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UNIT I

PROPERTIES OF FLUIDS AND FLUID STATICS

Introduction to Fluid Mechanics
Definition of a fluid

A fluid is defined as a substance that deforms continuously under the action of a shear stress,
however small magnitude present. It means that a fluid deforms under very small shear stress,
but a solid may not deform under that magnitude of the shear stress.

Fig.L-1.1a: Deformation of solid under a constant
shear force

By contrast a solid deforms when a constant shear stress is applied, but its deformation does not
continue with increasing time. In Fig.L1.1, deformation pattern of a solid and a fluid under the
action of constant shear force is illustrated. We explain in detail here deformation behaviour of a
solid and a fluid under the action of a shear force.

In Fig.L1.1, a shear force F is applied to the upper plate to which the solid has been bonded, a
=
shear stress resulted by the force equals to A where A is the contact area of the upper plate.

We know that in the case of the solid block the deformation is proportional to the shear
stress t provided the elastic limit of the solid material is not exceeded.

When a fluid is placed between the plates, the deformation of the fluid element is illustrated in
Fig.L1.3. We can observe the fact that the deformation of the fluid element continues to increase
as long as the force is applied. The fluid particles in direct contact with the plates move with the
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same speed of the plates. This can be interpreted that there is no slip at the boundary. This fluid
behavior has been verified in numerous experiments with various kinds of fluid and boundary
material.

In short, a fluid continues in motion under the application of a shear stress and can not
sustain any shear stress when at rest.

Fluid as a continuum

In the definition of the fluid the molecular structure of the fluid was not mentioned. As we know
the fluids are composed of molecules in constant motions. For a liquid, molecules are closely
spaced compared with that of a gas. In most engineering applications the average or macroscopic
effects of a large number of molecules is considered. We thus do not concern about the behavior
of individual molecules. The fluid is treated as an infinitely divisible substance, a continuum at
which the properties of the fluid are considered as a continuous (smooth) function of the space
variables and time.

To illustrate the concept of fluid as a continuum consider fluid density as a fluid property at a
small region. Density is defined as mass of the fluid molecules per unit volume. Thus the mean
density within the small region C could be equal to mass of fluid molecules per unit volume.
When the small region C occupies space which is larger than the cube of molecular spacing, the

number of the molecules will remain constant. This is the limiting volume &¥"above which the
effect of molecular variations on fluid properties is negligible.
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Fig. L-1.2(3):Small regicn in fluid domain Fig. L-1.2(b): \Variation of density with

respect to volume of the region




The density of the fluid is defined as

_ i e
P e 5

Note that the limiting volume ¥ is about 1005 for all liquids and for gases at atmospheric
temperature. Within the given limiting value, air at the standard condition has

approximately 3*10" molecules. It justifies in defining a nearly constant density in a region
which is larger than the limiting volume.

In conclusion, since most of the engineering problems deal with fluids at a dimension which is
larger than the limiting volume, the assumption of fluid as a continuum is valid. For example the
fluid density is defined as a function of space (for Cartesian coordinate system, X, y, and z) and

time (t) by €= olx2.2.8) s simplification helps to use the differential calculus for solving
fluid problems.

Properties of fluid

Some of the basic properties of fluids are discussed below-

Density : As we stated earlier the density of a substance is its mass per unit volume. In fluid
mechanic it is expressed in three different ways-

Mass density r is the mass of the fluid per unit volume (given by Eq.L1.1)

3
Unit- %8/
Dimension- ML~
Typical values: water- 1000 kg/ w
3
Air- 1-23 %2/ 5 standard pressure and temperature (STP)
Specific weight, w: - As we express a mass M has a weight W=Mg . The specific weight of the
fluid can be defined similarly as its weight per unit volume.
w=rg L-2.1
Unit: M/’
Dimension: ML T




Typical values: water- 98103/
Air- 12.07N 1w (TP

Relative density (Specific gravity), S :-

Specific gravity is the ratio of fluid density (specific weight) to the fluid density (specific weight)
of a standard reference fluid. For liquids water at 4°C is considered as standard fluid.

Fiqid
"Gmuﬂl: 2.2

S].iqu.ii:

Similarly for gases air at specific temperature and pressure is considered as a standard reference
fluid.

Fns
e

Fosa st L-2.3
Units: pure number having no units.

