
DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

INTERNET OF THINGS (J32ON)

[R20]

B.TECH ECE

 (III YEAR – II SEM)

 (2022-23)

J. B. INSTITUTE OF ENGINEERING AND TECHNOLOGY
(UGC AUTONOMOUS)

Accredited by NBA & NAAC,

Approved by AICTE & Permanently affiliated to JNTUH
Bhaskar Nagar, Yenkapally(V), Moinabad(M), Ranaga Reddy(D),Hyderabad – 500 075,

Telanagana, India.

375

AY 2020-21

Onwards

J. B. Institute of Engineering and Technology

(UGC Autonomous)

B. Tech

III Year – II Sem

Course

Code:

J32ON

INTERNET OF THINGS

(Open Elective – II)

L T P/D

Credits: 3 3 0 0

Pre-Requisites:Nill

Course Objectives:

Students will learn to

1. Understand the basic building blocks of IoT.

2. Analyze the difference between M2M and IoT along with IoT system Management

3. Extend the knowledge in Logical Design of IoT System using Python.

4. Acquire knowledge about IoT Physical Devices and End points.

5. Identify the IoT Physical Servers and cloud offerings.

Module 1:

Unit 1 Introduction to Internet of Things:

Definition and Characteristics of IoT, Physical Design of IoT –IoT Protocols, IoT

communication models, IoT Communication APIs

Unit 2 IoT enabled Technologies:

Wireless Sensor Networks, Cloud Computing, Big data analytics, Communication protocols,

Embedded Systems, IoT Levels and Templates, Domain Specific IoTs – Home, City,

Environment, Energy, Retail, Logistics, Agriculture, Industry, health and Lifestyle.

Module 2:

Unit 1 IoT and M2M:

Software defined networks, network function virtualization, difference between SDN and NFV

for IoT

Unit 2 Basics of IoT System:

Basics of IoT System Management with NETCOZF, YANG- NETCONF, YANG, SNMP

NETOPEER.

Module 3:

Unit 1 Introduction to Python:

Language features of Python, Data types, data structures, Control of flow, functions, modules,

packaging, file handling, data/time operations, classes, Exception handling.

376

Unit 2 Python packages:

JSON, XML, HTTPLib, URLLib, SMTPLib.

Module 4:

Unit 1 IoT Physical Devices and Endpoints:

Introduction to Raspberry PI-Interfaces (serial, SPI, I2C) Programming.

Unit 2 Python program with Raspberry PI-1:

Python program with Raspberry PI with focus of interfacing external gadgets, controlling

output, reading input from pins.

Module 5:

Unit 1 Python program with Raspberry PI-2:

Python program with Raspberry PI with focus of interfacing external gadgets.

Unit 2:Controllingoutput, reading input from pins.

Text Books:

1. Internet of Things - A Hands-on Approach, ArshdeepBahga and Vijay Madisetti,

Universities Press, 2015, ISBN: 9788173719547

2. Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD),

2014, ISBN: 9789350239759

References:

1. Internet of Things by Jeeva Bose 1st edition, Khanna publishing.

Course Outcomes:

Students will be able to

1. Understand the basic building blocks of IoT.

2. Analyze the difference between M2M and IoT along with IoT system Management

3. Extend the knowledge in Logical Design of IoT System using Python.

4. Acquire knowledge about IoT Physical Devices and End points.

5. Identify the IoT Physical Servers and cloud offerings

UNIT-I

INTRODUCTION OF IOT

IoT comprises things that have unique identities and are connected to internet. By 2020 there will

be a total of 50 billion devices /things connected to internet. IoT is not limited to just connecting

things to the internet but also allow things to communicate and exchange data.

Definition:

A dynamic global n/w infrastructure with self configuring capabilities based on standard and

interoperable communication protocols where physical and virtual ―things‖ have identities,

physical attributes and virtual personalities and use intelligent interfaces, and are seamlessly

integrated into information n/w, often communicate data associated with users and their

environments.

Characteristics:

1) Dynamic & Self Adapting: IoT devices and systems may have the capability to

dynamically adapt with the changing contexts and take actions based on their operating

conditions, user‗s context or sensed environment.

Eg: the surveillance system is adapting itself based on context and changing conditions.

2) Self Configuring: allowing a large number of devices to work together to provide certain

functionality.

3) Inter Operable Communication Protocols: support a number of interoperable

communication protocols and can communicate with other devices and also with

infrastructure.

4) Unique Identity: Each IoT device has a unique identity and a unique identifier (IP

address).

5) Integrated into Information Network: that allow them to communicate and exchange

data with other devices and systems.

Applications of IoT:

1) Home

2) Cities

3) Environment

4) Energy

5) Retail

6) Logistics

7) Agriculture

8) Industry

9) Health & Life Style

Physical Design of IoT

1) Things in IoT:

The things in IoT refer to IoT devices which have unique identities and perform remote sensing,

actuating and monitoring capabilities. IoT devices can exchange data with other connected

devices applications. It collects data from other devices and process data either locally or

remotely.

An IoT device may consist of several interfaces for communication to other devices both wired

and wireless. These includes

(i) I/O interfaces for sensors,

(ii) Interfaces for internet connectivity

(iii) Memory and storage interfaces

(iv) Audio/video interfaces.

2. IoT Protocols:

i) Link Layer: Protocols determine how data is physically sent over the network‗s

physical layer or medium. Local network connect to which host is attached. Hosts on the
same link exchange data packets over the link layer using link layer protocols. Link layer
determines how packets are coded and signaled by the h/w device over the medium to

which the host is attached.

Protocols:

 802.3-Ethernet: IEEE802.3 is collection of wired Ethernet standards for the link layer.

Eg: 802.3 uses co-axial cable; 802.3i uses copper twisted pair connection; 802.3j uses
fiber optic connection; 802.3ae uses Ethernet over fiber.

 802.11-WiFi: IEEE802.11 is a collection of wireless LAN(WLAN) communication

standards including extensive description of link layer. Eg: 802.11a operates in 5GHz

band, 802.11b and 802.11g operates in 2.4GHz band, 802.11n operates in 2.4/5GHz

band, 802.11ac operates in 5GHz band, 802.11ad operates in 60Ghzband.

 802.16 - WiMax: IEEE802.16 is a collection of wireless broadband standards including
exclusive description of link layer. WiMax provide data rates from 1.5 Mb/s to 1Gb/s.

 802.15.4-LR-WPAN: IEEE802.15.4 is a collection of standards for low rate wireless
personal area network(LR-WPAN). Basis for high level communication protocols such as

ZigBee. Provides data rate from 40kb/s to250kb/s.

 2G/3G/4G-Mobile Communication: Data rates from 9.6kb/s(2G) to up to100Mb/s(4G).

(ii) Network/Internet Layer: Responsible for sending IP datagram’s from source n/w to
destination n/w. performs the host addressing and packet routing. Datagram’s contains source

and destination address.

