then update the displayed time; when it does so, it must roll over
between digits and keep track of AM-to-PM and PM-to-AM transitions. It sends the updated
time to the display object. It also compares the time with the alarm setting and sets the alarm
buzzing under proper conditions.
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Fig 5.11 State diagram for update time

The state diagram for scan-keyboard is shown in Figure 5.12.

This function is called periodically,frequently enough so that all the user’s button presses are
caught by the system. Because the keyboard will be scanned several times per second, we do
not want to register the same button press several times.

If, for example, we advanced the minutes count on every keyboard scan when the set-time
and minutes buttons were pressed,the time would be advanced much too fast. To make the
buttons respond more reasonably,the function computes button activations—it compares the
current state of the button to the button’s value on the last scan, and it considers the button
activated only when it is on for this scan but was off for the last scan.
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Fig 5.12 State diagram for scan keyboard

Once computing the activation values for all the buttons, it looks at the activation
combinations and takes the appropriate actions. Before exiting, it saves the current button
values for computing activations the next time this behavior is executed.

System Architecture

The software and hardware architectures of a system are always hard to completely
separate, but let’s first consider the software architecture and then its implications on the
hardware. It seems reasonable to have the following two major software components:

■ An interrupt-driven routine can update the current time.The current time will be kept in
avariable in memory.A timer can be used to interrupt periodically and update the time. As
seen in the subsequent discussion of the hardware architecture, the display must be sent the
new value when the minute value changes. This routine can also maintain the PM indicator.

A foreground program can poll the buttons and execute their commands.
Sincebuttons are changed at a relatively slow rate, it makes no sense to add the
hardware required to connect the buttons to interrupts.
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Instead, the foreground program will read the button values and then use simple
conditional tests to implement the commands, including setting the current time,
setting the alarm,and turning off the alarm.
Another routine called by the foreground program will turn the buzzer on and off
based on the alarm time.

Component Design and Testing

The two major software components,the interrupt handler and the foreground code, can be
implemented relatively straightforwardly. Since most of the functionality of the interrupt
handler is in the interruption process itself, that code is best tested on the microprocessor
platform. The foreground code can be more easily tested on the PC or workstation used for
code development.We can create a testbench for this code that generates button depressions
to exercise the state machine.

System Integration and Testing
Because this system has a small number of components, system integration is relatively easy.
The software must be checked to ensure that debugging code has been turned off.

Three types of tests can be performed. First, the clock’s accuracy can be checked against
a reference clock.

Second, the commands can be exercised from the buttons.

Finally, the buzzer’s functionality should be verified.

5.3 AUDIO PLAYERS

Audio players are often called MP3 players after the popular audio data format. The earliest
portable MP3 playerswere based on compact disc mechanisms. Modern MP3 players use
either flash memory or disk drives to store music.

An MP3 player performs three basic functions: audio storage, audio decompression, and user
interface. Although audio compression is computationally intensive, audio decompression is
relatively lightweight. The incoming bit stream has been encoded using a Huffman-style
code, which must be decoded. The audio data itself is applied to a reconstruction filter, along
with a few other parameters. MP3 decoding can, for example, be executed using only 10% of
an ARM7 CPU.

The user interface of an MP3 player is usually kept simple to minimize both the physical size
and power consumption of the device. Many players provide only a simple display and a few
buttons.

The file system of the player generally must be compatible with PCs. CD/MP3 players used
compact discs that had been created on PCs. Today’s players can be plugged into USB ports
and treated as disk drives on the host processor.



Fig 5.13 Architecture of Cirrcus audio processor for CD/MP3 players

The Cirrus CS7410 is an audio controller designed for CD/MP3 players. The audio controller
includes two processors.

The 32-bit RISC processor is used to perform system control and audio decoding.

The 16-bit DSP is used to perform audio effects such as equalization. The memory controller
can be interfaced to several different types of memory: flash memory can be used for data
or code storage; DRAM can be used as a buffer to handle temporary disruptions of the CD
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5.4 SOFTWARE MODEM

In this section we design a modem. Low-cost modems generally use specialized chips, but
some PCs implement the modem functions in software. Before jumping into the modem
design itself, we discuss principles of how to transmit digital data over a telephone line. We
will then go through a specification and discuss architecture, module design, and testing.