Dimension:- M L"T*

Typical vales : - Mercury- 13.6

Water-1

Specific volume Y+ : - Specific volume of a fluid is mean volume per unit mass i.e. the reciprocal
of mass density.
1
i L-2.4

3
Units;- ™ /g
Dimension: 1L’

-3, 3

Typical values: - Water - 10 m/kg

Air- 1.23x10% m*/kg

Viscosity




In section L1 definition of a fluid says that under the action of a shear stress a fluid continuously
deforms, and the shear strain results with time due to the deformation. Viscosity is a fluid
property, which determines the relationship between the fluid strain rate and the applied shear
stress. It can be noted that in fluid flows, shear strain rate is considered, not shear strain as
commonly used in solid mechanics. Viscosity can be inferred as a quantative measure of a fluid's
resistance to the flow. For example moving an object through air requires very less force
compared to water. This means that air has low viscosity than water.

Let us consider a fluid element placed between two infinite plates as shown in fig (Fig-2.1). The

upper plate moves at a constant velocity 2% under the action of constant shear force 9 . The
shear stress, t is expressed as

aF  dF
T=lim —=—
FAS0 54 dd

where, 94 is the area of contact of the fluid element with the top plate. Under the action of
shear force the fluid element is deformed from position ABCD at time t to position AB'C'D' at

time £+3¢ (fig-L2.1). The shear strain rate is given by

o dx da
=lin —=—
Shear strain rate 7 i ds L2.6

Where < is the angular deformation

From the geometry of the figure, we can define

i Ot

tan Jc =
For small 8¢ | Sy
Therefore,

da_du

at Ay

da_du

The limit of both side of the equality gives % & L-2.5

The above expression relates shear strain rate to velocity gradient along the y -axis.
Newton's Viscosity Law

Sir Isaac Newton conducted many experimental studies on various fluids to determine
relationship between shear stress and the shear strain rate. The experimental finding showed that
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a linear relation between them is applicable for common fluids such as water, oil, and air. The
relation is

o &
S
i

Substituting the relation gives in equation(L-2.5)

dy L-2.6
Introducing the constant of proportionality

T—,Mdu

&y
where # is called absolute or dynamic viscosity. Dimensions and units for * are MLT
and & —sf mj, respectively. [In the absolute metric system basic unit of co-efficient of viscosity

is called poise. 1 poise = M= s/n']
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Fig.L-2.2: Relationship between shear Fig.L-2.3: Relationship between shear stress
stress and velocity gradient of Newtonian and shear strain rate of diferent fluids
fluids

Typical relationships for common fluids are illustrated in Fig-L2.3.

The fluids that follow the linear relationship given in equation (L-2.7) are called Newtonian
fluids.




Kinematic viscosity v

Kinematic viscosity is defined as the ratio of dynamic viscosity to mass density

p=£
o L-2.8

Units: #° /&
Dimension: LT

&2 1 -5 .2
Typical values: water 1 14= 10" arl d6=10"m" /5

Non - Newtonian fluids
Fluids in which shear stress is not linearly related to the rate of shear strain are non— Newtonian

fluids. Examples are paints, blot, polymeric solution, etc. Instead of the dynamic viscosity

apparent viscosity, Hez which is the slope of shear stress versus shear strain rate curve, is used
for these types of fluid.

Based on the behavior of “ , hon-Newtonian fluids are broadly classified into the following
groups —

a. Pseudo plastics (shear thinning fluids): Mz decreases with increasing shear strain rate.
For example polymer solutions, colloidal suspensions, latex paints, pseudo plastic.

b. Dilatants (shear thickening fluids) e increases with increasing shear strain rate.

Examples: Suspension of starch and quick sand (mixture of water and sand).

C. Plastics : Fluids that can sustain finite shear stress without any deformation, but once

shear stress exceeds the finite stress TJ’, they flow like a fluid. The relation between the
shear stress and the resulting shear strain is given by

B efis "
T=T, + E

L-2.9
Fluids with n = 1 are called Bingham plastic. some examples are clay suspensions, tooth paste

and fly ash.
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d. Thixotropic fluid(Fig. L-2.4): M decreases with time under a constant applied shear
stress.

Example: Ink, crude oils.

e. Rheopectic fluid : M jncreases with increasing time.

Example: some typical liquid-solid suspensions.

