
DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

COMPUTER ARCHITECTURE (J324I)

[R20]

B.TECH ECE

 (III YEAR – II SEM)

 (2023-24)

J. B. INSTITUTE OF ENGINEERING AND TECHNOLOGY
(UGC AUTONOMOUS)

Accredited by NBA & NAAC,

Approved by AICTE & Permanently affiliated to JNTUH
Bhaskar Nagar, Yenkapally(V), Moinabad(M), Ranaga Reddy(D),Hyderabad – 500 075,

Telanagana, India.

Computer Organization and Architecture

 Page 2

STRUCTURE OF COMPUTERS: Computer types, functional units, basic operational concepts,

Von‐Neumann architecture, bus structures, software, performance, multiprocessors and

multicomputer

Book: Carl Hamacher, Zvonks Vranesic, SafeaZaky (2002), Computer Organization, 5th

edition, McGraw Hill: Unit-1 Pages: 1-23

Data representation, fixed and floating point and error detecting codes.

Book: M. Moris Mano (2006), Computer System Architecture, 3rd edition, Pearson/PHI,

India: Unit-3 Pages: 67-91

REGISTER TRANSFER AND MICRO‐OPERATIONS: Register transfer language, register

transfer, bus and memory transfers, arithmetic micro‐operations, logic micro‐operations,

shift micro‐operations, arithmetic logic shift unit.

Book: M. Moris Mano (2006), Computer System Architecture, 3rd edition, Pearson/PHI,

India: Unit-3 Pages: 93-118

Computer Architecture:

Computer Architecture deals with giving operational attributes of the computer or Processor

to be specific. It deals with details like physical memory, ISA (Instruction Set Architecture) of

the processor, the number of bits used to represent the data types, Input Output mechanism

and technique for addressing memories.

Computer Organization:

Computer Organization is realization of what is specified by the computer architecture .It

deals with how operational attributes are linked together to meet the requirements specified

by computer architecture. Some organizational attributes are hardware details, control

signals, peripherals.

EXAMPLE:

Say you are in a company that manufactures cars, design and all low-level details of the car

come under computer architecture (abstract, programmers view), while making it’s parts

piece by piece and connecting together the different components of that car by keeping the

basic design in mind comes under computer organization (physical and visible).

Computer Organization Computer Architecture

Computer Organization and Architecture

 Page 3

Often called microarchitecture (low level)
Computer architecture (a
bit higher level)

Transparent from programmer (ex. a programmer does
not worry much how addition is implemented in
hardware)

Programmer view (i.e.
Programmer has to be
aware of which instruction
set used)

Physical components (Circuit design, Adders, Signals,
Peripherals)

Logic (Instruction set,
Addressing modes, Data
types, Cache optimization)

How to do ? (implementation of the architecture)
What to do ? (Instruction
set)

GENERATIONS OF A COMPUTER

Generation in computer terminology is a change in technology a computer is/was being

used. Initially, the generation term was used to distinguish between varying hardware

technologies. But nowadays, generation includes both hardware and software, which

together make up an entire computer system.

There are totally five computer generations known till date. Each generation has been

discussed in detail along with their time period and characteristics. Here approximate dates

against each generations have been mentioned which are normally accepted.

Following are the main five generations of computers

S.N. Generation & Description

1
First Generation
The period of first generation: 1946-1959. Vacuum tube based.

2
Second Generation
The period of second generation: 1959-1965. Transistor based.

3
Third Generation
The period of third generation: 1965-1971. Integrated Circuit based.

4
Fourth Generation
The period of fourth generation: 1971-1980. VLSI microprocessor based.

5
Fifth Generation
The period of fifth generation: 1980-onwards. ULSI microprocessor based

First generation

https://www.tutorialspoint.com/computer_fundamentals/computer_first_generation.htm
https://www.tutorialspoint.com/computer_fundamentals/computer_second_generation.htm
https://www.tutorialspoint.com/computer_fundamentals/computer_third_generation.htm
https://www.tutorialspoint.com/computer_fundamentals/computer_fourth_generation.htm
https://www.tutorialspoint.com/computer_fundamentals/computer_fifth_generation.htm

Computer Organization and Architecture

 Page 4

The period of first generation was 1946-1959. The computers of first generation used

vacuum tubes as the basic components for memory and circuitry for CPU (Central Processing

Unit). These tubes, like electric bulbs, produced a lot of heat and were prone to frequent

fusing of the installations, therefore, were very expensive and could be afforded only by very

large organizations. In this generation mainly batch processing operating system were used.

Punched cards, paper tape, and magnetic tape were used as input and output devices. The

computers in this generation used machine code as programming language.

The main features of first generation are:

 Vacuum tube technology

 Unreliable

 Supported machine language only

 Very costly

 Generated lot of heat

 Slow input and output devices

 Huge size

 Need of A.C.

 Non-portable

 Consumed lot of electricity

Some computers of this generation were:

 ENIAC

 EDVAC

 UNIVAC

 IBM-701

 IBM-650

Computer Organization and Architecture

 Page 5

Second generation

The period of second generation was 1959-1965. In this generation transistors were used

that were cheaper, consumed less power, more compact in size, more reliable and faster

than the first generation machines made of vacuum tubes. In this generation, magnetic cores

were used as primary memory and magnetic tape and magnetic disks as secondary storage

devices. In this generation assembly language and high-level programming languages like

FORTRAN, COBOL were used. The computers used batch processing and multiprogramming

operating system.

The main features of second generation are:

 Use of transistors

 Reliable in comparison to first generation computers

 Smaller size as compared to first generation computers

 Generated less heat as compared to first generation computers

 Consumed less electricity as compared to first generation computers

 Faster than first generation computers

 Still very costly

 A.C. needed

 Supported machine and assembly languages

Some computers of this generation were:

 IBM 1620

 IBM 7094

 CDC 1604

 CDC 3600

 UNIVAC 1108

Third generation

Computer Organization and Architecture

 Page 6

The period of third generation was 1965-1971. The computers of third generation used

integrated circuits (IC's) in place of transistors. A single IC has many transistors, resistors

and capacitors along with the associated circuitry. The IC was invented by Jack Kilby. This

development made computers smaller in size, reliable and efficient. In this generation

remote processing, time-sharing, multi-programming operating system were used. High-

level languages (FORTRAN-II TO IV, COBOL, PASCAL PL/1, BASIC, ALGOL-68 etc.) were used

during this generation.

The main features of third generation are:

 IC used

 More reliable in comparison to previous two generations

 Smaller size

 Generated less heat

 Faster

 Lesser maintenance

 Still costly

 A.C needed

 Consumed lesser electricity

 Supported high-level language

Some computers of this generation were:

 IBM-360 series

 Honeywell-6000 series

 PDP(Personal Data Processor)

 IBM-370/168

 TDC-316

Fourth generation

Computer Organization and Architecture

 Page 7

The period of fourth generation was 1971-1980. The computers of fourth generation used

Very Large Scale Integrated (VLSI) circuits. VLSI circuits having about 5000 transistors and

other circuit elements and their associated circuits on a single chip made it possible to have

microcomputers of fourth generation. Fourth generation computers became more powerful,

compact, reliable, and affordable. As a result, it gave rise to personal computer (PC)

revolution. In this generation time sharing, real time, networks, distributed operating system

were used. All the high-level languages like C, C++, DBASE etc., were used in this generation.

The main features of fourth generation are:

 VLSI technology used

 Very cheap

 Portable and reliable

 Use of PC's

 Very small size

 Pipeline processing

 No A.C. needed

 Concept of internet was introduced

 Great developments in the fields of networks

 Computers became easily available

Some computers of this generation were:

 DEC 10

 STAR 1000

 PDP 11

 CRAY-1(Super Computer)

 CRAY-X-MP(Super Computer)

Fifth generation

Computer Organization and Architecture

 Page 8

The period of fifth generation is 1980-till date. In the fifth generation, the VLSI technology

became ULSI (Ultra Large Scale Integration) technology, resulting in the production of

microprocessor chips having ten million electronic components. This generation is based on

parallel processing hardware and AI (Artificial Intelligence) software. AI is an emerging

branch in computer science, which interprets means and method of making computers think

like human beings. All the high-level languages like C and C++, Java, .Net etc., are used in this

generation.

AI includes:

 Robotics

 Neural Networks

 Game Playing

 Development of expert systems to make decisions in real life situations.

 Natural language understanding and generation.

The main features of fifth generation are:

 ULSI technology

 Development of true artificial intelligence

 Development of Natural language processing

 Advancement in Parallel Processing

 Advancement in Superconductor technology

 More user friendly interfaces with multimedia features

 Availability of very powerful and compact computers at cheaper rates

Some computer types of this generation are:

 Desktop

 Laptop

 NoteBook

 UltraBook

Computer Organization and Architecture

 Page 9

 ChromeBook

COMPUTER TYPES

Classification based on Operating Principles

Based on the operating principles, computers can be classified into one of the following types:

-

1) Digital Computers

2) Analog Computers

3) Hybrid Computers

Digital Computers: - Operate essentially by counting. All quantities are expressed as

discrete or numbers. Digital computers are useful for evaluating arithmetic expressions and

manipulations of data (such as preparation of bills, ledgers, solution of simultaneous

equations etc).

Analog Computers:- An analog computer is a form of computer that uses the continuously

changeable aspects of physical phenomena such as electrical, mechanical, or

hydraulic quantities to model the problem being solved. In contrast, digital

computers represent varying quantities symbolically, as their numerical values change.

Hybrid Computers:- are computers that exhibit features of analog

computers and digital computers. The digital component normally serves as the controller

http://1.bp.blogspot.com/-M_vnZqUQ4S4/UETcRpuyqzI/AAAAAAAAAEs/0Q-DE47g3NE/s1600/digit.jpg
http://3.bp.blogspot.com/-rOnoGJwADSg/UETcOZu_O6I/AAAAAAAAAEc/pWWdY9FoSeo/s1600/analog.jpg
http://1.bp.blogspot.com/-M_vnZqUQ4S4/UETcRpuyqzI/AAAAAAAAAEs/0Q-DE47g3NE/s1600/digit.jpg
http://3.bp.blogspot.com/-rOnoGJwADSg/UETcOZu_O6I/AAAAAAAAAEc/pWWdY9FoSeo/s1600/analog.jpg

Computer Organization and Architecture

 Page 10

and provides logical operations, while the analog component normally serves as a solver

of differential equations.

Classification digital Computer based on size and Capability

Based on size and capability, computers are broadly classified into

Micro Computers(Personal Computer)

 A microcomputer is the smallest general purpose processing system. The older pc started 8

bit processor with speed of 3.7MB and current pc 64 bit processor with speed of 4.66 GB.

Examples: - IBM PCs, APPLE computers

Microcomputer can be classified into 2 types:

1. Desktops

2. Portables

The difference is portables can be used while travelling whereas desktops computers cannot

be carried around.

The different portable computers are: -

1) Laptop

2) Notebooks

3) Palmtop (hand held)

4) Wearable computers

Laptop: - this computer is similar to a desktop computers but the size is smaller. They are

expensive than desktop. The weight of laptop is around 3 to 5 kg.

http://3.bp.blogspot.com/-2eZNwZSEFRk/UETcTEp9YyI/AAAAAAAAAE0/N8Fpa3GTXRI/s1600/hybrid.jpg
http://1.bp.blogspot.com/-TmihW6kkVQ0/UETnNghd_dI/AAAAAAAAAFU/vVx1-Xnj9vY/s1600/1295977088_sony-VPCEB46FG-laptop.jpeg
http://3.bp.blogspot.com/-2eZNwZSEFRk/UETcTEp9YyI/AAAAAAAAAE0/N8Fpa3GTXRI/s1600/hybrid.jpg
http://1.bp.blogspot.com/-TmihW6kkVQ0/UETnNghd_dI/AAAAAAAAAFU/vVx1-Xnj9vY/s1600/1295977088_sony-VPCEB46FG-laptop.jpeg

Computer Organization and Architecture

 Page 11

Notebook: - These computers are as powerful as desktop but size of these computers are

comparatively smaller than laptop and desktop. They weigh 2 to 3 kg. They are more costly

than laptop.

Palmtop (Hand held): - They are also called as personal Digital Assistant (PDA). These

computers are small in size. They can be held in hands. It is capable of doing word processing,

spreadsheets and hand writing recognition, game playing, faxing and paging. These

computers are not as powerful as desktop computers. Ex: - 3com palmV.

Wearable computer: - The size of this computer is very small so that it can be worn on the

body. It has smaller processing power. It is used in the field of medicine. For example pace

maker to correct the heart beats. Insulin meter to find the levels of insulin in the blood.