Theory of Operation and Requirements:

The modem will use frequency-shift keying (FSK),a technique used in 1200-baud
modems. As shown in Figure 5.14, the FSK scheme transmits sinusoidal tones, with 0 and
1 assigned to different frequencies. Sinusoidal tones are much better suited to transmission
over analog phone lines than are the traditional high and low voltages of digital circuits.

Fig 5.14 Frequency shift keying

The scheme used to translate the audio input into a bit stream is illustrated in Figure 5.15.
The analog input is sampled and the resulting stream is sent to two digital filters (such as an
FIR filter). One filter passes frequencies in the range that represents a 0 and rejects the 1-
band frequencies, and the other filter does the converse.

Fig 5.15 FSK Detection scheme



The outputs of the filters are sent to detectors, which compute the average value of the signal
over the past n samples. When the energy goes above a threshold value, the appropriate bit is
detected.

The receiving process is illustrated in Figure 5.33. The receiver will detect the start of a byte
by looking for a start bit, which is always 0. By measuring the length of the start bit, the
receiver knows where to look for the start of the first bit. However, since the receiver may
have slightly misjudged the start of the bit, it does not immediately try to detect the bit.
Instead, it runs the detection algorithm at the predicted middle of the bit.

Fig 5.16 Receiving bits in the modem

Requirements:

Name Modem
Purpose A fixed baud rate frequency-shift keyed modem.
Inputs Analog sound input, reset button.
Outputs Analog sound output, LED bit display.

Transmitter: Sends data stored in
microprocessor
memory in 8-bit bytes. Sends start bit for each

Functions
byte equal in length to one bit.

Receiver: Automatically detects bytes and stores
results in main memory. Displays currently
received bit on LED.

Performance 1200 baud
Manufacturing cost Dominated by microprocessor and analog I/O.

Power Powered by AC through a standard power
supply.

Physical size and weight Small and light enough to fit on a desktop



Specification:

The basic classes for the modem as shown in the fig.5.17

Fig 5.17 Class diagram for the modem

System Architecture:

The modem consists of one small subsystem (the interrupt handlers for the samples) and
two major subsystems (transmitter and receiver).Two sample interrupt handlers are
required, one for input and another for output, but they are very simple. The transmitter is
simpler, so let’s consider its software architecture first.

The best way to generate waveforms that retain the proper shape over long intervals is
tablelookup. Software oscillators can be used to generate periodic signals, but numerical
problemslimit their accuracy. Figure 5.18 shows an analog waveform with sample points and
the C code for these samples. Table lookup can be combined with interpolation to generate
high-resolution waveforms without excessive memory costs, which is more accurate than
oscillators because no feedback is involved. The required number of samples for the modem
can be found by experimentation with the analog /digital converter and the sampling code.

Fig 5.18 Waveform generation by look up table



Component Design and Testing:

The transmitter and receiver can be tested relatively thoroughly on the host platform since the
timing-critical code only delivers data samples. The transmitter’s output is relatively easy to
verify, particularly if the data are plotted.

A test bench can be constructed to feed the receiver code sinusoidal inputs and test its bit
recognition rate. It is a good idea to test the bit detectors first before testing the complete
receiver operation. One potential problem in host-based testing of the receiver is encountered
when library code is used for the receiver function.

If a DSP library for the target processor is used to implement the filters, then a substitute
must be found or built for the host processor testing. The receiver must then be retested when
moved to the target system to ensure that it still functions properly with the library code.

System Integration and Testing:

There are two ways to test the modem system: by having the modem’s transmitter send bits
to its receiver, and or by connecting two different modems. The ultimate test is to connect
two different modems, particularly modems designed by different people to be sure that
incompatible assumptions or errors were not made.