A
E‘ Fheopectic
=1
o
B _—
o f——T
';i Tt‘uxnh‘npﬁ“‘x

>
Time

Fig. L-2-4: Thixotropic and Rheopectic fluids
Example
As shown in the figure a cubical block of 20 cm side and of 20 kg weight is allowed to slide

down along a plane inclined at 30° to the horizontal on which there is a film of oil having

viscosity 2.16x10® N-s/m?* .What will be the terminal velocity of the block if the film thickness
is 0.025mm?
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20 e

LS fiki

Given data : Weight = 20 kg
Block dimension = 20x20x20 cm®
Driving force along the plane F =W sin 30° = 98. 1%

Shear force T=Fi{ A=24525N{w’

Contact area, 4 =0.2x0.2x"

T=4x ld
Also, oy

Answer: 28.38m/s.
Example

If the equation of a velocity profile over a plate is v =5y 2 + y (where v is the velocity in m/s)
determine the shear stress at y =0 and at y =7.5cm . Given the viscosity of the liquid is 8.35
poise.

Solution

&2
Given Data: Velocity profile v=3yT+y
H=0830paise
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Velocity gradient, j—v =10y +1
¥

T= ,u.ﬁ= 10w +T1)
dy

Substitutingy = 0 and y =0.075on the above equation, we get shear stress at
respective depths.

Answer: 0.835; 146 N/iw’
Surface tension and Capillarity
Surface tension

In this section we will discuss about a fluid property which occurs at the interfaces of a liquid
and gas or at the interface of two immiscible liquids. As shown in Fig (L - 3.1) the liquid
molecules- 'A" is under the action of molecular attraction between like molecules (cohesion).
However the molecule ‘B' close to the interface is subject to molecular attractions between both
like and unlike molecules (adhesion). As a result the cohesive forces cancel for liquid molecule
'A'. But at the interface of molecule 'B' the cohesive forces exceed the adhesive force of the gas.
The corresponding net force acts on the interface; the interface is at a state of tension similar to a
stretched elastic membrane. As explained, the corresponding net force is referred to as surface

tension, & . In short it is apparent tensile stresses which acts at the interface of two immiscible
fluids.

GAR

Free surface

Ligueid

.:‘i {zas molecule .
.—} Liguid molicule
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Dimension: M7
Unit: 2/

0.074 M/

Typical values: Water at Y

C with air.

Note that surface tension decreases with the liquid temperature because intermolecular cohesive
forces decreases. At the critical temperature of a fluid surface tension becomes zero; i.e. the
boundary between the fluids vanishes.

Pressure difference at the interface

[}

Liquid, Py

GAS.P g

—r—|

Surface tension on a droplet

In order to study the effect of surface tension on the pressure difference across a curved
interface, consider a small spherical droplet of a fluid at rest.

Since the droplet is small the hydrostatic pressure variations become negligible. The droplet is
divided into two halves as shown in Fig.L-3.2. Since the droplet is at rest, the sum of the forces
acting at the interface in any direction will be zero. Note that the only forces acting at the
interface are pressure and surface tension. Equilibrium of forces gives

(Ph.q—P )}‘TFQZJ{EJT?"} L 31

Solving for the pressure difference and then denoting £4” = % — £s \we can rewrite equation
(L-3.1) as
np=2C

¥

Contact angle and welting
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As shown in fig. a liquid contacts a solid surface. The line at which liquid gas and solid meet is
called the contact line. At the contact line the net surface tension depending upon all three

materials - liquid, gas, and solid is evident in the contact angle, . A force balance on the
contact line yields:

Gas _
Lras [}

Zalid -
Salid L
Fig : L-2.4: Contact line for non-wetting
Fig : L-3.3: Contact line for wetting condition

condition
o ~ Tropg = O 05

EdS

here “== is the surface tension of the gas-solid interface, <= is the surface tension of solid-

liquid interface, and < is the surface tension of liquid-gas interface.
Typical values:
8= 0 for air-water- glass interface
8= 140" for air-mercury—glass interface

& <90 the liquid is said to wet the solid. Otherwise, the solid surface is not
g, » 90"

If the contact angle

wetted by the liquid, when
Capillarity

If a thin tube, open at the both ends, is inserted vertically in to a liquid, which wets the tube, the
liquid will rise in the tube (fig : L -3.4). If the liquid does not wet the tube it will be depressed
below the level of free surface outside. Such a phenomenon of rise or fall of the liquid surface

relative to the adjacent level of the fluid is called capillarity. If %is the angle of contact between
liquid and solid, d is the tube diameter, we can determine the capillary rise or depression, h by
equating force balance in the z-direction (shown in Fig : L-3.5), taking into account surface
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tension, gravity and pressure. Since the column of fluid is at rest, the sum of all of forces acting
on the fluid column is zero.