Workstations:- It is used in large, high-resolution graphics screen built in network support,

Engineering applications(CAD/CAM), software development desktop publishing

http://1.bp.blogspot.com/-Z8_fyb2_hQI/UETnPURYbyI/AAAAAAAAAFg/AVyPVEUYp6s/s1600/7-Notebook-laptop.jpg
http://4.bp.blogspot.com/-bXui_deIsFc/UETnQ1rFPGI/AAAAAAAAAFs/sSq1qhER5GI/s1600/palmtop.jpg
http://2.bp.blogspot.com/-UsAZdsxGpgs/UETnOdblSeI/AAAAAAAAAFY/WtLHEhTjB68/s1600/300px-Zypad.jpg
http://1.bp.blogspot.com/-Z8_fyb2_hQI/UETnPURYbyI/AAAAAAAAAFg/AVyPVEUYp6s/s1600/7-Notebook-laptop.jpg
http://4.bp.blogspot.com/-bXui_deIsFc/UETnQ1rFPGI/AAAAAAAAAFs/sSq1qhER5GI/s1600/palmtop.jpg
http://2.bp.blogspot.com/-UsAZdsxGpgs/UETnOdblSeI/AAAAAAAAAFY/WtLHEhTjB68/s1600/300px-Zypad.jpg
http://1.bp.blogspot.com/-Z8_fyb2_hQI/UETnPURYbyI/AAAAAAAAAFg/AVyPVEUYp6s/s1600/7-Notebook-laptop.jpg
http://4.bp.blogspot.com/-bXui_deIsFc/UETnQ1rFPGI/AAAAAAAAAFs/sSq1qhER5GI/s1600/palmtop.jpg
http://2.bp.blogspot.com/-UsAZdsxGpgs/UETnOdblSeI/AAAAAAAAAFY/WtLHEhTjB68/s1600/300px-Zypad.jpg

Computer Organization and Architecture

 Page 12

Ex: Unix and windows NT.

b) Minicomputer: - A minicomputer is a medium-sized computer. That is more

powerful than a microcomputer. These computers are usually designed to serve multiple

users simultaneously (Parallel Processing). They are more expensive than microcomputers.

 Examples: Digital Alpha, Sun Ultra.

c) Mainframe (Enterprise) computers: - Computers with large storage capacities and

very high speed of processing (compared to mini- or microcomputers) are known as

mainframe computers. They support a large number of terminals for simultaneous use by a

number of users like ATM transactions. They are also used as central host computers in

distributed data processing system.

 Examples: - IBM 370, S/390.

d) Supercomputer: - Supercomputers have extremely large storage capacity and

computing speeds which are many times faster than other computers. A supercomputer is

measured in terms of tens of millions Instructions per second (mips), an operation is made up

of numerous instructions. The supercomputer is mainly used for large scale numerical

problems in scientific and engineering disciplines such as Weather analysis.

 Examples: - IBM Deep Blue

http://3.bp.blogspot.com/-39jMda8-9aE/UEToaMzCOoI/AAAAAAAAAF8/eWiiUC01mHI/s1600/MINI.jpg
http://2.bp.blogspot.com/-i6OEpb2zoJU/UEToZfnOeFI/AAAAAAAAAF0/ttG82MZDfVA/s1600/MAINFR.jpg
http://3.bp.blogspot.com/-39jMda8-9aE/UEToaMzCOoI/AAAAAAAAAF8/eWiiUC01mHI/s1600/MINI.jpg
http://2.bp.blogspot.com/-i6OEpb2zoJU/UEToZfnOeFI/AAAAAAAAAF0/ttG82MZDfVA/s1600/MAINFR.jpg

Computer Organization and Architecture

 Page 13

Classification based on number of microprocessors

Based on the number of microprocessors, computers can be classified into

a) Sequential computers and

b) Parallel computers

a) Sequential computers: - Any task complete in sequential computers is with one

microcomputer only. Most of the computers (today) we see are sequential computers where

in any task is completed sequentially instruction after instruction from the beginning to the

end.

b) Parallel computers: - The parallel computer is relatively fast. New types of computers

that use a large number of processors. The processors perform different tasks independently

and simultaneously thus improving the speed of execution of complex programs dramatically.

Parallel computers match the speed of supercomputers at a fraction of the cost.

Classification based on word-length

 A binary digit is called “BIT”. A word is a group of bits which is fixed for a computer.

The number of bits in a word (or word length) determines the representation of all characters

in these many bits. Word length leis in the range from 16-bit to 64-bitsf or most computers of

today.

http://2.bp.blogspot.com/--R936ZuzAHk/UETobp6m-UI/AAAAAAAAAGE/ldBY_CuvxeQ/s1600/SUPER.jpg

Computer Organization and Architecture

 Page 14

Classification based on number of users

Based on number of users, computers are classified into: -

Single User: - Only one user can use the resource at any time.

Multi User: - A single computer shared by a number of users at any time.

Network: - A number of interconnected autonomous computers shared by a number

of users at any time.

http://2.bp.blogspot.com/-1WPEG918hJM/UETqf4dd5fI/AAAAAAAAAGU/gemjcvt_CbU/s1600/BINARY.jpg
http://2.bp.blogspot.com/-JRwZrqYHWps/UETqh9fNxxI/AAAAAAAAAGo/Jk-1WvyhH6w/s1600/SINGLE.jpg
http://2.bp.blogspot.com/-dPq77TOuO8U/UETqgv-K88I/AAAAAAAAAGY/itK0Oi_-Sr0/s1600/MULTI.jpg
http://2.bp.blogspot.com/-1WPEG918hJM/UETqf4dd5fI/AAAAAAAAAGU/gemjcvt_CbU/s1600/BINARY.jpg
http://2.bp.blogspot.com/-JRwZrqYHWps/UETqh9fNxxI/AAAAAAAAAGo/Jk-1WvyhH6w/s1600/SINGLE.jpg
http://2.bp.blogspot.com/-dPq77TOuO8U/UETqgv-K88I/AAAAAAAAAGY/itK0Oi_-Sr0/s1600/MULTI.jpg
http://2.bp.blogspot.com/-1WPEG918hJM/UETqf4dd5fI/AAAAAAAAAGU/gemjcvt_CbU/s1600/BINARY.jpg
http://2.bp.blogspot.com/-JRwZrqYHWps/UETqh9fNxxI/AAAAAAAAAGo/Jk-1WvyhH6w/s1600/SINGLE.jpg
http://2.bp.blogspot.com/-dPq77TOuO8U/UETqgv-K88I/AAAAAAAAAGY/itK0Oi_-Sr0/s1600/MULTI.jpg

Computer Organization and Architecture

 Page 15

COMPUTER TYPES

A computer can be defined as a fast electronic calculating machine that accepts the

(data) digitized input information process it as per the list of internally stored instructions

and produces the resulting information. List of instructions are called programs & internal

storage is called computer memory.

The different types of computers are

1. Personal computers: - This is the most common type found in homes, schools,

Business offices etc., It is the most common type of desk top computers with

processing and storage units along with various input and output devices.

2. Note book computers: - These are compact and portable versions of PC

3. Work stations: - These have high resolution input/output (I/O) graphics capability,

but with same dimensions as that of desktop computer. These are used in engineering

applications of interactive design work.

4. Enterprise systems: - These are used for business data processing in medium to large

corporations that require much more computing power and storage capacity than

work stations. Internet associated with servers have become a dominant worldwide

source of all types of information.

5. Super computers: - These are used for large scale numerical calculations required in

the applications like weather forecasting etc.,

http://1.bp.blogspot.com/-4cf0I1jq85E/UETqhcdtZwI/AAAAAAAAAGg/cHKv46tpo3c/s1600/NETWORK.jpg

Computer Organization and Architecture

 Page 16

BASIC TERMINOLOGY

 •Input: Whatever is put into a computer system.

 •Data: Refers to the symbols that represent facts, objects, or ideas.

 •Information: The results of the computer storing data as bits and bytes; the words, umbers,

sounds, and graphics.

 •Output: Consists of the processing results produced by a computer.

 •Processing: Manipulation of the data in many ways.

 •Memory: Area of the computer that temporarily holds data waiting to be processed, stored,

or output.

 •Storage: Area of the computer that holds data on a permanent basis when it is not

immediately needed for processing.

 •Assembly language program (ALP) –Programs are written using mnemonics

 •Mnemonic –Instruction will be in the form of English like form

 •Assembler –is a software which converts ALP to MLL (Machine Level Language)

 •HLL (High Level Language) –Programs are written using English like statements

 •Compiler -Convert HLL to MLL, does this job by reading source program at once

 •Interpreter –Converts HLL to MLL, does this job statement by statement

 •System software –Program routines which aid the user in the execution of programs eg:

Assemblers, Compilers

 •Operating system –Collection of routines responsible for controlling and coordinating all

the activities in a computer system

Computers has two kinds of components:

 Hardware, consisting of its physical devices (CPU, memory, bus, storage devices, ...)

 Software, consisting of the programs it has (Operating system, applications, utilities, ...)

FUNCTIONAL UNIT

A computer consists of five functionally independent main parts input, memory,

arithmetic logic unit (ALU), output and control unit.

Computer Organization and Architecture

 Page 17

Functional units of computer

Input device accepts the coded information as source program i.e. high level

language. This is either stored in the memory or immediately used by the processor to

perform the desired operations. The program stored in the memory determines the

processing steps. Basically the computer converts one source program to an object program.

i.e. into machine language.

Finally the results are sent to the outside world through output device. All of these

actions are coordinated by the control unit.

Input unit: -

Computer Organization and Architecture

 Page 18

The source program/high level language program/coded information/simply data is

fed to a computer through input devices keyboard is a most common type. Whenever a key is

pressed, one corresponding word or number is translated into its equivalent binary code

over a cable & fed either to memory or processor.

Joysticks, trackballs, mouse, scanners etc are other input devices.

Memory unit: -

Its function into store programs and data. It is basically to two types

1. Primary memory

2. Secondary memory

Word:

In computer architecture, a word is a unit of data of a defined bit length that can be addressed

and moved between storage and the computer processor. Usually, the defined bit length of a

word is equivalent to the width of the computer's data bus so that a word can be moved in a

single operation from storage to a processor register. For any computer architecture with an

eight-bit byte, the word will be some multiple of eight bits. In IBM's evolutionary

System/360 architecture, a word is 32 bits, or four contiguous eight-bit bytes. In Intel's PC

processor architecture, a word is 16 bits, or two contiguous eight-bit bytes. A word can

contain a computer instruction, a storage address, or application data that is to be

manipulated (for example, added to the data in another word space).

The number of bits in each word is known as word length. Word length refers to the

number of bits processed by the CPU in one go. With modern general purpose computers,

word size can be 16 bits to 64 bits.

The time required to access one word is called the memory access time. The small, fast,

RAM units are called caches. They are tightly coupled with the processor and are often

contained on the same IC chip to achieve high performance.

http://searchstorage.techtarget.com/definition/storage
http://searchcio-midmarket.techtarget.com/definition/processor
http://whatis.techtarget.com/definition/register
http://searchstorage.techtarget.com/definition/byte
http://searchcio-midmarket.techtarget.com/definition/instruction

Computer Organization and Architecture

 Page 19

1. Primary memory: - Is the one exclusively associated with the processor and operates at

the electronics speeds programs must be stored in this memory while they are being

executed. The memory contains a large number of semiconductors storage cells. Each

capable of storing one bit of information. These are processed in a group of fixed site called

word.

To provide easy access to a word in memory, a distinct address is associated with

each word location. Addresses are numbers that identify memory location.

Number of bits in each word is called word length of the computer. Programs must

reside in the memory during execution. Instructions and data can be written into the

memory or read out under the control of processor. Memory in which any location can be

reached in a short and fixed amount of time after specifying its address is called random-

access memory (RAM).

The time required to access one word in called memory access time. Memory which is

only readable by the user and contents of which can’t be altered is called read only memory

(ROM) it contains operating system.

Computer Organization and Architecture

 Page 20

Caches are the small fast RAM units, which are coupled with the processor and are

often contained on the same IC chip to achieve high performance. Although primary storage

is essential it tends to be expensive.

2 Secondary memory: - Is used where large amounts of data & programs have to be stored,

particularly information that is accessed infrequently.

Examples: - Magnetic disks & tapes, optical disks (ie CD-ROM’s), floppies etc.,

Arithmetic logic unit (ALU):-

Most of the computer operators are executed in ALU of the processor like addition,

subtraction, division, multiplication, etc. the operands are brought into the ALU from

memory and stored in high speed storage elements called register. Then according to the

instructions the operation is performed in the required sequence.

The control and the ALU are may times faster than other devices connected to a

computer system. This enables a single processor to control a number of external devices

such as key boards, displays, magnetic and optical disks, sensors and other mechanical

controllers.