But single-unit testing, called loop-back testing in the telecommunications industry, is
simpler and a good first step. Loop-back can be performed in two ways. First, a shared
variable can be used to directly pass data from the transmitter to the receiver. Second, an
audio cable can be used to plug the analog output to the analog input. In this case it is also
possible to inject analog noise to test the resiliency of the detection algorithm.

5.5 DIGITAL STILL CAMERAS

The digital still camera bears some resemblance to the film camera but is fundamentally
different in many respects. The digital still camera not only captures images, it also performs
a substantial amount of image processing that formerly was done by photofinishers.

Digital image processing allows us to fundamentally rethink the camera. A simple example is
digital zoom, which is used to extend or replace optical zoom. Many cell phones include
digital cameras, creating a hybrid imaging/communication device.

Digital still cameras must perform many functions:


It must determine the proper exposure for the photo.




It must display a preview of the picture for framing.



It must capture the image from the image sensor.




It must transform the image into usable form.





It must convert the image into a usable format, such as JPEG, and store the image in a
file system.



Requirements:

Name Digital still camera
Purpose Digital still camera with JPEG compression
Inputs Image sensor, shutter button
Outputs Display, flash memory

Determine exposure and focus. capture image,
Functions Perform Bayer pattern interpolation, JPEG

compression, store in flash file system.
Performance Take one picture in 2 sec.
Manufacturing cost Approximately $75
Power Two AA batteries
Physical size and weight Less than 4 ounces

System Architecture:

Typical hardware architecture for a digital still camera is shown in Figure 5.19. Most
cameras use two processors. The controller sequences operations on the camera and performs
operations like file system management. The DSP concentrates on image processing. The
DSP may be either a programmable processor or a set of hardwired accelerators. Accelerators
are often used to minimize power consumption.

Fig 5.19 Architecture of digital camera



The picture taking process can be divided into three main phases: composition, capture, and
storage. We can better understand the variety of functions that must be performed by the
camera through a sequence diagram. Figure 7.24 shows a sequence diagram for taking a
picture using a point-and-shoot digital still camera. As we walk through this sequence
diagram, we can introduce some concepts in digital photography.

Fig 5.20 Sequence diagram for taking a picture with a digital still camera



When the camera is turned on, it must start to display the image on the camera’s screen. That
imagery comes from the camera’s image sensor. To provide a reasonable image, it must
adjust the image exposure. The camera mechanism provides two basic exposure controls:
shutter speed and aperture. The camera also displays what is seen through the lens on the
camera’s display. In general, the display has fewer pixels than does the image sensor; the
image processor must generate a smaller version of the image.

When the user depresses the shutter button, a number of steps occur. Before the image is
captured, the final exposure must be determined. Exposure is computed by analyzing the
image characteristics; histograms of the distribution of pixel brightness are often used to
determine focus. The camera must also determine white balance.

Different sources of light, such as sunlight and incandescent lamps, provide light of different
colors. The eye naturally compensates for the color of incident light; the camera must
perform comparable processing to avoid giving the picture a color cast. White balance
algorithms generally use color histograms to determine the range of colors and re-weigh
colors to reduce casts.

The image captured from the image sensor is not directly usable, even after exposure and
white balance. Virtually all still cameras use a single image sensor to capture a color image.
Color is captured using microscopic color filters, each the size of a pixel, over the image
sensor. Since each pixel can capture only one color, the color filters must be arranged in a
pattern across the image sensor.

A commonly used pattern is the Bayer pattern [Bay75] shown in Figure 5.21 This pattern
uses two greens for every red and blue pixel since the human eye is most sensitive to green.
The camera must interpolate colors so that every pixel has red, green, and blue values.

Fig 5.21 The Bayer pattern for color image pixel



After this image processing is complete, the image must be compressed and saved.
Images are often compressed in JPEG format, but other formats, such as GIF, may also be
used. The EXIF standard (http://www.exif.org) defines a file format for data interchange.
Standard compressed image formats such as JPEG are components of an EXIF image file;
the EXIF file may also contain a thumbnail image for preview, metadata about the picture
such as when it was taken, etc.