Protocols:

a. IPv4: Internet Protocol version4 is used to identify the devices on a n/w using a

hierarchical addressing scheme. 32 bit address. Allows total of 2**32addresses.

b. IPv6: Internet Protocol version6 uses 128 bit address scheme and allows 2**128

addresses.

c. 6LOWPAN:(IPv6overLowpowerWirelessPersonalAreaNetwork)operates in

2.4 GHz frequency range and data transfer 250 kb/s.

(iii) Transport Layer: Provides end-to-end message transfer capability independent of the

underlying n/w. Set up on connection with ACK as in TCP and without ACK as in UDP.

Provides functions such as error control, segmentation, flow control and congestion control.

Protocols:

 TCP: Transmission Control Protocol used by web browsers(along with HTTP and

HTTPS), email(along with SMTP, FTP). Connection oriented and stateless protocol. IP

Protocol deals with sending packets, TCP ensures reliable transmission of protocols in

order. Avoids n/w congestion and congestion collapse.

 UDP: User Datagram Protocol is connectionless protocol. Useful in time sensitive

applications, very small data units to exchange. Transaction oriented and stateless
protocol. Does not provide guaranteed delivery.

(iv) Application Layer: Defines how the applications interface with lower layer protocols to
send data over the n/w. Enables process-to-process communication using ports.

Protocols:

 HTTP: Hyper Text Transfer Protocol that forms foundation of WWW. Follow request-
response model Stateless protocol.

 CoAP: Constrained Application Protocol for machine-to-machine (M2M) applications

with constrained devices, constrained environment and constrained n/w. Uses client-
server architecture.

 WebSocket: allows full duplex communication over a single socket connection.

 MQTT: Message Queue Telemetry Transport is light weight messaging protocol based

on publish-subscribe model. Uses client server architecture. Well suited for constrained
environment.

 XMPP: Extensible Message and Presence Protocol for real time communication and

streaming XML data between network entities. Support client-server and server-server

communication.

 DDS: Data Distribution Service is data centric middleware standards for device-to-device
or machine-to-machine communication. Uses publish-subscribe model.

 AMQP: Advanced Message Queuing Protocol is open application layer protocol for
business messaging. Supports both point-to-point and publish-subscribe model.

http://www/

LOGICAL DESIGN of IoT

Refers to an abstract represent of entities and processes without going into the low level

specifies of implementation.

1) IoT Functional Blocks

2) IoT Communication Models 3)

 IoT Communication APIs

IoT Functional Blocks: Provide the system the capabilities for identification, sensing, actuation,

communication and management.

 Device: An IoT system comprises of devices that provide sensing, actuation, and
monitoring and control functions.

 Communication: handles the communication for IoT system.

 Services: for device monitoring, device control services, data publishing services and
services for device discovery.

 Management: Provides various functions to govern the IoT system.

 Security: Secures IoT system and priority functions such as authentication

,authorization, message and context integrity and data security.

 Application: IoT application provides an interface that the users can use to control

and monitor various aspects of IoT system.

1) IoT Communication Models:

1) Request-Response

2) Publish-Subscribe

3) Push-Pull

4) Exclusive Pair

1) Request-Response Model

2) Publish-Subscibe Model:

Involves publishers, brokers and consumers. Publishers are source of data. Publishers send data

to the topics which are managed by the broker. Publishers are not aware of the consumers.

Consumers subscribe to the topics which are managed by the broker. When the broker receives

data for a topic from the publisher, it sends the data to all the subscribed consumers.

3) Push-Pull Model: in which data producers push data to queues and consumers pull data from

the queues. Producers do not need to aware of the consumers. Queues help in decoupling the
message between the producers and consumers.

4) Exclusive Pair: is bi-directional, fully duplex communication model that uses a persistent
connection between the client and server. Once connection is set up it remains open until the
client send a request to close the connection. Is a stateful communication model and server is
aware of all the open connections.

3) IoT Communication APIs:

a) REST based communication APIs(Request-Response Based Model)

b) WebSocket based Communication APIs(Exclusive PairBased Model)

a) REST based communication APIs: Representational State Transfer(REST) is a set of

architectural principles by which we can design web services and web APIs that focus on a

system‗s resources and have resource states are addressed and transferred.

The REST architectural constraints: Fig. shows communication between client server with

REST APIs.

Client-Server: The principle behind client-server constraint is the separation of concerns.

Separation allows client and server to be independently developed and updated.

Stateless: Each request from client to server must contain all the info. Necessary to understand

the request, and cannot take advantage of any stored context on the server.

Cache-able: Cache constraint requires that the data within a response to a request be implicitly

or explicitly labeled as cache-able or non-cacheable. If a response is cache-able, then a client

cache is given the right to reuse that response data for later, equivalent requests.

Layered System: constraints the behavior of components such that each component cannot see

beyond the immediate layer with which they are interacting.

User Interface: constraint requires that the method of communication between a client and a

server must be uniform.

Code on Demand: Servers can provide executable code or scripts for clients to execute in their

context. This constraint is the only one that is optional.

Request-Response model used by REST:

RESTful web service is a collection of resources which are represented by URIs. RESTful web

API has a base URI(e.g: http://example.com/api/tasks/). The clients and requests to these URIs

using the methods defined by the HTTP protocol(e.g: GET, PUT, POST or DELETE). A

RESTful web service can support various internet media types.

b) WebSocket Based Communication APIs: WebSocket APIs allow bi-directional, full

duplex communication between clients and servers. WebSocket APIs follow the

exclusive pair communication model.

IoT Enabling Technologies

IoT is enabled by several technologies including Wireless Sensor Networks, Cloud

Computing, Big Data Analytics, Embedded Systems, Security Protocols and architectures,

Communication Protocols, Web Services, Mobile internet and semantic search engines.

1) Wireless Sensor Network(WSN): Comprises of distributed devices with sensors which

are used to monitor the environmental and physical conditions. Zig Bee is one of the most

popular wireless technologies used byWSNs.

WSNs used in IoT systems are described as follows:

 Weather Monitoring System: in which nodes collect temp, humidity and other

data, which is aggregated and analyzed.

 Indoor air quality monitoring systems: to collect data on the indoor air quality and
concentration of various gases.

 Soil Moisture Monitoring Systems: to monitor soil moisture at variouslocations.

 Surveillance Systems: use WSNs for collecting surveillance data(motiondata
detection).

 Smart Grids : use WSNs for monitoring grids at variouspoints.

http://example.com/api/tasks/

 Structural Health Monitoring Systems: Use WSNs to monitor the health of

structures(building, bridges) by collecting vibrations from sensor nodes deployed

at various points in the structure.

2) Cloud Computing: Services are offered to users in different forms.

 Infrastructure-as-a-service (IaaS): provides users the ability to provision

computing and storage resources. These resources are provided to the users as a

virtual machine instances and virtual storage.

 Platform-as-a-Service (PaaS): provides users the ability to develop and deploy

application in cloud using the development tools, APIs, software libraries and

services provided by the cloud service provider.

 Software-as-a-Service (SaaS): provides the user a complete software application

or the user interface to the application itself.

3) Big Data Analytics: Some examples of big data generated by IoT are

 Sensor data generated by IoT systems.

 Machine sensor data collected from sensors established in industrial and energy
systems.

 Health and fitness data generated IoT devices.

 Data generated by IoT systems for location and tracking vehicles.

 Data generated by retail inventory monitoring systems.

4) Communication Protocols: form the back-bone of IoT systems and enable network

connectivity and coupling to applications.