Output unit:-

These actually are the counterparts of input unit. Its basic function is to send the

processed results to the outside world.

Examples:- Printer, speakers, monitor etc.

Control unit:-

It effectively is the nerve center that sends signals to other units and senses their

states. The actual timing signals that govern the transfer of data between input unit,

processor, memory and output unit are generated by the control unit.

BASIC OPERATIONAL CONCEPTS

Computer Organization and Architecture

 Page 21

To perform a given task an appropriate program consisting of a list of instructions is stored

in the memory. Individual instructions are brought from the memory into the processor,

which executes the specified operations. Data to be stored are also stored in the memory.

Examples: - Add LOCA, R0

This instruction adds the operand at memory location LOCA, to operand in register R0

& places the sum into register. This instruction requires the performance of several steps,

1. First the instruction is fetched from the memory into the processor.

2. The operand at LOCA is fetched and added to the contents of R0

3. Finally the resulting sum is stored in the register R0

The preceding add instruction combines a memory access operation with an ALU

Operations. In some other type of computers, these two types of operations are performed by

separate instructions for performance reasons.

Load LOCA, R1

Add R1, R0

Transfers between the memory and the processor are started by sending the address

of the memory location to be accessed to the memory unit and issuing the appropriate control

signals. The data are then transferred to or from the memory.

The fig shows how memory &

Computer Organization and Architecture

 Page 22

the processor can be connected. In addition to the ALU & the control circuitry, the processor

contains a number of registers used for several different purposes.

Register:

It is a special, high-speed storage area within the CPU. All data must be represented in

a register before it can be processed. For example, if two numbers are to be multiplied, both

numbers must be in registers, and the result is also placed in a register. (The register can

contain the address of a memory location where data is stored rather than the actual data

itself.)

The number of registers that a CPU has and the size of each (number of bits) help

determine the power and speed of a CPU. For example a 32-bit CPU is one in which each

register is 32 bits wide. Therefore, each CPU instruction can manipulate 32 bits of

data. In high-level languages, the compiler is responsible for translating high-level operations

into low-level operations that access registers.

Instruction Format:

Computer instructions are the basic components of a machine language program. They are

also known as macro operations, since each one is comprised of sequences of micro

operations.

Each instruction initiates a sequence of micro operations that fetch operands from registers

or memory, possibly perform arithmetic, logic, or shift operations, and store results in

registers or memory.

Computer Organization and Architecture

 Page 23

Instructions are encoded as binary instruction codes. Each instruction code contains of

a operation code, or opcode, which designates the overall purpose of the instruction (e.g. add,

subtract, move, input, etc.). The number of bits allocated for the opcode determined how

many different instructions the architecture supports.

In addition to the opcode, many instructions also contain one or more operands, which

indicate where in registers or memory the data required for the operation is located. For

example, and add instruction requires two operands, and a not instruction requires one.

 15 12 11 6 5 0

 +-----------------------------------+

 | Opcode | Operand | Operand |

 +-----------------------------------+

The opcode and operands are most often encoded as unsigned binary numbers in order to

minimize the number of bits used to store them. For example, a 4-bit opcode encoded as a

binary number could represent up to 16 different operations.

The control unit is responsible for decoding the opcode and operand bits in the instruction

register, and then generating the control signals necessary to drive all other hardware in the

CPU to perform the sequence of micro operations that comprise the instruction.

INSTRUCTION CYCLE:

Computer Organization and Architecture

 Page 24

The instruction register (IR):- Holds the instructions that are currently being executed. Its

output is available for the control circuits which generates the timing signals that control the

various processing elements in one execution of instruction.

The program counter PC:-

This is another specialized register that keeps track of execution of a program. It

contains the memory address of the next instruction to be fetched and executed.

Besides IR and PC, there are n-general purpose registers R0 through Rn-1.

The other two registers which facilitate communication with memory are: -

1. MAR – (Memory Address Register):- It holds the address of the location to be

accessed.

2. MDR – (Memory Data Register):- It contains the data to be written into or read out

of the address location.

Operating steps are

1. Programs reside in the memory & usually get these through the I/P unit.

2. Execution of the program starts when the PC is set to point at the first instruction of

the program.

3. Contents of PC are transferred to MAR and a Read Control Signal is sent to the

memory.

Computer Organization and Architecture

 Page 25

4. After the time required to access the memory elapses, the address word is read out of

the memory and loaded into the MDR.

5. Now contents of MDR are transferred to the IR & now the instruction is ready to be

decoded and executed.

6. If the instruction involves an operation by the ALU, it is necessary to obtain the

required operands.

7. An operand in the memory is fetched by sending its address to MAR & Initiating a

read cycle.

8. When the operand has been read from the memory to the MDR, it is transferred from

MDR to the ALU.

9. After one or two such repeated cycles, the ALU can perform the desired operation.

10. If the result of this operation is to be stored in the memory, the result is sent to MDR.

11. Address of location where the result is stored is sent to MAR & a write cycle is

initiated.

12. The contents of PC are incremented so that PC points to the next instruction that is to

be executed.

Normal execution of a program may be preempted (temporarily interrupted) if some

devices require urgent servicing, to do this one device raises an Interrupt signal. An interrupt

is a request signal from an I/O device for service by the processor. The processor provides

the requested service by executing an appropriate interrupt service routine.

The Diversion may change the internal stage of the processor its state must be saved

in the memory location before interruption. When the interrupt-routine service is completed

the state of the processor is restored so that the interrupted program may continue

THE VON NEUMANN ARCHITECTURE

The task of entering and altering programs for the ENIAC was extremely tedious. The

programming process can be easy if the program could be represented in a form suitable for

storing in memory alongside the data. Then, a computer could get its instructions by reading

them from memory, and a program could be set or altered by setting the values of a portion of

memory. This idea is known a the stored-program concept. The first publication of the idea

Computer Organization and Architecture

 Page 26

was in a 1945 proposal by von Neumann for a new computer, the EDVAC (Electronic Discrete

Variable Computer).

In 1946, von Neumann and his colleagues began the design of a new stored-program

computer, referred to as the IAS computer, at the Princeton Institute for Advanced Studies.

The IAS computer, although not completed until 1952, is the prototype of all subsequent

general-purpose computers.

It consists of

 A main memory, which stores both data and instruction

 An arithmetic and logic unit (ALU) capable of operating on binary data

 A control unit, which interprets the instructions in memory and causes them to be

executed

 Input and output (I/O) equipment operated by the control unit

BUS STRUCTURES:

Bus structure and multiple bus structures are types of bus or computing. A bus is basically a

subsystem which transfers data between the components of Computer components either

within a computer or between two computers. It connects peripheral devices at the same

time.

Computer Organization and Architecture

 Page 27

- A multiple Bus Structure has multiple inter connected service integration buses and for each

bus the other buses are its foreign buses. A Single bus structure is very simple and consists of

a single server.

- A bus cannot span multiple cells. And each cell can have more than one buses. - Published

messages are printed on it. There is no messaging engine on Single bus structure

I) In single bus structure all units are connected in the same bus than connecting different

buses as multiple bus structure.

II) Multiple bus structure's performance is better than single bus structure. Iii)single bus

structure's cost is cheap than multiple bus structure.

Group of lines that serve as connecting path for several devices is called a bus (one bit per

line).

Individual parts must communicate over a communication line or path for exchanging

data, address and control information as shown in the diagram below. Printer example –

processor to printer. A common approach is to use the concept of buffer registers to hold the

content during the transfer.

Buffer registers hold the data during the data transfer temporarily. Ex: printing

Types of Buses:

1. Data Bus:

Data bus is the most common type of bus. It is used to transfer data between different

components of computer. The number of lines in data bus affects the speed of data transfer

between different components. The data bus consists of 8, 16, 32, or 64 lines. A 64-line data

bus can transfer 64 bits of data at one time.

Computer Organization and Architecture

 Page 28

The data bus lines are bi-directional. It means that:

CPU can read data from memory using these lines CPU can write data to memory locations

using these lines

2. Address Bus:

Many components are connected to one another through buses. Each component is assigned a

unique ID. This ID is called the address of that component. It a component wants to

communicate with another component, it uses address bus to specify the address of that

component. The address bus is a unidirectional bus. It can carry information only in one

direction. It carries address of memory location from microprocessor to the main memory.

3. Control Bus:

Control bus is used to transmit different commands or control signals from one component to

another component. Suppose CPU wants to read data from main memory. It will use control is

also used to transmit control signals like ASKS (Acknowledgement signals). A control signal

contains the following:

1 Timing information: It specifies the time for which a device can use data and address bus.

2 Command Signal: It specifies the type of operation to be performed.

Suppose that CPU gives a command to the main memory to write data. The memory sends

acknowledgement signal to CPU after writing the data successfully. CPU receives the signal

and then moves to perform some other action.

SOFTWARE

If a user wants to enter and run an application program, he/she needs a System Software.

System Software is a collection of programs that are executed as needed to perform functions

such as:

• Receiving and interpreting user commands

• Entering and editing application programs and storing then as files in secondary storage

devices

• Running standard application programs such as word processors, spread sheets, games

etc…

Operating system - is key system software component which helps the user to exploit the

below underlying hardware with the programs.

Computer Organization and Architecture

 Page 29

Types of software

A layer structure showing where Operating System is located on generally used software

systems on desktops

System software

System software helps run the computer hardware and computer system. It includes a

combination of the following:

 device drivers

 operating systems

 servers

 utilities

 windowing systems

 compilers

 debuggers

 interpreters

 linkers

The purpose of systems software is to unburden the applications programmer from the often

complex details of the particular computer being used, including such accessories as

communications devices, printers, device readers, displays and keyboards, and also to

partition the computer's resources such as memory and processor time in a safe and stable

manner. Examples are- Windows XP, Linux and Mac.

Application software

Application software allows end users to accomplish one or more specific (not directly

computer development related) tasks. Typical applications include:

onal software

Computer Organization and Architecture

 Page 30

Application software exists for and has impacted a wide variety of topics.

PERFORMANCE

The most important measure of the performance of a computer is how quickly it can

execute programs. The speed with which a computer executes program is affected by the

design of its hardware. For best performance, it is necessary to design the compiles, the

machine instruction set, and the hardware in a coordinated way.

The total time required to execute the program is elapsed time is a measure of the

performance of the entire computer system. It is affected by the speed of the processor, the

disk and the printer. The time needed to execute a instruction is called the processor time.

Just as the elapsed time for the execution of a program depends on all units in a

computer system, the processor time depends on the hardware involved in the execution of

individual machine instructions. This hardware comprises the processor and the memory

which are usually connected by the bus as shown in the fig c.

The pertinent parts of the fig. c are repeated in fig. d which includes the cache

memory as part of the processor unit.

Computer Organization and Architecture

 Page 31

Let us examine the flow of program instructions and data between the memory and

the processor. At the start of execution, all program instructions and the required data are

stored in the main memory. As the execution proceeds, instructions are fetched one by one

over the bus into the processor, and a copy is placed in the cache later if the same instruction

or data item is needed a second time, it is read directly from the cache.

The processor and relatively small cache memory can be fabricated on a single IC

chip. The internal speed of performing the basic steps of instruction processing on chip is

very high and is considerably faster than the speed at which the instruction and data can be

fetched from the main memory. A program will be executed faster if the movement of

instructions and data between the main memory and the processor is minimized, which is

achieved by using the cache.

For example:- Suppose a number of instructions are executed repeatedly over a short period

of time as happens in a program loop. If these instructions are available in the cache, they can

be fetched quickly during the period of repeated use. The same applies to the data that are

used repeatedly.

Processor clock: -

Processor circuits are controlled by a timing signal called clock. The clock designer

the regular time intervals called clock cycles. To execute a machine instruction the processor

divides the action to be performed into a sequence of basic steps that each step can be

completed in one clock cycle. The length P of one clock cycle is an important parameter that

affects the processor performance.

Processor used in today’s personal computer and work station have a clock rates that

range from a few hundred million to over a billion cycles per second.

Basic performance equation

We now focus our attention on the processor time component of the total elapsed

time. Let ‘T’ be the processor time required to execute a program that has been prepared in

some high-level language. The compiler generates a machine language object program that

Computer Organization and Architecture

 Page 32

corresponds to the source program. Assume that complete execution of the program requires

the execution of N machine cycle language instructions. The number N is the actual number

of instruction execution and is not necessarily equal to the number of machine cycle

instructions in the object program. Some instruction may be executed more than once, which

in the case for instructions inside a program loop others may not be executed all, depending

on the input data used.

Suppose that the average number of basic steps needed to execute one machine cycle

instruction is S, where each basic step is completed in one clock cycle. If clock rate is ‘R’

cycles per second, the program execution time is given by

T=N*S/R

this is often referred to as the basic performance equation.