A buffer memory is used to capture the image from the sensor and store it until it can
beprocessed by the DSP . The display is often connected to the DSP rather than the
system bus.
Because the display is of lower resolution than the image sensor, the images from the
image
sensor must be reduced in resolution. Many still cameras use displays originally designed
for camcorders, so the DSP may also need to clip the image to accommodate the differing
aspect ratios of the display and image sensor.

Telephone Answering Machine.
In this section we design a digital telephone answering machine. The system will store
messages in digital form rather than on an analog tape. To make life more interesting,
we use a simple algorithm to compress the voice data so that we can make more
efficient use of the limited amount of available memory.
Theory of Operation and Requirements:
The compression scheme we will use is known as adaptive differential pulse code
modulation (ADPCM). Despite the long name, the technique is relatively simple but
can yield 2 _ compression ratios on voice data

this case, the value range is {_3,_2,_1, 1, 2, 3}. Each sample is used to predict the
value of the signal at the current instant from the previous value. At each
point in time, the sample is chosen such that the error between the predicted value andthe
actual signal value is minimized. AnADPCM compression system, including



anencoderand decoder, is shown in Figure. The encoder is more complex, but both
theencoder and decoder use an integrator to reconstruct the waveform from the
samples.The integrator simply computes a running sum of the history of the samples;
becausethe samples are differential, integration reconstructs the original signal. The
encodercompares the incoming waveform to the predicted waveform (the waveform that
will begenerated in the decoder). The quantizer encodes this difference as the best
predictorof the next waveform value. The inverse quantizer allows us to map bit-level
symbolsonto real numerical values; for example, the eight possible codes in a 3-bit code
can bemapped onto floating-point numbers. The decoder simply uses an inverse quantizer
andNintegrator to turn the differential samples into the waveform.The answering machine
will ultimately be connected to a telephone subscriber line(although for testing purposes
we will construct a simulated line). At the other end of thesubscriber line is the central
office. All information is carried on the phone line inanalog form over a pair of wires. In
addition to analog/digital and digital/analogconverters to send and receive voice data, we
need to sense two other characteristicsof the line.
■Ringing: The central office sends a ringing signal to the telephone when a call is
;waiting. The ringing signal is in fact a 90V RMS sinusoid, but we can use
analogcircuitry to produce 0 for no ringing and 1 for ringing.
■Off-hook: The telephone industry term for answering a call is going offhook;
thetechnical term for hanging up is going on-hook. (This creates some initial
confusionsince off-hook means the telephone is active and on-hook means it is not in use,
but theterminology starts to make senseafter a few uses.) Our interface will send a digital
signal to take the phone line off-hook,which will cause analog circuitry to make the
necessary connection so that voice data
can be sent and received during the call.
We can now write the requirements for the answering machine. We will assume that
theinterface is not to the actual phone line but to some circuitry that provides
voicesamples, off-hook commands, and so on. Such circuitry will let us test our system
with a telephone line simulator and then build the analog circuitry necessary to connect to
areal phone line.We will use the term outgoing message
(OGM) to refer to the message recorded by the owner of the machine and played at
thestart of every phone call.
We have made a few arbitrary decisions about the user interface in these
requirements.The amount of voice data that can be saved by the machine should in fact
bedetermined by two factors: the price per unit of DRAM at the time at which the
devicegoes into manufacturing (since the cost will almost certainly drop from the start
ofdesign to manufacture) and the projected retail price at which the machine must
sell.The protocol when the memory is full is also arbitrary—it would make at least as
muchsense to throw out old messages and replace them with new ones, and ideally the
usercould select which protocol to use. Extra features such as an indicator showing
thenumber of messages or a save messages feature would also be nice to have in a
realconsumer product.