Adr
=L iloss Tube

The pressure acting on the top curved interface in the tube is atmospheric, the pressure acting on
the bottom of the liquid column is at atmospheric pressure because the lines of constant pressure
in a liquid at rest are horizontal and the tube is open.

Upward force due to surface tension = & =%° g,

2

= pg.;?rd—ﬁz
Weight of the liquid column 4

Thus equating these two forces we find

d?
Tros8.7d = ,Ggﬂ'?}z

The expression for h becomes

_dacoes 8,
pgd L-3.2

i

Typical values of capillary rise are

a. Capillary rise is approximately 4.5 mm for water in a glass tube of 5 mm diameter.

b. Capillary depression is approximately - 1.5 mm (depression) for mercury in the same
tube.

c. Capillary action causes a serious source of error in reading the levels of the liquid in
small pressure measuring tubes. Therefore the diameter of the measuring tubes should be
large enough so that errors due to the capillary rise should be very less. Besides this,
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capillary action causes the movement of liquids to penetrate cracks even when there is no
significant pressure difference acting to move the fluids in to the cracks.

d. In figure (Fig : L - 3.6), a two-dimensional model for the capillary rise of a liquid in a
crack width, b, is illustrated. The height of the capillary rise can also be computed by
equating force balance as explained in the previous section.

P decos 8,

Capillary rise, bog L-3.3

Fig. L-3.6: Capillary n=e in a Crack

Vapour Pressure

Since the molecules of a liquid are in constant motion, some of the molecules in the surface layer
having sufficient energy will escape from the liquid surface, and then changes from liquid state
to gas state. If the space above the liquid is confined and the number of the molecules of the
liquid striking the liquid surface and condensing is equal to the number of liquid molecules at
any time interval becomes equal, an equilibrium exists. These molecules exerts of partial
pressure on the liquid surface known as vapour pressure of the liquid, because degree of
molecular activity increases with increasing temperature. The vapour pressure increases with
temperature. Boiling occurs when the pressure above a liquid becomes equal to or less then the
vapour pressure of the liquid. It means that boiling of water may occur at room temperature if the
pressure is reduced sufficiently.

For example water will boil at 60 ° C temperature if the pressure is reduced to 0.2 atm.

Cavitation
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In many fluid problems, areas of low pressure can occur locally. If the pressure in such areas is
equal to or less then the vapour pressure, the liquid evaporates and forms a cloud of vapour
bubbles. This phenomenon is called cavitation. This cloud of vapour bubbles is swept in to an
area of high pressure zone by the flowing liquid. Under the high pressure the bubbles collapses.
If this phenomenon occurs in contact with a solid surface, the high pressure developed by
collapsing bubbles can erode the material from the solid surface and small cavities may be
formed on the surface.

The cavitation affects the performance of hydraulic machines such as pumps, turbines and
propellers.

Compressibility and the bulk modulus of elasticity

When a fluid is subjected to a pressure increase the volume of the fluid decreases. The
relationship between the change of pressure and volume is linear for many fluids. This
relationship may be defined by a proportionality constant called bulk modulus.

Consider a fluid occupying a volume V in the piston and cylinder arrangement shown in figure.

If the pressure on the fluid increase from p to ¥ 92 que to the piston movement as a result the
volume is decreased by &% . We can express the bulk modulus of elasticity

_ dp
v iy L-4.1

The negative sign indicates the volume decreases as pressure increases. As in the limit
as 92 U then

ci’v_.:i_p

Since ¥ F the equation can be rearranged as

_ap
dpolp L-43
Dimension :- MLT™
Unit .- M /a2

Typical values:-
Air - 1.03 x 10 5 N/m?
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205%10° N im?

water at standard temperature and pressure as compared to that of

11 2
MI'd steel 20610 Nim .

The above typical values show that the air is about 20,000 times more compressible than water
while water is about 100 times more compressible than mild steel.