We must emphasize that N, S & R are not independent parameters changing one may

affect another. Introducing a new feature in the design of a processor will lead to improved

performance only if the overall result is to reduce the value of T.

Pipelining and super scalar operation: -

We assume that instructions are executed one after the other. Hence the value of S is

the total number of basic steps, or clock cycles, required to execute one instruction. A

substantial improvement in performance can be achieved by overlapping the execution of

successive instructions using a technique called pipelining.

Consider Add R1 R2 R3

This adds the contents of R1 & R2 and places the sum into R3.

The contents of R1 & R2 are first transferred to the inputs of ALU. After the addition

operation is performed, the sum is transferred to R3. The processor can read the next

instruction from the memory, while the addition operation is being performed. Then of that

instruction also uses, the ALU, its operand can be transferred to the ALU inputs at the same

time that the add instructions is being transferred to R3.

In the ideal case if all instructions are overlapped to the maximum degree possible

the execution proceeds at the rate of one instruction completed in each clock cycle.

Computer Organization and Architecture

 Page 33

Individual instructions still require several clock cycles to complete. But for the purpose of

computing T, effective value of S is 1.

A higher degree of concurrency can be achieved if multiple instructions pipelines are

implemented in the processor. This means that multiple functional units are used creating

parallel paths through which different instructions can be executed in parallel with such an

arrangement, it becomes possible to start the execution of several instructions in every clock

cycle. This mode of operation is called superscalar execution. If it can be sustained for a long

time during program execution the effective value of S can be reduced to less than one. But

the parallel execution must preserve logical correctness of programs that is the results

produced must be same as those produced by the serial execution of program instructions.

Now days many processors are designed in this manner.

Clock rate

These are two possibilities for increasing the clock rate ‘R’.

1. Improving the IC technology makes logical circuit faster, which reduces the time of

execution of basic steps. This allows the clock period P, to be reduced and the clock

rate R to be increased.

2. Reducing the amount of processing done in one basic step also makes it possible to

reduce the clock period P. however if the actions that have to be performed by an

instructions remain the same, the number of basic steps needed may increase.

Increase in the value ‘R’ that are entirely caused by improvements in IC technology

affects all aspects of the processor’s operation equally with the exception of the time it takes

to access the main memory. In the presence of cache the percentage of accesses to the main

memory is small. Hence much of the performance gain excepted from the use of faster

technology can be realized.

Instruction set CISC & RISC:-

Simple instructions require a small number of basic steps to execute. Complex

instructions involve a large number of steps. For a processor that has only simple instruction

a large number of instructions may be needed to perform a given programming task. This

could lead to a large value of ‘N’ and a small value of ‘S’ on the other hand if individual

instructions perform more complex operations, a fewer instructions will be needed, leading

Computer Organization and Architecture

 Page 34

to a lower value of N and a larger value of S. It is not obvious if one choice is better than the

other.

But complex instructions combined with pipelining (effective value of S ¿ 1) would

achieve one best performance. However, it is much easier to implement efficient pipelining in

processors with simple instruction sets.

RISC and CISC are computing systems developed for computers. Instruction set or

instruction set architecture is the structure of the computer that provides commands to the

computer to guide the computer for processing data manipulation. Instruction set consists of

instructions, addressing modes, native data types, registers, interrupt, exception handling and

memory architecture. Instruction set can be emulated in software by using an interpreter or

built into hardware of the processor. Instruction Set Architecture can be considered as a

boundary between the software and hardware. Classification of microcontrollers and

microprocessors can be done based on the RISC and CISC instruction set architecture.

Comparison between RISC and CISC:

RISC CISC

Acronym
It stands for ‘Reduced
Instruction Set Computer’.

It stands for ‘Complex
Instruction Set Computer’.

Definition
The RISC processors have a
smaller set of instructions with
few addressing nodes.

The CISC processors have a
larger set of instructions with
many addressing nodes.

Memory unit
It has no memory unit and uses
a separate hardware to
implement instructions.

It has a memory unit to
implement complex
instructions.

Program
It has a hard-wired unit of
programming.

It has a micro-programming
unit.

Design It is a complex complier design. It is an easy complier design.

Calculations
The calculations are faster and
precise.

The calculations are slow and
precise.

Decoding
Decoding of instructions is
simple.

Decoding of instructions is
complex.

Time Execution time is very less. Execution time is very high.

External It does not require external It requires external memory

https://www.elprocus.com/microcontrollers-types-and-applications/

Computer Organization and Architecture

 Page 35

memory memory for calculations. for calculations.

Pipelining
Pipelining does function
correctly.

Pipelining does not function
correctly.

Stalling
Stalling is mostly reduced in
processors.

The processors often stall.

Code expansion
Code expansion can be a
problem.

Code expansion is not a
problem.

Disc space The space is saved. The space is wasted.

Applications

Used in high end applications
such as video processing,
telecommunications and image
processing.

Used in low end applications
such as security systems, home
automations, etc.

Computer Organization and Architecture

 Page 36

1.8 Performance measurements

The performance measure is the time taken by the computer to execute a given bench

mark. Initially some attempts were made to create artificial programs that could be used as

bench mark programs. But synthetic programs do not properly predict the performance

obtained when real application programs are run.

A non-profit organization called SPEC- system performance Evaluation Corporation

selects and publishes bench marks.

The program selected range from game playing, compiler, and data base applications

to numerically intensive programs in astrophysics and quantum chemistry. In each case, the

program is compiled under test, and the running time on a real computer is measured. The

same program is also compiled and run on one computer selected as reference.

The ‘SPEC’ rating is computed as follows.

SPEC rating = Running time on the reference computer/ Running time on the computer under

test

MULTIPROCESSORS AND MULTICOMPUTER

Computer Organization and Architecture

 Page 37

multicomputer multiprocessors

1. A computer made up of several computers.

2. Distributed computing deals with hardware

and software systems containing more than

one processing element, multiple programs

 3. It can run faster

 4. A multi-computer is multiple computers,

each of which can have multiple processors.

5. Used for true parallel processing.

6. Processor can not share the memory.

7. Called as message passing multi computers

8. Cost is more

1. A computer that has more than one CPU on

its motherboard.

2. Multiprocessing is the use of two or more

central processing units (CPUs) within a

single computer system.

 3. Speed depends on the all processors speed

 4. Single Computer with multiple processors

5. Used for true parallel processing.

6. Processors can share the memory.

7. Called as shared memory multi processors

8. Cost is low

Data Representation:

Computer Organization and Architecture

 Page 38

Registers are made up of flip-flops and flip-flops are two-state devices that can store only 1’s

and 0’s.

There are many methods or techniques which can be used to convert numbers from one

base to another. We'll demonstrate here the following −

 Decimal to Other Base System

 Other Base System to Decimal

 Other Base System to Non-Decimal

 Shortcut method − Binary to Octal

 Shortcut method − Octal to Binary

 Shortcut method − Binary to Hexadecimal

 Shortcut method − Hexadecimal to Binary

Decimal to Other Base System

Steps

 Step 1 − Divide the decimal number to be converted by the value of the new base.

 Step 2 − Get the remainder from Step 1 as the rightmost digit (least significant digit)

of new base number.

 Step 3 − Divide the quotient of the previous divide by the new base.

 Step 4 − Record the remainder from Step 3 as the next digit (to the left) of the new

base number.

Repeat Steps 3 and 4, getting remainders from right to left, until the quotient becomes zero

in Step 3.

The last remainder thus obtained will be the Most Significant Digit (MSD) of the new base

number.

Example −

Decimal Number: 2910

Calculating Binary Equivalent −

Computer Organization and Architecture

 Page 39

Step Operation Result Remainder

Step 1 29 / 2 14 1

Step 2 14 / 2 7 0

Step 3 7 / 2 3 1

Step 4 3 / 2 1 1

Step 5 1 / 2 0 1

As mentioned in Steps 2 and 4, the remainders have to be arranged in the reverse order so

that the first remainder becomes the Least Significant Digit (LSD) and the last remainder

becomes the Most Significant Digit (MSD).

Decimal Number − 2910 = Binary Number − 111012.

Other Base System to Decimal System

Steps

 Step 1 − Determine the column (positional) value of each digit (this depends on the

position of the digit and the base of the number system).

 Step 2 − Multiply the obtained column values (in Step 1) by the digits in the

corresponding columns.

 Step 3 − Sum the products calculated in Step 2. The total is the equivalent value in

decimal.

Example

Binary Number − 111012

Calculating Decimal Equivalent −

Binary Number − 111012 = Decimal Number − 2910

Other Base System to Non-Decimal System

Steps

Step Binary Number Decimal Number

Step 1 111012 ((1 × 24) + (1 × 23) + (1 × 22) + (0 × 21) + (1 × 20))10

Step 2 111012 (16 + 8 + 4 + 0 + 1)10

Step 3 111012 2910

Computer Organization and Architecture

 Page 40

 Step 1 − Convert the original number to a decimal number (base 10).

 Step 2 − Convert the decimal number so obtained to the new base number.

Example

Octal Number − 258

Calculating Binary Equivalent −

Step 1 − Convert to Decimal

Step Octal Number Decimal Number

Step 1 258 ((2 × 81) + (5 × 80))10

Step 2 258 (16 + 5)10

Step 3 258 2110

Octal Number − 258 = Decimal Number − 2110

Step 2 − Convert Decimal to Binary

Step Operation Result Remainder

Step 1 21 / 2 10 1

Step 2 10 / 2 5 0

Step 3 5 / 2 2 1

Step 4 2 / 2 1 0

Step 5 1 / 2 0 1

Decimal Number − 2110 = Binary Number − 101012

Octal Number − 258 = Binary Number − 101012

Shortcut method - Binary to Octal

Steps

 Step 1 − Divide the binary digits into groups of three (starting from the right).

 Step 2 − Convert each group of three binary digits to one octal digit.

Example

Binary Number − 101012

Calculating Octal Equivalent −

Computer Organization and Architecture

 Page 41

Step Binary Number Octal Number

Step 1 101012 010 101

Step 2 101012 28 58

Step 3 101012 258

Binary Number − 101012 = Octal Number − 258

Shortcut method - Octal to Binary

Steps

 Step 1 − Convert each octal digit to a 3 digit binary number (the octal digits may be

treated as decimal for this conversion).

 Step 2 − Combine all the resulting binary groups (of 3 digits each) into a single binary

number.

Example

Octal Number − 258

Calculating Binary Equivalent −

Step Octal Number Binary Number

Step 1 258 210 510

Step 2 258 0102 1012

Step 3 258 0101012

Octal Number − 258 = Binary Number − 101012

Shortcut method - Binary to Hexadecimal

Steps

 Step 1 − Divide the binary digits into groups of four (starting from the right).

 Step 2 − Convert each group of four binary digits to one hexadecimal symbol.

Example

Binary Number − 101012

Calculating hexadecimal Equivalent −

Step Binary Number Hexadecimal Number

Step 1 101012 0001 0101

Computer Organization and Architecture

 Page 42

Step 2 101012 110 510

Step 3 101012 1516

Binary Number − 101012 = Hexadecimal Number − 1516

Shortcut method - Hexadecimal to Binary

Steps

 Step 1 − Convert each hexadecimal digit to a 4 digit binary number (the hexadecimal

digits may be treated as decimal for this conversion).

 Step 2 − Combine all the resulting binary groups (of 4 digits each) into a single binary

number.

Example

Hexadecimal Number − 1516

Calculating Binary Equivalent −

Step Hexadecimal Number Binary Number

Step 1 1516 110 510

Step 2 1516 00012 01012

Step 3 1516 000101012

Hexadecimal Number − 1516 = Binary Number − 101012

Binary Coded Decimal (BCD) code

In this code each decimal digit is represented by a 4-bit binary number. BCD is a way to

express each of the decimal digits with a binary code. In the BCD, with four bits we can

represent sixteen numbers (0000 to 1111). But in BCD code only first ten of these are used

(0000 to 1001). The remaining six code combinations i.e. 1010 to 1111 are invalid in BCD.

Advantages of BCD Codes

 It is very similar to decimal system.

Computer Organization and Architecture

 Page 43

 We need to remember binary equivalent of decimal numbers 0 to 9 only.

Disadvantages of BCD Codes

 The addition and subtraction of BCD have different rules.

 The BCD arithmetic is little more complicated.

 BCD needs more number of bits than binary to represent the decimal number. So BCD

is less efficient than binary.

Alphanumeric codes

A binary digit or bit can represent only two symbols as it has only two states '0' or '1'. But

this is not enough for communication between two computers because there we need many

more symbols for communication. These symbols are required to represent 26 alphabets

with capital and small letters, numbers from 0 to 9, punctuation marks and other symbols.