 Allow devices to exchange data over network.

 Define the exchange formats, data encoding addressing schemes for device and

routing of packets from source to destination.

 It includes sequence control, flow control and retransmission of lost packets.

5) Embedded Systems: is a computer system that has computer hardware and software

embedded to perform specific tasks. Embedded System range from low cost miniaturized

devices such as digital watches to devices such as digital cameras, POS terminals,

vending machines, appliances etc.,

IoT Levels and Deployment Templates

1) IoT Level1: System has a single node that performs sensing and/or actuation, stores data,

performs analysis and host the application as shown in fig. Suitable for modeling low

cost and low complexity solutions where the data involved is not big and analysis

requirement are not computationally intensive. An e.g., of IoT Level1 is Home

automation.

2) IoT Level2: has a single node that performs sensing and/or actuating and local analysis

as shown in fig. Data is stored in cloud and application is usually cloud based. Level2 IoT

systems are suitable for solutions where data are involved is big, however, the primary

analysis requirement is not computationally intensive and can be done locally itself. An

e,g., of Level2 IoT system for Smart Irrigation.

3) IoT Level3: system has a single node. Data is stored and analyzed in the cloud

application is cloud based as shown in fig. Level3 IoT systems are suitable for solutions

where the data involved is big and analysis requirements are computationally intensive.

An example of IoT level3 system for tracking package handling.

4) IoT Level4: System has multiple nodes that perform local analysis. Data is stored in the

cloud and application is cloud based as shown in fig. Level4 contains local and cloud

based observer nodes which can subscribe to and receive information collected in the

cloud from IoT devices. An example of a Level4 IoT system for Noise Monitoring.

5) IoT Level5: System has multiple end nodes and one coordinator node as shown in fig.

The end nodes that perform sensing and/or actuation. Coordinator node collects data from

theendnodesandsendstothecloud.Dataisstoredandanalyzedinthecloudand

application is cloud based. Level5 IoT systems are suitable for solution based on wireless

sensor network, in which data involved is big and analysis requirements are

computationally intensive. An example of Level5 system for Forest Fire Detection.

6) IoT Level6: System has multiple independent end nodes that perform sensing and/or

actuation and sensed data to the cloud. Data is stored in the cloud and application is cloud

based as shown in fig. The analytics component analyses the data and stores the result in

the cloud data base. The results are visualized with cloud based application. The

centralized controller is aware of the status of all the end nodes and sends control

commands to nodes. An example of a Level6 IoT system for Weather Monitoring

System.

DOMAIN SPECIFIC IoTs

1) Home Automation:

a) Smart Lighting: helps in saving energy by adapting the lighting to the ambient

conditions and switching on/off or diming the light when needed.

b) Smart Appliances: make the management easier and also provide status information

to the users remotely.

c) Intrusion Detection: use security cameras and sensors(PIR sensors and door sensors)

to detect intrusion and raise alerts. Alerts can be in the form of SMS or email sent to

the user.

d) Smoke/Gas Detectors: Smoke detectors are installed in homes and buildings to

detect smoke that is typically an early sign of fire. Alerts raised by smoke detectors

can be in the form of signals to a fire alarm system. Gas detectors can detect the

presence of harmful gases such as CO, LPGetc.,

2) Cities:

a) Smart Parking: make the search for parking space easier and convenient for drivers.

Smart parking are powered by IoT systems that detect the no. of empty parking slots

and send information over internet to smart application backends.

b) Smart Lighting: for roads, parks and buildings can help in saving energy.
c) Smart Roads: Equipped with sensors can provide information on driving condition,

travel time estimating and alert in case of poor driving conditions, traffic condition

and accidents.

d) Structural Health Monitoring: uses a network of sensors to monitor the vibration

levels in the structures such as bridges and buildings.

e) Surveillance: The video feeds from surveillance cameras can be aggregated in cloud

based scalable storage solution.

f) Emergency Response: IoT systems for fire detection, gas and water leakage

detection can help in generating alerts and minimizing their effects on the critical

infrastructures.

3) Environment:

a) Weather Monitoring: Systems collect data from a no. of sensors attached and send

the data to cloud based applications and storage back ends. The data collected in

cloud can then be analyzed and visualized by cloud based applications.

b) Air Pollution Monitoring: System can monitor emission of harmful gases(CO2, CO,

NO, NO2 etc.,) by factories and automobiles using gaseous and meteorological

sensors. The collected data can be analyzed to make informed decisions on pollutions

control approaches.

c) Noise Pollution Monitoring: Due to growing urban development, noise levels in

cities have increased and even become alarmingly high in some cities. IoT based

noise pollution monitoring systems use a no. of noise monitoring systems that are

deployed at different places in a city. The data on noise levels from the station is

collected on servers or in the cloud. The collected data is then aggregated to generate

noise maps.

d) Forest Fire Detection: Forest fire can cause damage to natural resources, property

and human life. Early detection of forest fire can help in minimizing damage.

e) River Flood Detection: River floods can cause damage to natural and human

resources and human life. Early warnings of floods can be given by monitoring the

water level and flow rate. IoT based river flood monitoring system uses a no. of

sensor nodes that monitor the water level and flow rate sensors.

4) Energy:

a) Smart Grids: is a data communication network integrated with the electrical grids

that collects and analyze data captured in near-real-time about power transmission,

distribution and consumption. Smart grid technology provides predictive information

and recommendations to utilities, their suppliers, and their customers on how best to

manage power. By using IoT based sensing and measurement technologies, the health

of equipment and integrity of the grid can be evaluated.

b) Renewable Energy Systems: IoT based systems integrated with the transformers at

the point of interconnection measure the electrical variables and how much power is

fed into the grid. For wind energy systems, closed-loop controls can be used to

regulate the voltage at point of interconnection which coordinate wind turbine outputs

and provides power support.

c) Prognostics: In systems such as power grids, real-time information is collected using

specialized electrical sensors called Phasor Measurment Units(PMUs) at the

substations. The information received from PMUs must be monitored in real-time for

estimating the state of the system and for predicting failures.

5) Retail:

a) Inventory Management: IoT systems enable remote monitoring of inventory using

data collected by RFIDreaders.

b) Smart Payments: Solutions such as contact-less payments powered by technologies

such as Near Field Communication (NFC) and Bluetooth.

c) Smart Vending Machines: Sensors in a smart vending machines monitors its

operations and send the data to cloud which can be used for predictive

maintenance.

6) Logistics:

a) Route generation & scheduling: IoT based system backed by cloud can provide first

response to the route generation queries and can be scaled upto serve a large

transportation network.

b) Fleet Tracking: Use GPS to track locations of vehicles inreal-time.

c) Shipment Monitoring: IoT based shipment monitoring systems use sensors such as

temp, humidity, to monitor the conditions and send data to cloud, where it can be

analyzed to detect foods poilage.

d) Remote Vehicle Diagnostics: Systems use on-board IoT devices for collecting data

on Vehicle operations(speed, RPMetc.,) and status of various vehicle subsystems.

7) Agriculture:

a) Smart Irrigation: to determine moisture amount in soil.

b) Green House Control: to improve productivity.