Specification:

Figure1 shows the class diagram for the answering machine. In addition to the classes that
perform the major functions, we also use classes to describe the incoming and OGMs. As
seen below, these classes are related. The definitions of the physical interface classes are
shown in Figure2. The buttons and lights simply provide attributes for their input and
output values. The phone line, microphone, and speaker are given behaviors that let us
sample their current values. The message classes are defined in Figure 3. Since incoming
and OGM types share many characteristics, we derive both from a more fundamental
message type. The major operational classes—Controls, Record, and Playback—are
defined in Figure4. The Controls class provides an operate) behavior that oversees the
user-level operations. The Record and Playback classes provide behaviors thathandle
writing and reading sample sequences. The state diagram for the Controls activate
behavior is shown in Figure5. Most of the user activities are relatively straightforward.
The most complex is answering an incoming call. As with the software modem of Section
5.11,we want to be sure that a single depression of a button causes the required action to
be taken exactly once; this requires edge detection on the button signal. State diagrams
for record-msg and playback-msg are shown in Figure6. We have parameterized the
specification for record-msg so that it can be used either from the phone line or from the
microphone. This requires parameterizing the source itself and the terminationcondition.





System Architecture:
The machine consists of two major subsystems from the user’s point of view: the user interface
and the telephone interface. The user and telephone interfaces both appear internally as I/O
devices on the CPU bus with the main memory serving as the storage for the messages.
The software splits into the following seven major pieces:
■ The front panel module handles the buttons andlights.
■ The speaker module handles sending data to the user’sspeaker.
■ The telephone line module handles off-hook detection and on-hookcommands.
■ The telephone input and output modules handle receiving samples from and sending
samples to the telephoneline.
■ The compression module compresses data and stores it inmemory.
■ The decompression module uncompresses data and sends it to the speakermodule.



We can determine the execution model for these modules based on the rates at which they must
work and the ways in which they communicate.
■ The front panel and telephone line modules must regularly test the buttons and phone
line, but this can be done at a fairly low rate. As seen below, they can therefore run as polled
processes in the software’s mainloop.

while (TRUE) { check_phone_line(); run_front_panel();
}

■ The speaker and phone input and output modules must run at higher, regular rates and
are natural candidates for interrupt processing. These modules don’t run all the time and so can
be disabled by the front panel and telephone line modules when they are not needed.
■ The compression and decompression modules run at the same rate as the speaker and
telephone I/O modules, but they are not directly connected to devices.We will therefore call
them as subroutines to the interruptmodules.

One subtlety is that we must construct a very simple file system for messages, since we have a
variable number of messages of variable lengths. Since messages vary in length, we must
record the length of each one. In this simple specification, because we always play back the
messages in the order in which they were recorded, we don’t have to keep a full-fledged
directory. If we allowed users to selectively delete messages and save others, we would have to
build some sort of directory structure for themessages.
The hardware architecture is straightforward and illustrated in Figure. The speaker and
telephone I/O devices appear as standard A/D and D/A converters. The telephone line appears
as a one-bit input device (ring detect) and a one bit output device (off-hook/on- hook). The
compressed data are kept in main memory.
Component Design and Testing:
Performance analysis is important in this case because we want to ensure that we don’t spend
so much time compressing that we miss voice samples. In a real consumer product, we would
carefully design the code so that we could use the slowest, cheapest



possible CPU that would still perform the required processing in the available time
between samples. In this case, we will choose the microprocessor in advance for
simplicity and simply ensure that all the deadlines are met. An important class of
problems that should be adequately tested is memory overflow. The system can run out
of memory at any time, not just between messages. The modules should be tested to
ensure that they do reasonable things when all the available memory is used up.

System Integration and Testing:
We can test partial integrations of the software on our host platform. Final testing with
real voice data must wait until the application is moved to the target platform. Testing
your system by connecting it directly to the phone line is not a very good idea. In the
United States, the Federal Communications Commission regulates equipment connected
to phone lines. Beyond legal problems,a bad circuit can damage the phone line and incur
the wrath of your service provider.The required analog circuitry also requires some
amount of tuning, and you need a second telephone line to generate phone calls for tests.
You can build a telephone line simulator to test the hardware independently of a real
telephone line. The phone line simulator consists of A/D and D/A converters plus a
speaker and microphone for voice data, an LED for off-hook/on-hook indication, and a
button for ring generation. The telephone
line interface can easily be adapted to connect to these components, and for purposes of
testing the answering machine the simulator behaves identically to the real phone line.
from a more fundamental message type. The major operational classes—Controls,
Record, and Playback—are defined in Figure4. The Controls class provides an operate