The alphanumeric codes are the codes that represent numbers and alphabetic

characters. Mostly such codes also represent other characters such as symbol and various

instructions necessary for conveying information. An alphanumeric code should at least

represent 10 digits and 26 letters of alphabet i.e. total 36 items. The following three

alphanumeric codes are very commonly used for the data representation.

 American Standard Code for Information Interchange (ASCII).

 Extended Binary Coded Decimal Interchange Code (EBCDIC).

 Five bit Baudot Code.

ASCII code is a 7-bit code whereas EBCDIC is an 8-bit code. ASCII code is more commonly

used worldwide while EBCDIC is used primarily in large IBM computers.

Complement Arithmetic

Complements are used in the digital computers in order to simplify the subtraction

operation and for the logical manipulations. For each radix-r system (radix r represents base

of number system) there are two types of complements.

S.N. Complement Description

1 Radix Complement The radix complement is referred to as the r's

complement

2 Diminished Radix Complement The diminished radix complement is referred

Computer Organization and Architecture

 Page 44

to as the (r-1)'s complement

Binary system complements

As the binary system has base r = 2. So the two types of complements for the binary system

are 2's complement and 1's complement.

1's complement

The 1's complement of a number is found by changing all 1's to 0's and all 0's to 1's. This is

called as taking complement or 1's complement. Example of 1's Complement is as follows.

2's complement

The 2's complement of binary number is obtained by adding 1 to the Least Significant Bit

(LSB) of 1's complement of the number.

2's complement = 1's complement + 1

Example of 2's Complement is as follows.

Binary Arithmetic

Binary arithmetic is essential part of all the digital computers and many other digital system.

Computer Organization and Architecture

 Page 45

Binary Addition

It is a key for binary subtraction, multiplication, division. There are four rules of binary

addition.

In fourth case, a binary addition is creating a sum of (1 + 1 = 10) i.e. 0 is written in the given

column and a carry of 1 over to the next column.

Example − Addition

Binary Subtraction

Subtraction and Borrow, these two words will be used very frequently for the binary

subtraction. There are four rules of binary subtraction.

Example − Subtraction

Binary Multiplication

Computer Organization and Architecture

 Page 46

Binary multiplication is similar to decimal multiplication. It is simpler than decimal

multiplication because only 0s and 1s are involved. There are four rules of binary

multiplication.

Example − Multiplication

Binary Division

Binary division is similar to decimal division. It is called as the long division procedure.

Example − Division

Subtraction by 1’s Complement

In subtraction by 1’s complement we subtract two binary numbers using carried by 1’s

complement.

Computer Organization and Architecture

 Page 47

The steps to be followed in subtraction by 1’s complement are:

i) To write down 1’s complement of the subtrahend.

ii) To add this with the minuend.

iii) If the result of addition has a carry over then it is dropped and an 1 is added in the last bit.

iv) If there is no carry over, then 1’s complement of the result of addition is obtained to get the

final result and it is negative.

Evaluate:

(i) 110101 – 100101

Solution:

1’s complement of 10011 is 011010. Hence

 Minued - 1 1 0 1 0 1

 1’s complement of subtrahend - 0 1 1 0 1 0

 Carry over - 1 0 0 1 1 1 1

 1

 0 1 0 0 0 0

The required difference is 10000

(ii) 101011 – 111001

Solution:

1’s complement of 111001 is 000110. Hence

 Minued - 1 0 1 0 1 1

 1’s complement - 0 0 0 1 1 0

 1 1 0 0 0 1

Hence the difference is – 1 1 1 0

(iii) 1011.001 – 110.10

Solution:

1’s complement of 0110.100 is 1001.011 Hence

 Minued - 1 0 1 1 . 0 0 1

 1’s complement of subtrahend - 1 0 0 1 . 0 1 1

 Carry over - 1 0 1 0 0 . 1 0 0

Computer Organization and Architecture

 Page 48

 1

 0 1 0 0 . 1 0 1

Hence the required difference is 100.101

(iv) 10110.01 – 11010.10

Solution:

1’s complement of 11010.10 is 00101.01

 1 0 1 1 0 . 0 1

 0 0 1 0 1 . 0 1

 1 1 0 1 1 . 1 0

Hence the required difference is – 00100.01 i.e. – 100.01

Subtraction by 2’s Complement

With the help of subtraction by 2’s complement method we can easily subtract two binary

numbers.

The operation is carried out by means of the following steps:

(i) At first, 2’s complement of the subtrahend is found.

(ii) Then it is added to the minuend.

(iii) If the final carry over of the sum is 1, it is dropped and the result is positive.

(iv) If there is no carry over, the two’s complement of the sum will be the result and it is

negative.

The following examples on subtraction by 2’s complement will make the

procedure clear:

Evaluate:

(i) 110110 - 10110

Solution:

The numbers of bits in the subtrahend is 5 while that of minuend is 6. We make the number of

bits in the subtrahend equal to that of minuend by taking a `0’ in the sixth place of the

subtrahend.

Now, 2’s complement of 010110 is (101101 + 1) i.e.101010. Adding this with the minuend.

 1 1 0 1 1 0 Minuend

 1 0 1 0 1 0 2’s complement of subtrahend

Computer Organization and Architecture

 Page 49

 Carry over 1 1 0 0 0 0 0 Result of addition

After dropping the carry over we get the result of subtraction to be 100000.

(ii) 10110 – 11010

Solution:

2’s complement of 11010 is (00101 + 1) i.e. 00110. Hence

 Minued - 1 0 1 1 0

 2’s complement of subtrahend - 0 0 1 1 0

 Result of addition - 1 1 1 0 0

As there is no carry over, the result of subtraction is negative and is obtained by writing the 2’s

complement of 11100 i.e.(00011 + 1) or 00100.

Hence the difference is – 100.

(iii) 1010.11 – 1001.01

Solution:

2’s complement of 1001.01 is 0110.11. Hence

 Minued - 1 0 1 0 . 1 1

2’s complement of subtrahend - 0 1 1 0 . 1 1

 Carry over 1 0 0 0 1 . 1 0

After dropping the carry over we get the result of subtraction as 1.10.

(iv) 10100.01 – 11011.10

Solution:

2’s complement of 11011.10 is 00100.10. Hence

 Minued - 1 0 1 0 0 . 0 1

 2’s complement of subtrahend - 0 1 1 0 0 . 1 0

 Result of addition - 1 1 0 0 0 . 1 1

As there is no carry over the result of subtraction is negative and is obtained by writing the 2’s

complement of 11000.11.

Hence the required result is – 00111.01.

Computer Organization and Architecture

 Page 50

Error Detection & Correction

What is Error?

Error is a condition when the output information does not match with the input information.

During transmission, digital signals suffer from noise that can introduce errors in the binary

bits travelling from one system to other. That means a 0 bit may change to 1 or a 1 bit may

change to 0.

Error-Detecting codes

Whenever a message is transmitted, it may get scrambled by noise or data may get

corrupted. To avoid this, we use error-detecting codes which are additional data added to a

given digital message to help us detect if an error occurred during transmission of the

message. A simple example of error-detecting code is parity check.

Error-Correcting codes

Along with error-detecting code, we can also pass some data to figure out the original

message from the corrupt message that we received. This type of code is called an error-

correcting code. Error-correcting codes also deploy the same strategy as error-detecting

codes but additionally, such codes also detect the exact location of the corrupt bit.

In error-correcting codes, parity check has a simple way to detect errors along with a

sophisticated mechanism to determine the corrupt bit location. Once the corrupt bit is

located, its value is reverted (from 0 to 1 or 1 to 0) to get the original message.

How to Detect and Correct Errors?

To detect and correct the errors, additional bits are added to the data bits at the time of

transmission.

 The additional bits are called parity bits. They allow detection or correction of the

errors.

 The data bits along with the parity bits form a code word.

Computer Organization and Architecture

 Page 51

Parity Checking of Error Detection

It is the simplest technique for detecting and correcting errors. The MSB of an 8-bits word is

used as the parity bit and the remaining 7 bits are used as data or message bits. The parity of

8-bits transmitted word can be either even parity or odd parity.

Even parity -- Even parity means the number of 1's in the given word including the parity

bit should be even (2,4,6,....).

Odd parity -- Odd parity means the number of 1's in the given word including the parity bit

should be odd (1,3,5,....).

Use of Parity Bit

The parity bit can be set to 0 and 1 depending on the type of the parity required.

 For even parity, this bit is set to 1 or 0 such that the no. of "1 bits" in the entire word is

even. Shown in fig. (a).

 For odd parity, this bit is set to 1 or 0 such that the no. of "1 bits" in the entire word is

odd. Shown in fig. (b).

How Does Error Detection Take Place?

Parity checking at the receiver can detect the presence of an error if the parity of the receiver

signal is different from the expected parity. That means, if it is known that the parity of the

transmitted signal is always going to be "even" and if the received signal has an odd parity,

then the receiver can conclude that the received signal is not correct. If an error is detected,

Computer Organization and Architecture

 Page 52

then the receiver will ignore the received byte and request for retransmission of the same

byte to the transmitter.

Computer Organization and Architecture

 Page 53

UNIT – II (12 Lectures)

BASIC COMPUTER ORGANIZATION AND DESIGN: Instruction codes, computer

registers, computer instructions, instruction cycle, timing and control,

memory‐reference instructions, input‐output and interrupt.

Book: M. Moris Mano (2006), Computer System Architecture, 3rd edition, Pearson/PHI,

India: Unit-5 Pages: 123-157

Central processing unit: stack organization, instruction formats, addressing modes,

data transfer and manipulation, program control, reduced instruction set computer

(RISC).

Book: M. Moris Mano (2006), Computer System Architecture, 3rd edition, Pearson/PHI,

India: Unit-8 Pages: 241-297

Instruction Codes

Computer instructions are the basic components of a machine language program. They

are also known as macro operations, since each one is comprised of sequences of

micro operations. Each instruction initiates a sequence of micro operations that fetch

operands from registers or memory, possibly perform arithmetic, logic, or shift

operations, and store results in registers or memory.

Instructions are encoded as binary instruction codes. Each instruction code

contains of a operation code, or opcode, which designates the overall purpose of the

instruction (e.g. add, subtract, move, input, etc.). The number of bits allocated for the

opcode determined how many different instructions the architecture supports.

In addition to the opcode, many instructions also contain one or more operands,

which indicate where in registers or memory the data required for the operation is

located. For example, and add instruction requires two operands, and a not instruction

requires one.

 15 12 11 6 5 0

 +-----------------------------------+

Computer Organization and Architecture

 Page 54

 | Opcode | Operand | Operand |

 +-----------------------------------+

The opcode and operands are most often encoded as unsigned binary numbers in

order to minimize the number of bits used to store them. For example, a 4-bit opcode

encoded as a binary number could represent up to 16 different operations.

The control unit is responsible for decoding the opcode and operand bits in the

instruction register, and then generating the control signals necessary to drive all

other hardware in the CPU to perform the sequence of microoperations that comprise

the instruction.

Basic Computer Instruction Format:

The Basic Computer has a 16-bit instruction code similar to the examples described

above. It supports direct and indirect addressing modes.

How many bits are required to specify the addressing mode?

 15 14 12 11 0

 +------------------+

 | I | OP | ADDRESS |

 +------------------+

 I = 0: direct

 I = 1: indirect

Computer Instructions

All Basic Computer instruction codes are 16 bits wide. There are 3 instruction code

formats:

Memory-reference instructions take a single memory address as an operand, and

have the format:

 15 14 12 11 0

 +-------------------+

 | I | OP | Address |

 +-------------------+

Computer Organization and Architecture

 Page 55

If I = 0, the instruction uses direct addressing. If I = 1, addressing in indirect.

How many memory-reference instructions can exist?

Register-reference instructions operate solely on the AC register, and have the

following format:

 15 14 12 11 0

 +------------------+

 | 0 | 111 | OP |

 +------------------+

How many register-reference instructions can exist? How many memory-

reference instructions can coexist with register-reference instructions?

Input/output instructions have the following format:

 15 14 12 11 0

 +------------------+

 | 1 | 111 | OP |

 +------------------+

How many I/O instructions can exist? How many memory-reference

instructions can coexist with register-reference and I/O instructions?

Timing and Control

All sequential circuits in the Basic Computer CPU are driven by a master clock, with

the exception of the INPR register. At each clock pulse, the control unit sends control

signals to control inputs of the bus, the registers, and the ALU.

Control unit design and implementation can be done by two general methods:

 A hardwired control unit is designed from scratch using traditional digital logic

design techniques to produce a minimal, optimized circuit. In other words, the

control unit is like an ASIC (application-specific integrated circuit).

Computer Organization and Architecture

 Page 56

 A micro-programmed control unit is built from some sort of ROM. The desired

control signals are simply stored in the ROM, and retrieved in sequence to drive

the micro operations needed by a particular instruction.