8) Industry:

a) Machine diagnosis and prognosis

b) Indoor Air Quality Monitoring

9) Health and LifeStyle:

a) Health & Fitness Monitoring

b) Wearable Electronics

UNIT-II

IoT and M2M

M2M:

Machine-to-Machine (M2M) refers to networking of machines(or devices) for the purpose

of remote monitoring and control and data exchange.

 Term which is often synonymous with IoT is Machine-to-Machine (M2M).

 IoT and M2M are often used interchangeably.

Fig. Shows the end-to-end architecture of M2M systems comprises of M2M area networks,

communication networks and application domain.

 An M2M area network comprises of machines(or M2M nodes) which have embedded

network modules for sensing, actuation and communicating various communication

protocols can be used for M2M LAN such as ZigBee, Bluetooth, M-bus, Wireless M-Bus

etc., These protocols provide connectivity between M2M nodes within an M2M area

network.

 The communication network provides connectivity to remote M2M area networks. The

communication network provides connectivity to remote M2M area network. The

communication network can use either wired or wireless network(IP based). While the

M2M are networks use either properietorary or non-IP based communication protocols,

the communication network uses IP-based network. Since non-IP based protocols are

used within M2M area network, the M2M nodes within one network cannot

communicate with nodes in an external network.

 To enable the communication between remote M2M are network, M2M gateways are
used.

Fig. Shows a block diagram of an M2M gateway. The communication between M2M nodes and

the M2M gateway is based on the communication protocols which are naive to the M2M are

network. M2M gateway performs protocol translations to enable Ip-connectivity for M2M are

networks. M2M gateway acts as a proxy performing translations from/to native protocols to/from

Internet Protocol(IP). With an M2M gateway, each mode in an M2M area network appears as a

virtualized node for external M2M area networks.

Differences between IoT and M2M

.

SDN and NVF for IoT

Software Defined Networking(SDN):

• Software-Defined Networking (SDN) is a networking architecture that separates the

control plane from the data plane and centralizes the network controller.

• Software-based SDN controllers maintain a united view of the network
• The underlying infrastructure in SDN uses simple packet forwarding hardware as

opposed to specialized hardware in conventional networks.

SDN Architecture

 Key elements of SDN:

1) Centralized Network Controller

With decoupled control and data planes and centralized network controller, the

network administrators can rapidly configure the network.

2) Programmable Open APIs

SDN architecture supports programmable open APIs for interface between the

SDN application and control layers (Northbound interface).

3) Standard Communication Interface(OpenFlow)

SDN architecture uses a standard communication interface between the control

and infrastructure layers (Southbound interface). OpenFlow, which is defined by

the Open Networking Foundation (ONF) is the broadly accepted SDN protocol

for the Southbound interface.

Network Function Virtualization(NFV)

• Network Function Virtualization (NFV) is a technology that leverages virtualization to

consolidate the heterogeneous network devices onto industry standard high volume

servers, switches and storage.

• NFV is complementary to SDN as NFV can provide the infrastructure on which SDN

can run.

NFV Architecture

Key elements of NFV:

1) Virtualized Network Function(VNF):

VNF is a software implementation of a network function which is capable of
running over the NFV Infrastructure (NFVI).

2) NFV Infrastructure(NFVI):

NFVI includes compute, network and storage resources that are virtualized.

3) NFV Management and Orchestration:

NFV Management and Orchestration focuses on all virtualization-specific

management tasks and covers the orchestration and life-cycle management of

physical and/or software resources that support the infrastructure virtualization,

and the life-cycle management of VNFs.

Need for IoT Systems Management

Managing multiple devices within a single system requires advanced management capabilities.

1) Automating Configuration : IoT system management capabilities can helpin

automating the system configuration.

2) Monitoring Operational & Statistical Data : Management systems can help in

monitoring opeartional and statistical data of a system. This data can be used for fault

diagnosis or prognosis.

3) Improved Reliability: A management system that allows validating the system

configurations before they are put into effect can help in improving the system

reliability.

4) System Wide Configurations : For IoT systems that consists of multiple devices or

nodes, ensuring system wide configuration can be critical for the correct functioning of

the system.

5) Multiple System Configurations : For some systems it may be desirable to have

multiple valid configurations which are applied at different times or in certain

conditions.

6) Retrieving & Reusing Configurations : Management systems which have the capability of

retrieving configurations from devices can help in reusing the configurations for other

devices of the same type.

IoT Systems Management with NETCONF-YANG

YANG is a data modeling language used to model configuration and state data manupulated

by the NETCONF protocol.

The generic approach of IoT device management weith NETCONF-YANG. Roles of

various componentsare:

1) Management System
2) Management API

3) Transaction Manager
4) Rollback Manager

5) Data Model Manager

6) Configuration Validator

7) Configuration Database

8) Configuration API

9) Data Provider API

1) Management System : The operator uses a management system to send NETCONF

messages to configure the IoT device and receives state information and notifications

from the device as NETCONF messages.

2) Management API : allows management application to start NETCONF sessions.

3) Transaction Manager: executes all the NETCONF transactions and ensures that ACID
properties hold true for the transactions.

4) Rollback Manager : is responsible for generating all the transactions necessary to

rollback a current configuration to its original state.

5) Data Model Manager : Keeps track of all the YANG data models and the corresponding

managed objects. Also keeps track of the applications which provide data for each part of

a data model.

6) Configuration Validator : checks if the resulting configuration after applying a

transaction would be a valid configuration.

7) Configuration Database : contains both configuration and operational data.

8) Configuration API : Using the configuration API the application on the IoT device can

be read configuration data from the configuration datastore and write operational data to

the operational datastore.

9) Data Provider API: Applications on the IoT device can register for callbacks for various

events using the Data Provider API. Through the Data Provider API, the applications can

report statistics and operational ldata.

Steps for IoT device Management with NETCONF-YANG

1) Create a YANG model of the system that defines the configuration and state data of the

system.

2) Complete the YANG model with the ‗Inctool‗ which comes withLibnetconf.

3) Fill in the IoT device management code in the TransAPImodule.

4) Build the callbacks C file to generate the libraryfile.

5) Load the YANG module and the TransAPImodule into the Netopeer server using

Netopeer manager tool.

6) The operator can now connect from the management system to the Netopeer server using

the NetopeerCLI.

7) Operator can issue NETCONF commands from the Netopeer CLI. Command can be

issued to change the configuration data, get operational data or execute an RPC on the

IoTdevice.

SDN vs NFV

SNMP PROTOCOL

SNMP provides a common mechanism for network devices to relay management information within single and

multi-vendor LAN or WAN environments. It is an application layer protocol in the OSI model framework.
Typically, the SNMP protocol is implemented using the User Datagram Protocol (UDP).

NETOPEER

Netopeer GUI

The Apache module with a web-based GUI allowing user to connect to a NETCONF-enabled device and

to obtain and manipulate its configuration data from a graphical interface.

UNIT-III

PYTHON

Python

Python is a general-purpose high level programming language and suitable for providing a

solid foundation to the reader in the area of cloud computing.

The main characteristics of Python are:

1) Multi-paradigm programminglanguage.

2) Python supports more than one programming paradigms including object- oriented

programming and structured programming.