Basic Equations

To analysis of any fluid problem, the knowledge of the basic laws governing the fluid flows is
required. The basic laws, applicable to any fluid flow, are:

a. Conservation of mass. (Continuity)
b. Linear momentum. ( Newton 's second law of motion)
c. Conservation of energy (First law of Thermodynamics)

Besides these governing equations, we need the state relations like p=p(P.T) and appropriate
boundary conditions at solid surface, interfaces, inlets and exits. Note that all basic laws are not
always required to any one problem. These basic laws, as similar in solid mechanics and
thermodynamics, are to be reformulated in suitable forms so that they can be easily applied to
solve wide variety of fluid problems.

System and control volume

A system refers to a fixed, identifiable quantity of mass which is separated from its surrounding
by its boundaries. The boundary surface may vary with time however no mass crosses the system
boundary. In fluid mechanics an infinitesimal lump of fluid is considered as a system and is
referred as a fluid element or a particle. Since a fluid particle has larger dimension than the
limiting volume (refer to section fluid as a continuum). The continuum concept for the flow
analysis is valid.

control volume is a fixed, identifiable region in space through which fluid flows. The boundary
of the control volume is called control surface. The fluid mass in a control volume may vary with
time. The shape and size of the control volume may be arbitrary.
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System and control volume

When a fluid is at rest, the fluid exerts a force normal to a solid boundary or any imaginary plane
drawn through the fluid. Since the force may vary within the region of interest, we conveniently
define the force in terms of the pressure, P, of the fluid. The pressure is defined as the force per
unit area.

\ S
\?ﬁ

LT

Fig : L - 6.1: Pressure variation at the bottom surface Py, and at the inclined surface P;

In Fig : L - 6.1 pressure variation of a fluid at different locations is illustrated.

Commonly the pressure changes from point to point. We can define the pressure at a point as

£d—0 5‘& d_ﬂ L_61

where 44js the area on which the force @¥ acts. It is a scalar field and varies spatially and
temporally as given P =P (x, Y, z, t)

Pascal’'s Law : Pressure at a point
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The Pascal's law states that the pressure at a point in a fluid at rest is the same in all directions .
Let us prove this law by considering the equilibrium of a small fluid element shown in Fig : L -
6.2

Free surface

ix Py

Fig : L -6.2: A fluid element with force components
Since the fluid is at rest, there will be no shearing stress on the faces of the element.

The equilibrium of the fluid element implies that sum of the forces in any direction must be zero.
For the x-direction:

Force due to P, is £» ¥ 02

Component of force due to P,

:—E};.ﬁn.ﬁz.@
én

=—F dy dz
Summing the forces we get,

F.dy - dz—F - dy-dz=10
then £, = F,

Similarly in the y-direction, we can equate the forces as given below

Force due to Py = £ ox 0z

Component of force due to Py
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=—E¢.5;3.5Z.E

dn
=-F . dx dz

Weight of the fluid element = — Specific weight = volume of the element

The negative sign indicates that weight of the fluid element acts in opposite direction of the z-
direction.

Summing the forces yields

f—::'u-5}2-52—&-5:{-52—%-,{}@-51{-5}:-52:0

Since the volume of the fluids 9% % 9Z s very small, the weight of the element is negligible
in comparison with other force terms. So the above Equation becomes

Py=Pnq
Hence, Pn=Px=Py
Similar relation can be derived for the z-axis direction.
This law is valid for the cases of fluid flow where shear stresses do not exist. The cases are
a. Fluid at rest.
b. No relative motion exists between different fluid layers. For example, fluid at a constant
linear acceleration in a container.
c. Ideal fluid flow where viscous force is negligible.

Basic equations of fluid statics

An equation representing pressure field P = P (X, y, z) within fluid at rest is derived in this
section. Since the fluid is at rest, we can define the pressure field in terms of space dimensions
(x, yand z) only.

Consider a fluid element of rectangular parellopiped shape( Fig : L - 7.1) within a large fluid
region which is at rest. The forces acting on the element are body and surface forces.
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Body force: The body force due to gravity is

dﬁsngﬁ?CﬁyﬁZ L-71

Where 9% 992 s the volume of the element.