Micro programmed control:

Micro programmed control is a control mechanism to generate control signals by

using a memory called control storage (CS), which contains the control

signals. Although micro programmed control seems to be advantageous to CISC

machines, since CISC requires systematic development of sophisticated control

signals, there is no intrinsic difference between these 2 control mechanisms.

Hard-wired control:

 Hardwired control is a control mechanism to generate control signals by using

appropriate finite state machine (FSM). The pair of "microinstruction-register" and

"control storage address register" can be regarded as a "state register" for the

hardwired control. Note that the control storage can be regarded as a kind of

combinational logic circuit. We can assign any 0, 1 values to each output

corresponding to each address, which can be regarded as the input for a

combinational logic circuit. This is a truth table.

Computer Organization and Architecture

 Page 57

Instruction Cycle

In this chapter, we examine the sequences of micro operations that the Basic

Computer goes through for each instruction. Here, you should begin to understand

how the required control signals for each state of the CPU are determined, and how

they are generated by the control unit.

The CPU performs a sequence of micro operations for each instruction. The sequence

for each instruction of the Basic Computer can be refined into 4 abstract phases:

1. Fetch instruction

2. Decode

3. Fetch operand

4. Execute

Program execution can be represented as a top-down design:

1. Program execution

a. Instruction 1

i. Fetch instruction

ii. Decode

iii. Fetch operand

iv. Execute

b. Instruction 2

i. Fetch instruction

ii. Decode

iii. Fetch operand

iv. Execute

c. Instruction 3 ...

Computer Organization and Architecture

 Page 58

Program execution begins with:

PC ← address of first instruction, SC ← 0

After this, the SC is incremented at each clock cycle until an instruction is completed,

and then it is cleared to begin the next instruction. This process repeats until a HLT

instruction is executed, or until the power is shut off.

Instruction Fetch and Decode

The instruction fetch and decode phases are the same for all instructions, so the

control functions and micro operations will be independent of the instruction code.

Everything that happens in this phase is driven entirely by timing variables T0, T1 and

T2. Hence, all control inputs in the CPU during fetch and decode are functions of these

three variables alone.

T0: AR ← PC

T1: IR ← M[AR], PC ← PC + 1

T2: D0-7 ← decoded IR(12-14), AR ← IR(0-11), I ← IR(15)

For every timing cycle, we assume SC ← SC + 1 unless it is stated that SC ← 0.

The operation D0-7 ← decoded IR(12-14) is not a register transfer like most of our

micro operations, but is actually an inevitable consequence of loading a value into the

IR register. Since the IR outputs 12-14 are directly connected to a decoder, the outputs

of that decoder will change as soon as the new values of IR(12-14) propagate through

the decoder.

Note that incrementing the PC at time T1 assumes that the next instruction is at

the next address. This may not be the case if the current instruction is a branch

instruction. However, performing the increment here will save time if the next

instruction immediately follows, and will do no harm if it doesn't. The incremented PC

value is simply overwritten by branch instructions.

In hardware development, unlike serial software development, it is often

advantageous to perform work that may not be necessary. Since we can perform

multiple micro operations at the same time, we might was well do everything

that might be useful at the earliest possible time. Likewise, loading AR with the

Computer Organization and Architecture

 Page 59

address field from IR at T2 is only useful if the instruction is a memory-reference

instruction. We won't know this until T3, but there is no reason to wait since there is

no harm in loading AR immediately.

Input-Output and Interrupt

Hardware Summary

The Basic Computer I/O consists of a simple terminal with a keyboard and a

printer/monitor.

The keyboard is connected serially (1 data wire) to the INPR register. INPR is a shift

register capable of shifting in external data from the keyboard one bit at a time. INPR

outputs are connected in parallel to the ALU.

 Shift enable

 |

 v

 +-----------+ 1 +-------+

 | Keyboard |---/-->| INPR <|--- serial I/O clock

 +-----------+ +-------+

 |

 / 8

 | | |

 v v v

 +---------------+

 | ALU |

 +---------------+

 |

 / 16

 |

 v

 +---------------+

 | AC <|--- CPU master clock

 +---------------+

Computer Organization and Architecture

 Page 60

How many CPU clock cycles are needed to transfer a character from the keyboard to

the INPR register? (tricky)

Are the clock pulses provided by the CPU master clock?

RS232, USB, Firewire are serial interfaces with their own clock independent of the

CPU. (USB speed is independent of processor speed.)

 RS232: 115,200 kbps (some faster)

 USB: 11 mbps

 USB2: 480 mbps

 FW400: 400 mbps

 FW800: 800 mbps

 USB3: 4.8 gbps

OUTR inputs are connected to the bus in parallel, and the output is connected serially

to the terminal. OUTR is another shift register, and the printer/monitor receives an

end-bit during each clock pulse.

I/O Operations

Since input and output devices are not under the full control of the CPU (I/O events

are asynchronous), the CPU must somehow be told when an input device has new

input ready to send, and an output device is ready to receive more output. The FGI flip-

flop is set to 1 after a new character is shifted into INPR. This is done by the I/O

interface, not by the control unit. This is an example of an asynchronous input event

(not synchronized with or controlled by the CPU).

The FGI flip-flop must be cleared after transferring the INPR to AC. This must be

done as a micro operation controlled by the CU, so we must include it in the CU design.

The FGO flip-flop is set to 1 by the I/O interface after the terminal has finished

displaying the last character sent. It must be cleared by the CPU after transferring a

character into OUTR. Since the keyboard controller only sets FGI and the CPU only

clears it, a JK flip-flop is convenient:

 +-------+

 Keyboard controller --->| J Q |----->

 | | |

Computer Organization and Architecture

 Page 61

 +--------\-----\ | |

) or >----->|> FGI |

 +--------/-----/ | |

 | | |

 CPU-------------------->| K |

 +-------

How do we control the CK input on the FGI flip-flop? (Assume leading-edge

triggering.)

There are two common methods for detecting when I/O devices are ready,

namely software polling and interrupts. These two methods are discussed in the

following sections.

Stack Organization

Stack is the storage method of the items in which the last item included is the first one

to be removed/taken from the stack. Generally a stack in the computer is

a memory unit with an address register and the register holding the address of the

stack is known as the Stack Pointer (SP). A stack performs Insertion and Deletion

operation, were the operation of inserting an item is known as Push and operation of

deleting an item is known as Pop. Both Push and Pop operation results in

incrementing and decrementing the stack pointer respectively.

Register Stack

Register or memory words can be organized to form a stack. The stack pointer is

a register that holds the memory address of the top of the stack. When an item need

to be deleted from the stack, item on the top of the stack is deleted and the stack

pointer is decremented. Similarly, when an item needs to be added, the stack pointer is

incremented and writing the word at the position indicated by the stack pointer. There

are two 1 bit register; FULL and EMTY that are used for describing the

stack overflow and underflow conditions. Following micro-operations are performed

during inserting and deleting an item in/from the stack.

Insert:

SP <- SP + 1 // Increment the stack pointer to point the next higher address//

Computer Organization and Architecture

 Page 62

M[SP] <- DR // Write the item on the top of the stack//

If (SP = 0) then (Full <- 1) // Check overflow condition //

EMTY <- 0 // Mark that the stack is not empty //

Delete:

DR <- M[SP] //Read an item from the top of the stack//

SP <- SP 1 //Decrement the stack pointer //

If (SP = 0) then (EMTY <- 1) //Check underflow condition //

FULL <- 0 //Mark that the stack is not full //

Get all the resource regarding the homework help and assignment help at

Transtutors.com. With our team of experts, we are capable of providing homework

help and assignment help for all levels. With us you can be rest assured the all the

content provided for homework help and assignment help will be original and

plagiarism free.

Register Stack:-

A stack can be placed in a portion of a large memory as it can be organized as a

collection of a finite number of memory words as register.

Computer Organization and Architecture

 Page 63

In a 64- word stack, the stack pointer contains 6 bits because 26 = 64.

The one bit register FULL is set to 1 when the stack is full, and the one-bit register

EMTY is set to 1 when the stack is empty. DR is the data register that holes the binary

data to be written into on read out of the stack. Initially, SP is decide to O, EMTY is set

to 1, FULL = 0, so that SP points to the word at address O and the stack is masked

empty and not full.

PUSH SP ® SP + 1 increment stack pointer

M [SP] ® DR unit item on top of the Stack

It (SP = 0) then (FULL ® 1) check it stack is full

EMTY ® 0 mask the stack not empty.

POP DR ® [SP] read item trans the top of stack

SP ® SP –1 decrement SP

It (SP = 0) then (EMTY ® 1) check it stack is empty

FULL ® 0 mark the stack not full.

 A stack can be placed in a portion of a large memory or it can be organized as

a collection of a finite number of memory words or registers. Figure X shows the

organization of a 64-word register stack. The stack pointer register SP contains a

binary number whose value is equal to the address of the word that is currently on

top of the stack.

Three items are placed in the stack: A, B, and C in the order. item C is

on the top of the stack so that the content of sp is now 3. To remove the top item, the

stack is popped by reading the memory word at address 3 and decrementing the

content of SP. Item B is now on top of the stack since SP holds address 2. To insert a

new item, the stack is pushed by incrementing SP and writing a word in the next

higher location in the stack. Note that item C has read out but not physically removed.

This does not matter because when the stack is pushed, a new item is written in its

place.

In a 64-word stack, the stack pointer contains 6 bits because 26=64. since SP

has only six bits, it cannot exceed a number greater than 63(111111 in binary). When

Computer Organization and Architecture

 Page 64

63 is incremented by 1, the result is 0 since 111111 + 1 =1000000 in binary, but SP

can accommodate only the six least significant bits. Similarly, when 000000 is

decremented by 1, the result is 111111. The one bit register Full is set to 1 when the

stack is full, and the one-bit register EMTY is set to 1 when the stack is empty of

items. DR is the data register that holds the binary data to be written in to or read out

of the stack.

Initially, SP is cleared to 0, Emty is set to 1, and Full is cleared to 0, so that SP

points to the word at address o and the stack is marked empty and not full. if the stack

is not full , a new item is inserted with a push operation. the push operation is

implemented with the following sequence of micro-operation.

SP ←SP + 1 (Increment stack pointer)

M(SP) ← DR (Write item on top of the stack)

if (sp=0) then (Full ← 1) (Check if stack is full)

Emty ← 0 (Marked the stack not empty)

The stack pointer is incremented so that it points to the address of the next-higher

word. A memory write operation inserts the word from DR into the top of the stack.

Note that SP holds the address of the top of the stack and that M(SP) denotes the

memory word specified by the address presently available in SP, the first item stored

in the stack is at address 1. The last item is stored at address 0, if SP reaches 0, the

stack is full of item, so FULLL is set to 1.

This condition is reached if the top item prior to the last push was in location 63

and after increment SP, the last item stored in location 0. Once an item is stored in

location 0, there are no more empty register in the stack. If an item is written in the

stack, obviously the stack cannot be empty, so EMTY is cleared to 0.

DR← M[SP] Read item from the top of stack

SP ← SP-1 Decrement stack Pointer

if(SP=0) then (Emty ← 1) Check if stack is empty

FULL ← 0 Mark the stack not full

Computer Organization and Architecture

 Page 65

The top item is read from the stack into DR. The stack pointer is then decremented. if

its value reaches zero, the stack is empty, so Empty is set to 1. This condition is

reached if the item read was in location 1. Once this item is read out, SP is

decremented and reaches the value 0, which is the initial value of SP. Note that if a

pop operation reads the item from location 0 and then SP is decremented, SP changes

to 111111, which is equal to decimal 63. In this configuration, the word in address 0

receives the last item in the stack. Note also that an erroneous operation will result if

the stack is pushed when FULL=1 or popped when EMTY =1.

Memory Stack :

A stack can exist as a stand-alone unit as in figure 4 or can be implemented in

a random access memory attached to CPU. The implementation of a stack in the CPU

is done by assigning a portion of memory to a stack operation and using a processor

register as a stack pointer. Figure shows a portion of computer memory partitioned in

to three segment program, data and stack. The program counter PC points at the

address of the next instruction in the program. The address register AR points at an

array of data. The stack pointer SP points at the top of the stack. The three register

are connected to a common address bus, and either one can provide an address for

memory. PC is used during the fetch phase to read an instruction. AR is used during

the execute phase to read an operand. SP is used to push or POP items into or from

the stack.

As show in figure :4 the initial value of SP is 4001 and the stack grows with

decreasing addresses. Thus the first item stored in the stack is at address 4000, the

second item is stored at address 3999, and the last address hat can be used for the

stack is 3000. No previous are available for stack limit checks.

We assume that the items in the stack communicate with a data register DR. A new

item is inserted with the push operation as follows.