Automotive engine control:
The simplest automotive engine controllers, such as the ignition controller for a basic
motorcycle engine, perform only one task—timing the firing of the spark plug, which
takes the place of a mechanical distributor. The spark plug must be fired at a certain
point in the combustion cycle, but to obtain better performance, the phase relationship
between the piston’s movement and the spark should change as a function of engine
speed. Using a microcontroller that senses the engine crankshaft position allows the
spark timing to vary with engine speed.
Firing the spark plug is a periodic process (but note that the period depends on the
engine’s operating speed).

The control algorithm for a modern automobile engine is much more complex, making
the need for microprocessors that much greater. Automobile engines must meet strict
requirements (mandated by law in the United States) on both emissions and fuel
economy. On the other hand, the engines must still satisfy customers not only in terms of
performance but also in terms of ease of starting in extreme cold and heat, low
maintenance, and so on. Automobile engine controllers use additional sensors, including
the gas pedal position and an oxygen sensor used to control emissions. They also use a
multimode control scheme. For example, one mode may be used for engine warm-up,
another for cruise, and yet another for climbing steep hills, and so forth. The larger
number of sensors and modes increases the number of discrete tasks that must be
performed. The highest-rate task is still firing the spark plugs. The throttle setting must
be sampled and acted upon regularly, although not as
frequently as the crankshaft setting and the spark plugs. The oxygen sensor responds
much more slowly than the throttle, so adjustments to the fuel/air mixture suggested by
the oxygen sensor can be computed at a much lower rate. The engine controller takes a
variety of inputs that determine the state of the engine. It then controls two basic engine
parameters: the spark plug firings and the fuel/air mixture. The engine control is
computed periodically, but the periods of the different inputs and outputs range over
several orders of magnitude of time. An early paper on automotive electronics by Marley
[Mar78] described the rates at which engine inputs and outputs must be handled.



Timing Requirements on Processes:
Processes can have several different types of timing requirements imposed on
Them by the application. The timing requirements on a set of processes strongly
influence the type of scheduling that is appropriate. A scheduling policy must define the
timing requirements that it uses to determine whether a schedule is valid. Before studying
scheduling proper, we outline the types of process timing requirements that are useful in
embedded system design. Figure illustrates different ways in which we can define two
important requirements on processes: release time and deadline. The release time is the
time at which the process becomes ready to execute; this is not necessarily the time at
which it actually takes control of the CPU and starts to run. An a periodic process is by
definition initiated by an event, such as external data arriving or data computed by
another process. The release time is generally measured from that event, although the
system may want to make the process ready at some interval after the event itself. For  a
periodically executed process, there are two common possibilities. In simpler systems,
the process may become ready at the beginning of the period. More sophisticated
systems, such as those with data dependencies between processes, may set the release
time at the arrival time of certain data, at a time after the start of the period.
A deadline specifies when a computation must be finished. The deadline for an a periodic
process is generally measured from the release time, since that is the only reasonable
time reference. The deadline for a periodic process may in general occur at some time
other than the end of the period.

Rate requirements are also fairly common. A rate requirement specifies how quickly
processes must be initiated. The period of a process is the time between successive
executions. For example, the period of a digital filter is defined by the time interval
between successive input samples. The process’s rate is the inverse of its period. In a
multirate system, each process executes at its own distinct rate. The most common case
for periodic processes is for the initiation interval to be equal to
the period. However, pipelined execution of processes allows the initiation interval to be
less than the period. Figure illustrates process execution in a system with four CPUs. The
various execution instances of program P1 have been subscripted to distinguish their
initiation times. In this case, the initiation interval is equal to onefourth of the period. It is



possible for a process to have an initiation rate less than the period even in single-CPU
systems. If the process execution time is significantly
less than the period, it may be possible to initiate multiple copies of a program at slightly
offset times

1. Design a video accelerator. (16) [CO5-H3]

Digital video is still a computationally intensive task, so it is well suited to acceleration.
Motion estimation engines are used in real-time search engines; we may want to have one
attached to our personal computer to experiment with video processing techniques