Surface force: The pressure at the center of the element is assumed to be P (X, y, z). Using Taylor
(>3
XY——.=2
series expansion the pressure at point 2 on the surface can be expressed as

2 2
P[x,y—ﬁ—;,z]: P{x,y,z]+5—p[—&]+la—p(—&] +.

dy L-7.2

When 9% =0 , only the first two terms become significant. The above equation becomes

P[x,y—%y,z] = P[x,y,z]+§—p(—§]

Y2 L-73

Similarly, pressures at the center of all the faces can be derived in terms of P (x, y, z) and its
gradient.
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Note that surface areas of the faces are very small. The center pressure of the face

represents the average pressure on that face.
The surface force acting on the element in the y-direction is

dff, = P+E _5_}: Ax-diy— P+£ @ ax. dz
dy 2 dy | 2

:—i—P-ﬁx-ﬁy-ﬁz

Y L-74
Similarly the surface forces on the other two directions (x and z) will be

aF

df, =—— dx-dy- dz
ax

dF, :—ﬁ- dx-dy. dz
dz

The surface force which is the vectorical sum of the force scalar components

T ) ) ) (5x Sy bz)
dx Ay az
=-Vp dx dy 4z L-75
The total force acting on the fluid is

dF =dF, +dF,
= (—‘Fp+p§}[5x- gy - dz)

The total force per unit volume is

dF

— S - Vp+pog
Ax-dy. dz prog
For a static fluid, dF=0 .
—Vp+poz)=0
Then, (-Vp+eoe) L-77
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per unitvolume perunit wolume | =0

Metpressure forn:a] [Bodj.r force
+ —_

at a point atapoint

If acceleration due to gravity € is expressed as 2 = &7 T8/ T 8% the components of
Eq(L- 7.8) in the x, y and z directions are

dp

- 4 = |:|
o LEg
dp

- 4 = |:|
Em LEy
dp

-~ 4 = |:|
. PE,

The above equations are the basic equation for a fluid at rest.

Simplifications of the Basic Equations

—+

If the gravity £is aligned with one of the co-ordinate axis, for example z- axis, then

g, =0
g,=0
E;=—%

The component equations are reduced to

5_;:1 = [:]
ax
5_;:1 = [:]
oy L -7.9
dp
P PE
Under this assumption, the pressure P depends on z only. Therefore, total derivative can be used
instead of the partial derivative.
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dp
o =P8

This simplification is valid under the following restrictions

a. Static fluid
b. Gravity is the only body force.

c. The z-axis is vertical and upward.
Pressure variations in an incompressible fluid at rest

In some fluid problems, fluids may be considered homogenous and incompressible i.e.
density # is constant. Integrating the equation (L -7.10) with condition given in figure (Fig : L -
7.2), we have

Ry i
B
Il
I
R
fi-

=1,

N

T
P ] P=P:

Pressure variation in an incompressible fluid

This indicates that the pressure increases linearly from the free surface in an incompressible
static fluid as illustrated by the linear distribution in the above figure.

Scales of pressure measurement
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Fluid pressures can be measured with reference to any arbitrary datum. The common datum are

1. Absolute zero pressure.
2. Local atmospheric pressure

When absolute zero (complete vacuum) is used as a datum, the pressure difference is called an
absolute pressure, P aps .

When the pressure difference is measured either above or below local atmospheric pressure,
P 1ocal, @S @ datum, it is called the gauge pressure. Local atmospheric pressure can be measured
by mercury barometer.
At sea level, under normal conditions, the atmospheric pressure is approximately 101.043 kPa.
As illustrated in figure( Fig : L -7.2),

When I:)abs < PIocal

P gauge — P 1ocal = P abs L-7.12

Note that if the absolute pressure is below the local pressure then the pressure difference is
known as vacuum suction pressure.

Example 1 :

Convert a pressure head of 10 m of water column to kerosene of specific gravity 0.8 and carbon-
tetra-chloride of specific gravity of 1.62.

Solution
Given data:
Height of water column, h ; =10 m
Specific gravity of water s; = 1.0
Specific gravity of kerosene s, = 0.8
Specific gravity of carbon-tetra-chloride, s3 = 1.62
For the equivalent water head
Weight of the water column = Weight of the kerosene column.

So,0ghysi=0ghys;=[1ghsss
27




Answer:- 125m and 6.17 m.
Example 2

Determine (a) the gauge pressure and (b) The absolute pressure of water at a depth of 9 m from
the surface.