SP← SP-1

M[SP] ← DR

Computer Organization and Architecture

 Page 66

The stack pointer is decremented so that it points at the address of the next word. A

Memory write operation insertion the word from DR into the top of the stack. A new

item is deleted with a pop operation as follows.

DR← M[SP]

SP←SP + 1

The top item is read from the stack in to DR. The stack pointer is then incremented to

point at the next item in the stack. Most computers do not provide hardware to check

for stack overflow (FULL) or underflow (Empty). The stack limit can be checked by

using two processor register: one to hold upper limit and other hold the lower limit.

After the pop or push operation SP is compared with lower or upper limit register.

REVERSE POLISH NOTATION

For example: A x B + C x D is an arithmetical expression written in infix notation, here

x (denotes multiplication). In this expression A and B are two operands and x is an

operator, similarly C and D are two operands and x is an operator. In this expression +

Computer Organization and Architecture

 Page 67

is another operator which is written between (A x B) and (C x D). Because of the

precedence of the operator multiplication is done first. The order of precedence is as:

1. Exponentiation have precedence one.

2. Multiplication and Division has precedence two.

3. Addition and subtraction has precedence three.

Reverse polish notation is also known as postfix notation is defined as: In postfix

notation operator is written after the operands. Examples of postfix notation are AB+

and CD-. Here A and B are two operands and the operator is written after these two

operands. The conversion from infix expression into postfix expression is shown

below.

 Convert the infix notation A x B + C x D + E x F into postfix notation?

SOLUTION

A x B + C x D + E x F

= [ABx] + [CDx] + [EFx]

= [ABxCDx] + [EFx]

= [ABxCDxEFx]

= ABxCDxEFx

So the postfix notation is ABxCDxEFx.

 Convert the infix notation {A – B + C x (D x E – F)} / G + H x K into postfix

notation?

{A – B + C x (D x E – F)} / G + H x K

= {A – B + C x ([DEx] – F)} / G + [HKx]

= {A – B + C x [DExF-]} / [GHKx+]

= {A – B + [CDExF-x]} / [GHKx+]

= {[AB-] + [CDExF-x]} / [GHKx+]

= [AB-CDExF-x+] / [GHKx+]

= [AB-CDExF-x+GHKx+/]

= AB-CDExF-x+GHKx+/

So the postfix notation is AB-CDExF-x+GHKx+/.

Now let’s how to evaluate a postfix expression, the algorithm for the evaluation of

postfix notation is shown below:

Computer Organization and Architecture

 Page 68

ALGORITHM:

(Evaluation of Postfix notation) This algorithm finds the result of a postfix expression.

Step1: Insert a symbol (say #) at the right end of the postfix expression.

Step2: Scan the expression from left to right and follow the Step3 and Step4 for each of

the symbol encountered.

Step3: if an element is encountered insert into stack.

Step4: if an operator (say &) is encountered pop the top element A (say) and next to

top element B (say) perform the following operation x = B&A. Push x into the top of

the stack.

Step5: if the symbol # is encountered then stop scanning.

 Evaluate the post fix expression 50 4 3 x 2 – + 7 8 x 4 / -?

SOLUTION

Put symbol # at the right end of the expression: 50 4 3 x 2 – + 7 8 x 4 / – #.

Postfix expression Symbol

scanned

Stack

50 4 3 x 2 – + 7 8 x 4 / – # _ _

 4 3 x 2 – + 7 8 x 4 / – # 50 50

 3 x 2 – + 7 8 x 4 / – # 4 50, 4

 x 2 – + 7 8 x 4 / – # 3 50, 4, 3

 2 – + 7 8 x 4 / – # x 50, 12

 – + 7 8 x 4 / – # 2 50, 12, 2

 + 7 8 x 4 / – # – 50, 10

 7 8 x 4 / – # + 60

 8 x 4 / – # 7 60, 7

 x 4 / – # 8 60, 7, 8

 4 / – # x 60, 56

 / – # 4 60, 56, 4

 – # / 60, 14

Computer Organization and Architecture

 Page 69

 # – 46

 _ # Result = 46

INSTRUCTION FORMATS

The most common fields found in instruction format are:-

(1) An operation code field that specified the operation to be performed

(2) An address field that designates a memory address or a processor registers.

(3) A mode field that specifies the way the operand or the effective address is

determined.

Computers may have instructions of several different lengths containing varying

number of addresses. The number of address field in the instruction format of a

computer depends on the internal organization of its registers. Most computers fall

into one of three types of CPU organization.

(1) Single Accumulator organization ADD X AC ® AC + M [×]

(2) General Register Organization ADD R1, R2, R3 R ® R2 + R3

(3) Stack Organization PUSH X

Three address Instruction

Computer with three addresses instruction format can use each address field to

specify either processor register are memory operand.

ADD R1, A, B A1 ® M [A] + M [B]

ADD R2, C, D R2 ® M [C] + M [B] X = (A + B) * (C + A)

MUL X, R1, R2 M [X] R1 * R2

The advantage of the three address formats is that it results in short program when

evaluating arithmetic expression. The disadvantage is that the binary-coded

instructions require too many bits to specify three addresses.

Two Address Instruction

Computer Organization and Architecture

 Page 70

Most common in commercial computers. Each address field can specify either a

processes register on a memory word.

MOV R1, A R1 ® M [A]

ADD R1, B R1 ® R1 + M [B]

MOV R2, C R2 ® M [C] X = (A + B) * (C + D)

ADD R2, D R2 ® R2 + M [D]

MUL R1, R2 R1 ® R1 * R2

MOV X1 R1 M [X] ® R1

One Address instruction

It used an implied accumulator (AC) register for all data manipulation. For

multiplication/division, there is a need for a second register.

LOAD A AC ® M [A]

ADD B AC ® AC + M [B]

STORE T M [T] ® AC X = (A +B) × (C + A)

All operations are done between the AC register and a memory operand. It’s the

address of a temporary memory location required for storing the intermediate result.

 LOAD C AC ® M (C)

ADD D AC ® AC + M (D)

ML T AC ® AC + M (T)

STORE X M [×]® AC

Zero – Address Instruction

A stack organized computer does not use an address field for the instruction ADD and

MUL. The PUSH & POP instruction, however, need an address field to specify the

operand that communicates with the stack (TOS ® top of the stack)

PUSH A TOS ® A

PUSH B TOS ® B

ADD TOS ® (A + B)

PUSH C TOS ® C

PUSH D TOS ® D

ADD TOS ® (C + D)

Computer Organization and Architecture

 Page 71

MUL TOS ® (C + D) * (A + B)

POP X M [X] TOS

Addressing Modes

The operation field of an instruction specifies the operation to be performed. This

operation must be executed on some data stored in computer register as memory

words. The way the operands are chosen during program execution is dependent on

the addressing mode of the instruction. The addressing mode specifies a rule for

interpreting or modifying the address field of the instruction between the operand is

activity referenced. Computer use addressing mode technique for the purpose of

accommodating one or both of the following provisions.

(1) To give programming versatility to the uses by providing such facilities as

pointer to memory, counters for top control, indexing of data, and program relocation.

(2) To reduce the number of bits in the addressing fields of the instruction.

Addressing Modes: The most common addressing techniques are

• Immediate

• Direct

• Indirect

• Register

• Register Indirect

• Displacement

• Stack

All computer architectures provide more than one of these addressing modes.

The question arises as to how the control unit can determine which addressing mode

is being used in a particular instruction. Several approaches are used. Often, different

opcodes will use different addressing modes. Also, one or more bits in the instruction

Computer Organization and Architecture

 Page 72

format can be used as a mode field. The value of the mode field determines which

addressing mode is to be used.

What is the interpretation of effective address. In a system without virtual

memory, the effective address will be either a main memory address or a register. In a

virtual memory system, the effective address is a virtual address or a register. The

actual mapping to a physical address is a function of the paging mechanism and is

invisible to the programmer.

 Opcode Mode Address

Immediate Addressing:

The simplest form of addressing is immediate addressing, in which the

operand is actually present in the instruction:

OPERAND = A

This mode can be used to define and use constants or set initial values of

variables. The advantage of immediate addressing is that no memory reference other

than the instruction fetch is required to obtain the operand. The disadvantage is that

the size of the number is restricted to the size of the address field, which, in most

instruction sets, is small compared with the world length.

Direct Addressing:

A very simple form of addressing is direct addressing, in which the address field

contains the effective address of the operand:

Computer Organization and Architecture

 Page 73

EA = A

It requires only one memory reference and no special calculation.

Indirect Addressing:

With direct addressing, the length of the address field is usually less than the

word length, thus limiting the address range. One solution is to have the address field

refer to the address of a word in memory, which in turn contains a full-length address

of the operand. This is known as indirect addressing:

EA = (A)

Register Addressing:

Register addressing is similar to direct addressing. The only difference is that

the address field refers to a register rather than a main memory address:

EA = R

Computer Organization and Architecture

 Page 74

The advantages of register addressing are that only a small address field is

needed in the instruction and no memory reference is required. The disadvantage of

register addressing is that the address space is very limited.

The exact register location of the operand in case of Register Addressing

Mode is shown in the Figure 34.4. Here, 'R' indicates a register where the operand is

present.

Register Indirect Addressing:

Register indirect addressing is similar to indirect addressing, except that the

address field refers to a register instead of a memory location. It requires only one

memory reference and no special calculation.

EA = (R)

Register indirect addressing uses one less memory reference than indirect

addressing. Because, the first information is available in a register which is nothing

but a memory address. From that memory location, we use to get the data or

information. In general, register access is much more faster than the memory access.

Displacement Addressing:

Computer Organization and Architecture

 Page 75

A very powerful mode of addressing combines the capabilities of direct

addressing and register indirect addressing, which is broadly categorized as

displacement addressing:

EA = A + (R)

Displacement addressing requires that the instruction have two address fields,

at least one of which is explicit. The value contained in one address field (value = A)

is used directly. The other address field, or an implicit reference based on opcode,

refers to a register whose contents are added to A to produce the effective address.

The general format of Displacement Addressing is shown in the Figure 4.6.

Three of the most common use of displacement addressing are:

• Relative addressing

• Base-register addressing

• Indexing

Relative Addressing:

For relative addressing, the implicitly referenced register is the program

counter (PC). That is, the current instruction address is added to the address field to

produce the EA. Thus, the effective address is a displacement relative to the address

of the instruction.

Base-Register Addressing:

Computer Organization and Architecture

 Page 76

The reference register contains a memory address, and the address field

contains a displacement from that address. The register reference may be explicit or

implicit. In some implementation, a single segment/base register is employed and is

used implicitly. In others, the programmer may choose a register to hold the base

address of a segment, and the instruction must reference it explicitly.

Indexing:

The address field references a main memory address, and the reference

register contains a positive displacement from that address. In this case also the

register reference is sometimes explicit and sometimes implicit.

Generally index register are used for iterative tasks, it is typical that there is a

need to increment or decrement the index register after each reference to it. Because

this is such a common operation, some system will automatically do this as part of the

same instruction cycle.

This is known as auto-indexing. We may get two types of auto-indexing: -one is

auto-incrementing and the other one is -auto-decrementing. If certain registers are

devoted exclusively to indexing, then auto-indexing can be invoked implicitly and

automatically. If general purpose register are used, the auto index operation may need

to be signaled by a bit in the instruction.

Auto-indexing using increment can be depicted as follows:

EA = A + (R)

R = (R) + 1

Auto-indexing using decrement can be depicted as follows:

EA = A + (R)

R = (R) - 1

In some machines, both indirect addressing and indexing are provided, and it is

possible to employ both in the same instruction. There are two possibilities: The

indexing is performed either before or after the indirection. If indexing is performed

after the indirection, it is termed post indexing

EA = (A) + (R)

Computer Organization and Architecture

 Page 77

First, the contents of the address field are used to access a memory location

containing an address. This address is then indexed by the register value.

With pre indexing, the indexing is performed before the indirection:

EA = (A + (R)

An address is calculated, the calculated address contains not the operand, but the

address of the operand.

Stack Addressing:

A stack is a linear array or list of locations. It is sometimes referred to as a

pushdown list or last-in-first-out queue. A stack is a reserved block of locations. Items

are appended to the top of the stack so that, at any given time, the block is partially

filled. Associated with the stack is a pointer whose value is the address of the top of

the stack. The stack pointer is maintained in a register. Thus, references to stack

locations in memory are in fact register indirect addresses.

The stack mode of addressing is a form of implied addressing. The machine

instructions need not include a memory reference but implicitly operate on the top of

the stack.