Algorithm and Requirements:
We could build an accelerator for any number of digital video algorithms. We will
choose block motion estimation as our example here because it is very computation and
memory intensive but it is relatively easy to explain. Block motion estimation is used in
digital video compression algorithms so that one frame in the video can be described in
terms of the differences between it and another frame. Because objects in the frame often



move relatively little, describing one frame in terms of another greatly reduces the
number of bits required to describe the video.
The concept of block motion estimation is illustrated in Figure. The goal is to perform a
two-dimensional correlation to find the best match between regions in the two frames.
We divide the current frame into macroblocks(typically,16_16). For every macro block
in the frame, we want to find the region in the previous frame that most closely matches
the macro block. Searching over the entire previous frame would be too expensive, so we
usually limit the search to a given area, centered
around the macro block and larger than the macro block. We try the macro block at
various offsets in the search area. We measure similarity using the following sum-of-
differences measure:

where M(i, j) is the intensity of the macroblock at pixel i, j, S(i, j) is the intensity of the
search region,n is the size of the macroblock in one dimension, andox, oy is the offset
between the macroblock and search region. Intensity is measured as an 8-bit luminance
that represents a monochrome pixel—color information is not used in motion
estimation.Wechoose the macroblock position relative to the search area that gives us the
smallest value for this metric. The offset at this chosen position describes a vector from
the search area center to the macroblock’s center that is called the motion vector. For
simplicity, we will build an engine for a full search, which compares the macroblock and
search area at every possible point. Because this is an expensive operation, a number of
methods have been proposed for conducting a sparser search of the search area. These
methods introduce extra control that would cloud our discussion, but these algorithms
may provide good examples. A good way to describe the algorithm is in C. Some basic
parameters of the algorithm are illustrated in Figure 7.27. Appearing below is the C code
for a single search,which assumes that the search region does not extend past the
boundary of the frame.

bestx = 0; besty = 0; /* initialize best location-none yet */ bestsad = MAXSAD; /* best
sum-of-difference thus far */ for (ox = –SEARCHSIZE; ox < SEARCHSIZE; ox++) {
/* x search ordinate */
for (oy = –SEARCHSIZE; oy< SEARCHSIZE; oy++) {
/* y search ordinate */ int result = 0;



for (i = 0; i < MBSIZE; i++) { for (j = 0; j < MBSIZE; j++) {
result = result + iabs(mb[i][j] – search[i – ox
+ XCENTER][j – oy + YCENTER]);
}
}
if (result <= bestsad) { /* found better match */ bestsad = result;
bestx = ox; besty = oy;
}
}
The arithmetic on each pixel is simple, but we have to process a lot of pixels. If MBSIZE
is 16 and SEARCHSIZE is 8, and remembering that the search distance in each
dimension is 8 _ 1 _ 8, then we must perform

NOPS=(16X16)X(17X17)=73984
different operations to find the motion vector for a single macroblock, which requires
looking at twice as many pixels, one from the search area and one from the macroblock.
(We can now see the interest in algorithms that do not require a full search.) To process
video,we will have to perform this computation on every macroblock of every frame.
Adjacent blocks have overlapping search areas, so we will try to avoid reloading pixels
we already have. One relatively low-resolution standard video format, common
intermediate format, has a frame size of 352_288, which gives an array of 22_18
macroblocks. If we want to encode video, we would have to perform motion estimation
on every macroblock of most frames (some frames are sent without using motion
compensation).
We will build the system using an FPGA connected to the PCI bus of a personal
computer. We clearly need a high-bandwidth connection such as the PCI between the
accelerator and the CPU. We can use the accelerator to experiment with video
processing, among other things. Appearing below are the requirements for the system.