3) InterpretedLanguage.

4) Python is an interpreted language and does not require an explicit compilationstep.

5) The Python interpreter executes the program source code directly, statement by

statement, as a processor or scripting engine does.

6) Interactive Language
7) Python provides an interactive mode in which the user can submit commands at the

Python prompt and interact with the interpreterdirectly.

Python

Benefits

Python - Setup

Datatypes

Every value in Python has a datatype. Since everything is an object in Python programming, data

types are actually classes and variables are instance (object) of these classes.

There are various data types in Python. Some of the important types are listed below.

Python Numbers

Integers, floating point numbers and complex numbers falls under Python numbers category.

They are defined as int, float and complex class in Python. We can use the type() function to

know which class a variable or a value belongs to and the isinstance() function to check if an

object belongs to a particular class.

Script.py

1. a = 5

2. print(a, "is of type", type(a))

3. a = 2.0

4. print(a, "is of type", type(a))

5. a = 1+2j

6. print(a, "is complex number?", isinstance(1+2j,complex))

Integers can be of any length, it is only limited by the memory available. A floating point

number is accurate up to 15 decimal places. Integer and floating points are separated by decimal

points. 1 is integer, 1.0 is floating point number. Complex numbers are written in the form, x +

yj, where x is the real part and y is the imaginary part. Here are someexamples.

>>> a = 1234567890123456789

>>> a

1234567890123456789

>>> b = 0.1234567890123456789

>>> b

0.12345678901234568

>>> c = 1+2j

>>> c

(1+2j)

Python List

List is an ordered sequence of items. It is one of the most used datatype in Python and is very

flexible. All the items in a list do not need to be of the same type. Declaring a list is pretty

straight forward. Items separated by commas are enclosed within brackets [].

>>> a = [1, 2.2, 'python']

We can use the slicing operator [] to extract an item or a range of items from a list. Index starts

form 0 in Python.

Script.py

1. a = [5,10,15,20,25,30,35,40]

2. # a[2] = 15

3. print("a[2] = ", a[2])

4. # a[0:3] = [5, 10, 15]

5. print("a[0:3] = ", a[0:3])

6. # a[5:] = [30, 35, 40]

7. print("a[5:] = ", a[5:])

Lists are mutable, meaning; value of elements of a list can be altered.

>>> a = [1,2,3]

>>> a[2]=4

>>> a

[1, 2, 4]

Python Tuple

Tuple is an ordered sequences of items same as list. The only difference is that tuples are

immutable. Tuples once created cannot be modified. Tuples are used to write-protect data and

are usually faster than list as it cannot change dynamically. It is defined within parentheses ()

where items are separated bycommas.

>>> t = (5,'program', 1+3j)

https://www.programiz.com/python-programming/tuple

Script.py

t = (5,'program', 1+3j)

t[1] = 'program'

print("t[1] = ", t[1])

t[0:3] = (5, 'program', (1+3j))

print("t[0:3] = ", t[0:3])

Generates error

Tuples are immutable

t[0] = 10

Python Strings

String is sequence of Unicode characters. We can use single quotes or double quotes to represent

strings. Multi-line strings can be denoted using triple quotes, ''' or """.

>>> s = "This is a string"

>>> s = '''a multiline

Like list and tuple, slicing operator [] can be used with string. Strings are immutable.

Script.py

a ={5,2,3,1,4}

printing setvariable

print("a = ", a)

data type of variable a

print(type(a))

We can perform set operations like union, intersection on two sets. Set have unique values. They

eliminate duplicates. Since, set are unordered collection, indexing has no meaning. Hence the

slicing operator [] does not work. It is generally used when we have a huge amount of data.

Dictionaries are optimized for retrieving data. We must know the key to retrieve the value. In

Python, dictionaries are defined within braces {} with each item being a pair in the

form key:value. Key and value can be of anytype.

>>> d = {1:'value','key':2}

>>> type(d)

<class 'dict'>

We use key to retrieve the respective value. But not the other way around.

https://www.programiz.com/python-programming/string

Script.py

d ={1:'value','key':2}

print(type(d))

print("d[1] = ",d[1]);

print("d['key'] = ", d['key']);

Generates error

print("d[2] = ",d[2]);

Python if...else Statement

Every value in Python has a datatype. Since everything is an object in Python programming, data

types are actually classes and variables are instance (object) of these classes. Decision making is

required when we want to execute a code only if a certain condition is satisfied.

The if…elif…else statement is used in Python for decision making.

Python if Statement

Syntax

if test expression:

statement(s)

Here, the program evaluates the test expression and will execute statement(s) only if the text

expression is True.

If the text expression is False, the statement(s) is not executed. In Python, the body of

the if statement is indicated by the indentation. Body starts with an indentation and the first

unindented line marks the end. Python interprets non-zero values as True. None and 0 are

interpreted as False.

Python if Statement Flowchart

Example: Python if Statement

If the number is positive, we print an appropriate message

num = 3

if num > 0:
print(num, "is a positive number.")

print("This is always printed.")

num = -1

if num >0:

print(num, "is a positive number.")

print("This is also always printed.")

When you run the program, the output willbe:

3 is a positivenumber

This is alwaysprinted

This is also always printed.

In the above example, num > 0 is the test expression. The body of if is executed only if this

evaluates to True.

When variable num is equal to 3, test expression is true and body inside body of if is executed. If

variable num is equal to -1, test expression is false and body inside body of if is skipped.

The print() statement falls outside of the if block (unindented). Hence, it is executed regardless

of the testexpression.

Python if...else Statement

Syntax

if test expression:

Body of if

else:

Body of else

The if..else statement evaluates test expression and will execute body of if only when test

condition is True.

If the condition is False, body of else is executed. Indentation is used to separate the blocks

Example of if...else

Program checks if the number is positive or negative

And displays an appropriate message

num = 3

Try these two variations as well.

num = -5

num = 0

if num >= 0:

print("Positive or Zero")

else:

print("Negative number")
In the above example, when num is equal to 3, the test expression is true and body of if is

executed and body of else is skipped.

If num is equal to -5, the test expression is false and body of else is executed and body of if is

skipped.

If num is equal to 0, the test expression is true and body of if is executed and body of else is
skipped.

Python if...elif...else Statement

Syntax

if test expression:

Body of if
elif test expression:

Body of elif

else:

Body of else

The elif is short for else if. It allows us to check for multiple expressions. If the condition

for if is False, it checks the condition of the next elif block and so on. If all the conditions

are False, body of else is executed. Only one block among the several if...elif...else blocks is

executed according to the condition. The if block can have only one else block. But it can have

multiple elifblocks.

Flowchart of if...elif...else

Example of if...elif...else

In this program,

we check if the number is positive or

negative or zero and

display an appropriate message

num = 3.4

Try these two variations as well:

num = 0

num = -4.5

if num > 0:

print("Positive number")

elif num == 0:

print("Zero")

else:

print("Negative number")

When variable num is positive, Positive number is printed.

If num is equal to 0, Zero is printed.

If num is negative, Negative number is printed

Python Nested if statements

We can have a if...elif...else statement inside another if...elif...else statement. This is called

nesting in computer programming. Any number of these statements can be nested inside one

another. Indentation is the only way to figure out the level of nesting. This can get confusing, so

must be avoided if we can.