Value addition: A Quick View

Various Addressing Modes with Examples

The most common names for addressing modes (names may differ

among architectures)

Addressing

modes
Example

Instruction
Meaning When used

Register Add R4,R3 R4 <- R4 + R3
When a value is

in a register

Immediate Add R4, #3 R4 <- R4 + 3 For constants

Displacement
Add R4,

100(R1)
R4 <- R4 +

Mem[100+R1]
Accessing local

variables

Register

deffered
Add R4,(R1) R4 <- R4 + M[R1]

Accessing using

a pointer or a

computed

address

Indexed
Add R3, (R1

+ R2)
R3 <- R3 +

Mem[R1+R2]

Useful in array

addressing:
R1 - base of

array
R2 - index

amount

Computer Organization and Architecture

 Page 78

Direct
Add R1,

(1001)
R1 <- R1 + Mem[1001]

Useful in

accessing static

data

Memory

deferred
Add R1,

@(R3)
R1 <- R1 +

Mem[Mem[R3]]

If R3 is the

address of a

pointer p, then

mode yields *p

Auto-
increment

Add R1,

(R2)+
R1 <- R1 +Mem[R2]
R2 <- R2 + d

Useful for

stepping

through arrays

in a loop.
R2 - start of

array
d - size of an

element

Auto-
decrement

Add R1,-

(R2)
R2 <-R2-d
R1 <- R1 + Mem[R2]

Same as

autoincrement.
Both can also

be used to

implement a

stack as push

and pop

Scaled
Add R1,

100(R2)[R3]
R1<-

R1+Mem[100+R2+R3*d]

Used to index

arrays. May be

applied to any

base

addressing

mode in some

machines.

Notation:
<- - assignment
Mem - the name for memory:
Mem[R1] refers to contents of memory location whose address is given by the

contents of R1

Source: Self

Data Transfer & Manipulation

Computer provides an extensive set of instructions to give the user the flexibility to

carryout various computational task. Most computer instruction can be classified into

three categories.

(1) Data transfer instruction

(2) Data manipulation instruction

(3) Program control instruction

Data transfer instruction cause transferred data from one location to another without

changing the binary instruction content. Data manipulation instructions are those that

perform arithmetic logic, and shift operations. Program control instructions provide

Computer Organization and Architecture

 Page 79

decision-making capabilities and change the path taken by the program when

executed in the computer.

(1) Data Transfer Instruction

Data transfer instruction move data from one place in the computer to another

without changing the data content. The most common transfers are between memory

and processes registers, between processes register & input or output, and between

processes register themselves

(Typical data transfer instruction)

Name Mnemonic

Load LD

Store ST

Move MOV

Exchange XCH

Input IN

Output OUT

Push PUSH

Pop POP

(2) Data Manipulation Instruction

It performs operations on data and provides the computational capabilities for the

computer. The data manipulation instructions in a typical computer are usually

divided into three basic types.

(a) Arithmetic Instruction

(b) Logical bit manipulation Instruction

(c) Shift Instruction.

(a) Arithmetic Instruction

Name Mnemonic

Increment INC

Decrement DEC

Add Add

Computer Organization and Architecture

 Page 80

Subtract Sub

Multiply MUL

Divide DIV

Add with Carry ADDC

Subtract with Basses SUBB

Negate (2’s Complement) NEG

(b) Logical & Bit Manipulation Instruction

Name Mnemonic

Clear CLR

Complement COM

AND AND

OR OR

Exclusive-Or XOR

Clear Carry CLRC

Set Carry SETC

Complement Carry COMC

Enable Interrupt ET

Disable Interrupt OI

 (c) Shift Instruction

Instructions to shift the content of an operand are quite useful and one often provided

in several variations. Shifts are operation in which the bits of a word are moved to the

left or right. The bit-shifted in at the and of the word determines the type of shift used.

Shift instruction may specify either logical shift, arithmetic shifts, or rotate type shifts.

Name Mnemonic

Logical Shift right SHR

Logical Shift left SHL

Arithmetic shift right SHRA

Arithmetic shift left SHLA

Rotate right ROR

Computer Organization and Architecture

 Page 81

Rotate left ROL

Rotate right through carry RORC

Rotate left through carry ROLC

Introduction About Program Control:-

A program that enhances an operating system by creating an environment in which

you can run other programs. Control programs generally provide a graphical

interface and enable you to run several programs at once in different windows.

Control programs are also called operating environments.

The program control functions are used when a series of conditional or

unconditional jump and return instruction are required. These instructions allow the

program to execute only certain sections of the control logic if a fixed set of logic

conditions are met. The most common instructions for the program control available

in most controllers are described in this section.

Introduction About status bit register:-

A status register, flag register, or condition code register is a collection of

status flag bits for a processor. An example is the FLAGS register of the computer

architecture. The flags might be part of a larger register, such as a program status

word (PSW) register.

The status register is a hardware register which contains information about the

state of the processor. Individual bits are implicitly or explicitly read and/or written

by the machine code instructions executing on the processor. The status register in a

traditional processor design includes at least three central flags: Zero, Carry, and

Overflow, which are set or cleared automatically as effects of arithmetic and bit

manipulation operations. One or more of the flags may then be read by a subsequent

conditional jump instruction (including conditional calls, returns, etc. in some

machines) or by some arithmetic, shift/rotate or bitwise operation, typically using the

carry flag as input in addition to any explicitly given operands. There are also

processors where other classes of instructions may read or write the fundamental

Computer Organization and Architecture

 Page 82

zero, carry or overflow flags, such as block-, string- or dedicated input/output

instructions, for instance.

Some CPU architectures, such as the MIPS and Alpha, do not use a dedicated flag

register. Others do not implicitly set and/or read flags. Such machines either do not

pass implicit status information between instructions at all, or do they pass it in a

explicitly selected general purpose register.

A status register may often have other fields as well, such as more specialized

flags, interrupt enable bits, and similar types of information. During an interrupt, the

status of the thread currently executing can be preserved (and later recalled) by

storing the current value of the status register along with the program counter and

other active registers into the machine stack or some other reserved area of memory.

Common flags:-

This is a list of the most common CPU status register flags, implemented in almost all

modern processors.

Flag Name Description

Z Zero flag
Indicates that the result of arithmetic or logical

operation (or, sometimes, a load) was zero.

C Carry flag

Enables numbers larger than a single word to be

added/subtracted by carrying a binary digit from a less

significant word to the least significant bit of a more

significant word as needed. It is also used to extend bit

shifts and rotates in a similar manner on many

processors (sometimes done via a dedicated X flag).

S / N

Sign flag

Negative

flag

Indicates that the result of a mathematical operation is

negative. In some processors, the N and S flags are

distinct with different meanings and usage: One

indicates whether the last result was negative whereas

the other indicates whether a subtraction or addition

has taken place.

Computer Organization and Architecture

 Page 83

V / O / W
Overflow

flag

Indicates that the signed result of an operation is too

large to fit in the register width using twos complement

representation.

Introduction About Conditional branch instruction:-

Conditional branch instruction:-

Conditional branch instruction is the branch instruction bit and BR instruction is the

Program control instruction.

The conditional Branch Instructions are listed as Bellow:-

Mnemonics Branch Instruction Tested control

BZ Branch if Zero Z=1

BNZ Branch if not Zero Z=0

BC Branch if Carry C=1

BNC Branch if not Carry C=0

BP Branch if Plus S=0

BM Branch if Minus S=1

BV Branch if Overflow V=1

BNV Branch if not Overflow V=0

Unsigned Compare(A-B):-

Mnemonics Branch Instruction Tested control

BHI Branch if Higher A > B

BHE Branch if Higher or Equal A >= B

BLO Branch if Lower A < B

BLE Branch if Lower or Equal A <= B

BE Branch if Equal A=B

BNE Branch if not Equal A not = B

Signed Compare(A-B):

Mnemonics Branch Instruction Tested control

Computer Organization and Architecture

 Page 84

BGT Branch if Greater Than A > B

BGE Branch if Greater Than or Equal A >= B

BLT Branch if Less Than A < B

BLE Branch if Less Than or Equal A <= B

BE Branch if Equal A=B

BNE Branch if not Equal A not = B

Introduction About program interrupt:-

When a Process is executed by the CPU and when a user Request for another Process

then this will create disturbance for the Running Process. This is also called as

the Interrupt.

Interrupts can be generated by User, Some Error Conditions and also by

Software’s and the hardware’s. But CPU will handle all the Interrupts very carefully

because when Interrupts are generated then the CPU must handle all the Interrupts

Very carefully means the CPU will also Provide Response to the Various Interrupts

those are generated. So that When an interrupt has Occurred then the CPU will handle

by using the Fetch, decode and Execute Operations.

Interrupts allow the operating system to take notice of an external event, such

as a mouse click. Software interrupts, better known as exceptions, allow the OS to

handle unusual events like divide-by-zero errors coming from code execution.

The sequence of events is usually like this:

Hardware signals an interrupt to the processor

The processor notices the interrupt and suspends the currently running software

The processor jumps to the matching interrupt handler function in the OS

The interrupt handler runs its course and returns from the interrupt

The processor resumes where it left off in the previously running software

The most important interrupt for the operating system is the timer tick interrupt. The

timer tic interrupt allows the OS to periodically regain control from the currently

running user process. The OS can then decide to schedule another process, return back

Computer Organization and Architecture

 Page 85

to the same process, do housekeeping, etc. The timer tick interrupt provides the

foundation for the concept of preemptive multitasking.

TYPES OF INTERRUPTS

Generally there are three types of Interrupts those are Occurred For Example

 1) Internal Interrupt

2) External Interrupt.

3) Software Interrupt.

1.Internal Interrupt:

• When the hardware detects that the program is doing something wrong, it will

usually generate an interrupt usually generate an interrupt.

– Arithmetic error - Invalid Instruction

– Addressing error - Hardware malfunction

– Page fault – Debugging

• A Page Fault interrupt is not the result of a program error, but it does require the

operating system to get control.

The Internal Interrupts are those which are occurred due to Some Problem in

the Execution For Example When a user performing any Operation which contains any

Error and which contains any type of Error. So that Internal Interrupts are those

which are occurred by the Some Operations or by Some Instructions and the

Operations those are not Possible but a user is trying for that Operation. And The

Software Interrupts are those which are made some call to the System for Example

while we are Processing Some Instructions and when we wants to Execute one more

Application Programs.

2.External Interrupt:

• I/O devices tell the CPU that an I/O request has completed by sending an interrupt

signal to the processor.

• I/O errors may also generate an interrupt.

Computer Organization and Architecture

 Page 86

• Most computers have a timer which interrupts the CPU every so many interrupts the

CPU every so many milliseconds.

The External Interrupt occurs when any Input and Output Device request for any

Operation and the CPU will Execute that instructions first For Example When a

Program is executed and when we move the Mouse on the Screen then the CPU will

handle this External interrupt first and after that he will resume with his Operation.

3.Software interrupts:

These types if interrupts can occur only during the execution of an instruction. They

can be used by a programmer to cause interrupts if need be. The primary purpose of

such interrupts is to switch from user mode to supervisor mode.

A software interrupt occurs when the processor executes an INT instruction.

Written in the program, typically used to invoke a system service. A processor

interrupt is caused by an electrical signal on a processor pin. Typically used by devices

to tell a driver that they require attention. The clock tick interrupt is very common; it

wakes up the processor from a halt state and allows the scheduler to pick other work

to perform.

A processor fault like access violation is triggered by the processor itself when it

encounters a condition that prevents it from executing code. Typically when it tries to

read or write from unmapped memory or encounters an invalid instruction.

CISC Characteristics

 A computer with large number of instructions is called complex instruction set

computer or CISC. Complex instruction set computer is mostly used in scientific

computing applications requiring lots of floating point arithmetic.

 A large number of instructions - typically from 100 to 250 instructions.

 Some instructions that perform specialized tasks and are used infrequently.

 A large variety of addressing modes - typically 5 to 20 different modes.

 Variable-length instruction formats

Computer Organization and Architecture

 Page 87

 Instructions that manipulate operands in memory.

RISC Characteristics

 A computer with few instructions and simple construction is called reduced

instruction set computer or RISC. RISC architecture is simple and efficient. The major

characteristics of RISC architecture are,

 Relatively few instructions

 Relatively few addressing modes

 Memory access limited to load and store instructions

 All operations are done within the registers of the CPU

 Fixed-length and easily-decoded instruction format.

 Single cycle instruction execution

 Hardwired and micro programmed control

Example of RISC & CISC

 Examples of CISC instruction set architectures are PDP-11, VAX, Motorola 68k,

and your desktop PCs on intel’s x86 architecture based too .

 Examples of RISC families include DEC Alpha, AMD 29k, ARC, Atmel AVR,

Blackfin, Intel i860 and i960, MIPS, Motorola 88000, PA-RISC, Power (including PowerPC),

SuperH, SPARC and ARM too.