Specification:

The specification for the system is relatively straightforward because the algorithm is
simple. Figure defines some classes that describe basic data types in the system: the
motion vector, the macroblock, and the search area. These definitions are straightforward.
Because the behavior is simple, we need to define only two classes to describe it: the
accelerator itself and the PC. These classes are shown in Figure . The PC makes its
memory accessible to the accelerator. The accelerator provides a behavior compute-mv( )
that performs the block motion estimation algorithm. Figure shows a sequence diagram
that describes the operation of compute-mv( ). After initiating the behavior, the
accelerator reads the search area and macroblock from the PC; after computing the
motion vector, it returns it to the PC.

Architecture:
The accelerator will be implemented in an FPGA on a card connected to a PC’s PCI slot.
Such accelerators can be purchased or they can be designed from scratch. If you design
such a card from scratch, you have to decide early on whether the card will be used only
for this video accelerator or if it should be made general enough to support other
applications as well. The architecture for the accelerator requires some thought because
of the large amount of data required by the algorithm. The macroblock has 16_16 _ 256;
the search area has (8_8_1_8_8)2 _ 1,089 pixels. The FPGA probably will not have
enough memory to hold 1,089 8-bit values.We have to use a memory external to the
FPGA but on the accelerator board to hold the pixels.

There are many possible architectures for the motion estimator. One is shown in Figure
. The machine has two memories, one for the macroblock and another for the search
memories. It has 16 PEs that perform the difference calculation on a pair of pixels; the
comparator sums them up and selects the best value to find the motion vector. This
architecture can be used to implement algorithms other than a full search by changing the
address generation and control. Depending on the number of different motion estimation
algorithms that you want to execute on the machine, the networks  connecting the
memories to the PEs may also be simplified. Figure shows how we can schedule the
transfer of pixels from the memories to the PEs in order to efficiently compute a full



search on this architecture. The schedule fetches one pixel from the macroblock memory
and (in steady state) two pixels from the search area memory per clock cycle. The pixels
are distributed to the PEs in a regular pattern as shown by theschedule.This schedule
computes 16 correlations between the macroblock and search area simultaneously. The
computations for each correlation are distributed among the PEs; the comparator is
responsible for collecting the results, finding the best match value, and remembering the
corresponding motion vector.

Based on our understanding of efficient architectures for accelerating motion estimation,
we can derive a more detailed definition of the architecture in UML, which is shown in
Figure 7.33. The system includes the two memories for pixels, one a single- port memory
and the other dual ported. A bus interface module is responsible for communicating with
the PCI bus and the rest of the system. The estimation engine reads pixels from the M
and S memories, and it takes commands from the bus interface and returns the motion
vector to the bus interface.



Component Design:

If we want to use a standard FPGA accelerator board to implement the accelerator, we
must first make sure that it provides the proper memory required for M and S. Once
we have verified that the accelerator board has the required structure,we can
concentrate on designing the FPGA logic. Designing an FPGA is, for the most part, a
straightforward exercise in logic design. Because the logic for the accelerator is very
regular,we can improve the FPGA’s clock rate by properly placing the logic in the
FPGA to reduce wire lengths. If we are designing our own accelerator board, we have
to design both the video accelerator design proper and the interface to the PCI bus.We
can create and exercise the video accelerator architecture in a hardware description
language like VHDL or Verilog and simulate its operation. Designing the PCI
interface requires somewhat different techniques since we may not have a simulation
model for a PCI



bus.We may want to verify the operation of the basic PCI interface before we finish
implementing the video accelerator logic The host PC will probably deal with the
accelerator as an I/O device. The accelerator board will have its own driver that is
responsible for talking to the board. Since most of the data transfers are performed
directly by the board using DMA,the driver can be relatively simple.

System Testing:

Testing video algorithms requires a large amount of data. Luckily,the data represents
images and video, which are plentiful. Because we are designing only a motion
estimation accelerator and not a complete video compressor, it is probably easiest to
use images, not video, for test data.You can use standard video tools to extract a few
frames from a digitized video and store them in JPEG format. Open source for JPEG
encoders and decoders is available. These programs can be modified to read
JPEG images and put out pixels in the format required by your accelerator. With a
little more cleverness, the resulting motion vector can be written back onto the image
for a visual confirmation of the result. If you want to be adventurous and try motion
estimation on video,open source MPEG encoders and decoders are also available.
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