Python Nested if Example

In this program, we input a number

check if the number is positive or

negative or zero anddisplay

an appropriate message

This time we use nested if

num = float(input("Enter a number: "))

if num >= 0:

if num == 0:

print("Zero")

else:

print("Positive number")

else:

print("Negative number")

Output 1

Enter a number: 5

Positive number

Output 2

Enter a number: -1

Negative number

Output 3

Enter a number: 0

Zero

Python for Loop

The for loop in Python is used to iterate over a sequence (list, tuple, string) or other iterable

objects. Iterating over a sequence is called traversal.

Syntax of for Loop

for val in sequence:

Body of for

Here, val is the variable that takes the value of the item inside the sequence on each iteration.

Loop continues until we reach the last item in the sequence. The body of for loop is separated

from the rest of the code using indentation.

Flowchart of for Loop

Syntax

Program to find the sum of all numbers stored in a list

List of numbers

numbers = [6, 5, 3, 8, 4, 2, 5, 4, 11]

variable to store the sum

sum = 0

iterate over the list

for val in numbers:

sum = sum+val

Output: The sum is 48

print("The sum is", sum)

when you run the program, the output will be:

The sum is 48

What is while loop in Python?

The while loop in Python is used to iterate over a block of code as long as the test expression

(condition) is true. We generally use this loop when we don't know beforehand, the number of

times to iterate.

Syntax of while Loop in Python

while

test_expression:

Body of while

In while loop, test expression is checked first. The body of the loop is entered only if the

test_expression evaluates to True. After one iteration, the test expression is checked again. This

process continues until the test_expression evaluates to False. In Python, the body of the while

loop is determined through indentation. Body starts with indentation and the first unindented line

marks the end. Python interprets any non-zero value as True. None and 0 are interpreted as False.

Flowchart of while Loop

Program to add

natural # numbers

upto
sum = 1+2+3+...+n
To take input from the

user, # n = int(input("Enter

n: "))
n = 10
initialize sum and

counter sum = 0
i = 1
while i <= n:

sum = sum +

i

i=i+1 #

updatecounter # print

thesum
print("The sum is", sum)
When you run the program, the output will be:
Enter n: 10

The sum is

55

In the above program, the test expression will be True as long as our counter variable i is

less than or equal to n (10 in ourprogram).

We need to increase the value of counter variable in the body of the loop. This is very

important (and mostly forgotten). Failing to do so will result in an infinite loop (never

ending loop).

Finally the result is displayed.

Python Modules

A file containing a set of functions you want to include in the application is called Module.

Create a Module

To create a module just save the code you want in a file with the file extension .py:

Example

Save this code in a file named mymodule.py

def greeting(name):

print("Hello, " + name)

Use a Module

Now we can use the module we just created, by using the import statement:

Example

Import the module named mymodule, and call the greeting function:

import mymodule

mymodule.greeting("Jonathan")

Note: When using a function from a module, use the syntax: module_name.function_name.

Variables in Module

The module can contain functions, as already described, but also variables of all types(arrays,

dictionaries, objects etc):

Example

Save this code in the file mymodule.py

person1 = {"name": "John","age": 36,"country": "Norway"}

Example

Import the module named mymodule, and access the person1 dictionary:

import mymodule

a = mymodule.person1["age"]
print(a)

Naming a Module

You can name the module file whatever you like, but it must have the file extension .py

Re-naming a Module

You can create an alias when you import a module, by using the as keyword:

Example

Create an alias for mymodule called mx:

import mymodule as mx

a = mx.person1["age"]

print(a)

Built-in Modules

There are several built-in modules in Python, which you can import whenever you like.

Example

Import and use the platform module:

import platform
x = platform.system()

print(x)

Using the dir() Function

There is a built-in function to list all the function names (or variable names) in a module. The

dir() function:

Example

List all the defined names belonging to the platform module:

import platform

x = dir(platform)

print(x)

Note: The dir() function can be used on all modules, also the ones you create yourself.

Import from Module

You can choose to import only parts from a module, by using the from keyword.

Example

The module named mymodule has one function and one dictionary:

def greeting(name):

print("Hello, " + name)

person1 = {"name": "John", "age": 36, "country": "Norway"}

Packages

We don't usually store all of our files in our computer in the same location. We use a well-

organized hierarchy of directories for easier access. Similar files are kept in the same directory,

for example, we may keep all the songs in the "music" directory. Analogous to this, Python has

packages for directories and modules for files. As our application program grows larger in size

with a lot of modules, we place similar modules in one package and different modules in

different packages. This makes a project (program) easy to manage and conceptually clear.

Similar, as a directory can contain sub-directories and files, a Python package can have sub-

packages and modules. A directory must contain a file namedinit.py in order for Python to

consider it as a package. This file can be left empty but we generally place the initialization code

for that package in this file. Here is an example. Suppose we are developing a game, one possible

organization of packages and modules could be as shown in the figure below.

Package Module Structure in Python Programming

Importing module from a package

We can import modules from packages using the dot (.) operator. For example, if want to import

the start module in the above example, it is done as follows.

import Game.Level.start

Now if this module contains a function named select_difficulty(), we must use the full name to

reference it.

Game.Level.start.select_difficulty(2)

If this construct seems lengthy, we can import the module without the package prefix as follows.

from Game.Level import start

We can now call the function simply as follows.

start.select_difficulty(2)

Yet another way of importing just the required function (or class or variable) form a module

within a package would be as follows.

from Game.Level.start import select_difficulty

Now we can directly call this function.

select_difficulty(2)

Although easier, this method is not recommended. Using the full namespace avoids confusion

and prevents two same identifier names from colliding. While importing packages, Python looks

in the list of directories defined in sys.path, similar as for module search path.

Files

File is a named location on disk to store related information. It is used to permanently store data

in a non-volatile memory (e.g. hard disk). Since, random access memory (RAM) is volatile

which loses its data when computer is turned off, we use files for future use of the data. When

we want to read from or write to a file we need to open it first. When we are done, it needs to be

closed, so that resources that are tied with the file are freed. Hence, in Python, a file operation

takes place in the following order.

1. Open afile

2. Read or write (perform operation)

3. Close thefile

How to open a file?

Python has a built-in function open() to open a file. This function returns a file object, also called
a handle, as it is used to read or modify the file accordingly.

>>> f=open("test.txt") # open file in current directory

>>> f = open("C:/Python33/README.txt") # specifying full path

We can specify the mode while opening a file. In mode, we specify whether we want to read 'r',

write 'w' or append 'a' to the file. We also specify if we want to open the file in text mode or

binary mode. The default is reading in text mode. In this mode, we get strings when reading from

the file. On the other hand, binary mode returns bytes and this is the mode to be used when

dealing with non-text files like image or exe files.

Python File Modes

Mode Description

'r' Open a file for reading. (default)

'w' Open a file for writing. Creates a new file if it does not exist or truncates the file if it

exists.

'x' Open a file for exclusive creation. If the file already exists, the operation fails.

'a' Open for appending at the end of the file without truncating it. Creates a new file if it

does not exist.

't' Open in text mode. (default)

'b' Open in binary mode.

'+' Open a file for updating (reading and writing)

How to close a file Using Python?

When we are done with operations to the file, we need to properly close the file. Closing a file

will free up the resources that were tied with the file and is done using Python close() method.

Python has a garbage collector to clean up unreferenced objects but, we must not rely on it to

close the file.

f = open("test.txt",encoding = 'utf-8')

perform file operations

f.close()

This method is not entirely safe. If an exception occurs when we are performing some operation

with the file, the code exits without closing the file.

A safer way is to use a try...finally block.

try:

f = open("test.txt",encoding = 'utf-8')

perform file operations

finally:

f.close()

This way, we are guaranteed that the file is properly closed even if an exception is raised,

causing program flow to stop. The best way to do this is using the with statement. This ensures

that the file is closed when the block inside with is exited. We don't need to explicitly call the

close() method. It is done internally.

with open("test.txt",encoding = 'utf-8') as f:

perform file operations

How to write to File Using Python?

In order to write into a file in Python, we need to open it in write 'w', append 'a' or exclusive

creation 'x' mode. We need to be careful with the 'w' mode as it will overwrite into the file if it

already exists. All previous data are erased. Writing a string or sequence of bytes (for binary

files) is done using write() method. This method returns the number of characters written to the

file.

with open("test.txt",'w',encoding = 'utf-8') as f:

f.write("my first file\n")

f.write("This file\n\n")

f.write("contains three lines\n")

This program will create a new file named 'test.txt' if it does not exist. If it does exist, it is
overwritten. We must include the newline characters ourselves to distinguish different lines.

How to read files in Python?

To read a file in Python, we must open the file in reading mode. There are various methods

available for this purpose. We can use the read(size) method to read in size number of data. If

size parameter is not specified, it reads and returns up to the end of the file.

>>> f = open("test.txt",'r',encoding = 'utf-8')

>>> f.read(4) # read the first 4 data

'This'

>>>f.read(4) # read the next 4 data

' is'

>>>f.read() # read in the rest till end of file

'my first file\nThis file\ncontains threelines\n'

>>> f.read() # further reading returns empty sting

''

We can see that, the read() method returns newline as '\n'. Once the end of file is reached, we get

empty string on further reading. We can change our current file cursor (position) using the seek()

method. Similarly, the tell() method returns our current position (in number of bytes).

>>>f.tell() # get the current file position

56

>>> f.seek(0) # bring file cursor to initial position

0

>>> print(f.read()) # read the entire file

This is my first file

This file

contains three lines

We can read a file line-by-line using a for loop. This is both efficient and fast.

>>> for line in f:

... print(line, end = '')

...

This is my first file

This file

contains three lines

The lines in file itself has a newline character '\n'.

Moreover, the print() end parameter to avoid two newlines when printing. Alternately, we can

use read line() method to read individual lines of a file. This method reads a file till the newline,

including the new line character.

>>> f.readline()

'This is my first file\n'

>>> f.readline()

'This file\n'>>>

f.readline()

'contains three

lines\n'

>>> f.readline()

''

Lastly, the readlines() method returns a list of remaining lines of the entire file. All these reading

method return empty values when end of file (EOF) is reached.

>>> f.readlines()

['This is my first file\n', 'This file\n', 'contains three lines\n']

Python File Methods

There are various methods available with the file object. Some of them have been used in above

examples. Here is the complete list of methods in text mode with a brief description.

Python File Methods

Method Description

close() Close an open file. It has no effect if the file is already closed.

detach() Separate the underlying binary buffer from the TextIOBase and return it.

fileno() Return an integer number (file descriptor) of the file.
flush() Flush the write buffer of the file stream.

isatty() Return True if the file stream is interactive.

read(n) Read at most n characters form the file. Reads till end of file if it is negative
or None.

readable() Returns True if the file stream can be read from.

readline(n=-1) Read and return one line from the file. Reads in at most n bytes if specified.

readlines(n=-1) Read and return a list of lines from the file. Reads in at most n
bytes/characters if specified.

seek(offset,from=
SE

EK_SET)

Change the file position to offset bytes, in reference to from (start, current,
end).

seekable() Returns True if the file stream supports random access.

tell() Returns the current file location.
truncate(size=Non
e)

Resize the file stream to size bytes. If size is not specified, resize to current
location.

writable() Returns True if the file stream can be written to.
write(s) Write string s to the file and return the number of characters written.

writelines(lines) Write a list of lines to the file.

Python Packages of Interest

1. JSON: JavaScript Object Notation (JSON) is an easy to read and write data- interchange

format. JSON is used as an alternative to XML and is is easy for machines to parse and

generate. JSON is built on two structures - a collection of name-value pairs (e.g. a Python

dictionary) and ordered lists of values (e.g.. a Python list).

2. XML: XML (Extensible Markup Language) is a data format for structured document

interchange. The Python minion library provides a minimal implementation of the

Document Object Model interface and has an API similar to that in other languages.

3. HTTPLib & URLLib: HTTPLib2 and URLLib2 are Python libraries used in

network/internet programming

4. SMTPLib: Simple Mail Transfer Protocol (SMTP) is a protocol which handles sending

email and routing e-mail between mail servers. The Python smtplib module provides an

SMTP client session object that can be used to send email.

5. NumPy:NumPy is a package for scientific computing in Python. NumPy provides

support for large multi-dimensional arrays andmatrices

6. Scikit-learn: Scikit-learn is an open source machine learning library for Python that

provides implementations of various machine learning algorithms for classification,

clustering, regression and dimension reduction problems.

JSON

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for humans to read

and write. It is easy for machines to parse and generate. It is based on a subset of the JavaScript

Programming Language Standard ECMA. JSON is a text format that is completely language independent

but uses conventions that are familiar to programmers of the C-family of languages, including C, C++,

C#, Java, JavaScript, Perl, Python, and many others. These properties make JSON an ideal data-

interchange language.

JSON is built on two structures:

 A collection of name/value pairs. In various languages, this is realized as an object, record, struct,

dictionary, hash table, keyed list, or associative array.

These are universal data structures.It makes sense that a data format that is interchangeable with

programming languages also be based on these structures.

JSON Syntax :

Convert from JSON to Python:

import json

some JSON:
x = '{ "name":"John", "age":30, "city":"New York"}'

parse x:

y = json.loads(x)

the result is a Python dictionary:

print(y["age"])

XML

The Extensible Markup Language (XML) is a simple text-based format for representing structured

information: documents, data, configuration, books, transactions, invoices, and much more. It was derived

from an older standard format called SGML (ISO 8879), in order to be more suitable for Web use.

HTTP Lib.

This module defines classes which implement the client side of the HTTP and HTTPS protocols. It is
normally not used directly — the module urllib uses it to handle URLs that use HTTP and HTTPS. Note.

HTTPS support is only available if the socket module was compiled with SSL support.

SMTP Lib

The smtplib module defines an SMTP client session object that can be used to send mail to any

internet machine with an SMTP or ESMTP listener daemon. For details of SMTP and ESMTP

operation, consult RFC 821 (Simple Mail Transfer Protocol) and RFC 1869 (SMTP Service

Extensions).

from smtplib import SMTP

>>> with SMTP("domain.org") as smtp:

... smtp.noop()

...

(250, b'Ok')

>>>

https://docs.python.org/3/library/smtplib.html#module-smtplib
https://datatracker.ietf.org/doc/html/rfc821.html
https://datatracker.ietf.org/doc/html/rfc1869.html

UNIT IV

IoT PHYSICAL DEVICES AND ENDPOINTS

IoT Device

A "Thing" in Internet of Things (IoT) can be any object that has a unique identifier and which

can send/receive data (including user data) over a network (e.g., smart phone, smartTV,

computer, refrigerator, car, etc.).

• IoT devices are connected to the Internet and send information about themselves or about their

surroundings (e.g. information sensed by the connected sensors) over a network (to other devices

or servers/storage) or allow actuation upon the physical entities/environment around them

remotely.

IoT Device Examples

A home automation device that allows remotely monitoring the status of appliances and

controlling the appliances. • An industrial machine which sends information abouts its operation

and health monitoring data to a server. • A car which sends information about its location to a

cloud-based service. • A wireless-enabled wearable device that measures data about a person

such as the number of steps walked and sends the data to a cloud-basedservice.

Basic building blocks of an IoT Device

1. Sensing: Sensors can be either on-board the IoT device or attached to thedevice.

2. Actuation: IoT devices can have various types of actuators attached that allow taking

actions upon the physical entities in the vicinity of thedevice.

3. Communication: Communication modules are responsible for sending collected data to

other devices or cloud-based servers/storage and receiving data from other devices and

commands from remote applications.

4. Analysis & Processing: Analysis and processing modules are responsible for making

sense of the collected data.

Block diagram of an IoT Device

Exemplary Device: Raspberry Pi

Raspberry Pi is a low-cost mini-computer with the physical size of a credit card. Raspberry Pi

runs various flavors of Linux and can perform almost all tasks that a normal desktop computer

can do. Raspberry Pi also allows interfacing sensors and actuators through the general purpose

I/O pins. Since Raspberry Pi runs Linux operating system, it supports Python "out of the box".

Raspberry Pi is a low-cost mini-computer with the physical size of a credit card. Raspberry Pi

runs various flavors of Linux and can perform almost all tasks that a normal desktop computer

can do. Raspberry Pi also allows interfacing sensors and actuators through the general purpose

I/O pins. Since Raspberry Pi runs Linux operating system, it supports Python "out of the box".

Raspberry Pi

Linux on Raspberry Pi

1. Raspbian: Raspbian Linux is a Debian Wheezy port optimized for Raspberry Pi.

2. Arch: Arch is an Arch Linux port for AMD devices.

3. Pidora: Pidora Linux is a Fedora Linux optimized for Raspberry Pi.

4. RaspBMC: RaspBMC is an XBMC media-center distribution for Raspberry Pi.

5. OpenELEC: OpenELEC is a fast and user-friendly XBMC media-center distribution.

6. RISC OS: RISC OS is a very fast and compact operating system.

Raspberry Pi GPIO

Raspberry Pi Interfaces

1. Serial: The serial interface on Raspberry Pi has receive (Rx) and transmit (Tx) pins for

communication with serial peripherals.

2. SPI: Serial Peripheral Interface (SPI) is a synchronous serial data protocol used for

communicating with one or more peripheral devices.

3. I2C: The I2C interface pins on Raspberry Pi allow you to connect hardware modules.

I2C interface allows synchronous data transfer with just two pins - SDA (data line) and

SCL (clockline).

Raspberry Pi Example: Interfacing LED and switch with Raspberry Pi

from time import sleeP

import RPi.GPIO asGPIO

GPIO.setmode(GPIO.BCM)

#Switch Pin GPIO.setup(25,GPIO.IN)

#LEDPin

GPIO.setup(18,GPIO.OUT)

state=false

deftoggleLED(pin):

state = not state

GPIO.output(pin,state)

whileTrue:try:

if (GPIO.input(25) ==True):

exceptKeyboardInterrupt:

exit()

	UNIT-I INTRODUCTION OF IOT
	Definition:
	Characteristics:
	Applications of IoT:
	Physical Design of IoT
	2. IoT Protocols:
	Protocols:
	Protocols: (1)
	Protocols: (2)
	LOGICAL DESIGN of IoT
	1) IoT Communication Models:
	1) Request-Response Model
	2) Publish-Subscibe Model:
	3) IoT Communication APIs:
	b) WebSocket based Communication APIs(Exclusive PairBased Model)
	Request-Response model used by REST:
	IoT Enabling Technologies
	IoT Levels and Deployment Templates
	DOMAIN SPECIFIC IoTs
	2) Cities:
	3) Environment:
	4) Energy:
	5) Retail:
	6) Logistics:
	7) Agriculture:
	8) Industry:
	9) Health and LifeStyle:
	UNIT-II
	M2M:
	Differences between IoT and M2M
	SDN and NVF for IoT
	Key elements of SDN:
	2) Programmable Open APIs
	3) Standard Communication Interface(OpenFlow)
	Network Function Virtualization(NFV)
	Key elements of NFV:
	2) NFV Infrastructure(NFVI):
	3) NFV Management and Orchestration:
	Need for IoT Systems Management
	IoT Systems Management with NETCONF-YANG
	Steps for IoT device Management with NETCONF-YANG
	Netopeer GUI
	The Apache module with a web-based GUI allowing user to connect to a NETCONF-enabled device and to obtain and manipulate its configuration data from a graphical interface.

	UNIT-III
	Python
	Python Benefits
	Datatypes
	Python Numbers
	Python List
	Script.py
	Python Tuple
	Script.py (1)
	Python Strings
	Script.py (2)
	Python if...else Statement
	Python if Statement Syntax
	Python if Statement Flowchart
	Python if...else Statement (1)
	Syntax
	Python if...elif...else Statement Syntax
	Flowchart of if...elif...else
	Python Nested if statements
	Output 1
	Python for Loop
	Syntax (1)
	What is while loop in Python?
	Syntax of while Loop in Python
	Flowchart of while Loop
	Python Modules
	Create a Module
	Example
	Use a Module
	Example (1)
	Variables in Module
	Example (2)
	Example (3)
	Naming a Module
	Re-naming a Module
	Example (4)
	Built-in Modules
	Example (5)
	Using the dir() Function
	Example (6)
	Import from Module
	Example (7)
	Packages
	Package Module Structure in Python Programming Importing module from a package
	Files
	How to open a file?
	Python File Modes
	How to close a file Using Python?
	How to write to File Using Python?
	How to read files in Python?
	Python File Methods
	Python File Methods (1)
	Python Packages of Interest
	JSON
	The smtplib module defines an SMTP client session object that can be used to send mail to any internet machine with an SMTP or ESMTP listener daemon. For details of SMTP and ESMTP operation, consult RFC 821 (Simple Mail Transfer Protocol) and RFC 1869...
	UNIT IV
	IoT Device
	IoT Device Examples
	Basic building blocks of an IoT Device
	Block diagram of an IoT Device
	Raspberry Pi
	Raspberry Pi GPIO
	Raspberry Pi Example: Interfacing LED and switch with Raspberry Pi