Solution
Given data:
Depth of water =9 m
the density of water = 998.2 kg/m®
And acceleration due to gravity = 9.81 m/s?
Thus the pressure at that depth due to the overlying water is P = r gh = 88.131 kN/m?

Case a) as already discussed, gauge pressure is the pressure above the normal atmospheric
pressure.

Thus, the gauge pressure at that depth = 88.131 kN/m?
Case b) The standard atmospheric pressure is 101.213 kN/m?

Thus, the absolute pressure as Pas= 88.131+101.213 = 189.344 kN/m?
Answer: 88.131 kN/m*;  101.213 kN/m?

Manometers: Pressure Measuring Devices

Manometers are simple devices that employ liquid columns for measuring pressure difference
between two points.

In Figure(L 8.1), some of the commonly used manometers are shown.

In all the cases, a tube is attached to a point where the pressure difference is to be measured and
its other end left open to the atmosphere. If the pressure at the point P is higher than the local
atmospheric pressure the liquid will rise in the tube. Since the column of the liquid in the tube is
at rest, the liquid pressure P must be balanced by the hydrostatic pressure due to the column of
liquid and the superimposed atmospheric pressure, Pag -

P=pgh+P,
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Simple Manometer

This simplest form of manometer is called a Piezometer . It may be inadequate if the pressure
difference is either very small or large.

U - Tube Manometer

In (Fig : L -8.2), a manometer with two vertical limbs forms a U-shaped measuring tube. A
liquid of different density [1- is used as a manometric fluid. We may recall the Pascal's law
which states that the pressure on a horizontal plane in a continuous fluid at rest is the same.
Applying this equality of pressure at points B and C on the plane gives

P+pgh= Fy, + 08k

P—rp, = 0gh—pgh

U-tube Manometer

Inclined Manometer

A manometer with an inclined tube arrangement helps to amplify the pressure reading, especially in low press
range. A typical arrangement of the same is shown in Fig. L-8.3.
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The pressure at O is

fy=FP+pgh

The pressure at O is

A =F, taghsnd

Equating the pressures, we have

B~ By, = Agh sin 8- 0gh

Inclined Manometer

At the same pressure difference, Equations (1) and (2) indicate that inclined tube manometer
1

amplifies the length of measurement by stn&  which is the primary advantage of such type of
manometer.

Differential Manometers

Differential Manometers measure difference of pressure between two points in a fluid system
and cannot measure the actual pressures at any point in the system.

Some of the common types of differential manometers are

a. Upright U-Tube manometer

b. Inverted U-Tube manometer

c. Inclined Differential manometer
d. Micro manometer

Upright U-Tube manometer:
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As shown in Fig. : L-8.4, an upright U-tube manometer is connected between points A and B.
The difference of pressure between the points may be calculated by balancing pressure in a
horizontal plane, the lowest interface A-A is used for this case.

Upright U-tube Manometer

Fytogh+ ogh=Ftoeh
or
Fy— = o8 — 08 - S8k
= {.-'92-’332 — &y _a%"zgz]g

Inverted U-Tube manometer:

The manometer fluid used in this type of manometer is lighter than the working fluids. Thus the
height difference in two limbs is enhanced. This is therefore suitable for measurement of small
pressure difference in liquids. For the configurations given in Fig. L-8.1.

Fig. L-8.5 Inverted Manometer
Fy—agh = Fy— oaghy — o8k, Or Fi-H=(oh- ok - oh)g

If the two points A and B are at the same level and the same fluid is used, thenP ;=P ,=P
andh,+hsz=hq.

The above equation becomes B-h=(a-a)ke
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Inclined Differential Manometer

In this type of manometer a narrow tube is connected to a reservoir at an inclination. The cross
section of the reservoir is larger than that of the tube. Fluctuations in the reservoir may be
ignored. As shown in Fig.L-8.6, the initial liquid level in both the reservoir and the tube is at 0-o.
The application of the differential pressure liquid level of the reservoir drops by &,
whereas h is the rising level in the tube. Therefore

Bi=F+{h+ik) pg

Since the volume of liquid displaced in the reservoir equals to the volume of liquid in the tube,
we can define

A bh=a L

Where 'A" and 'a’" are the cross sectional areas of the reservoir and the tube respectively. Then the
Pa-Pa=(h+2 D)oo
equation becomes A
o
In practice, the reservoir area is much larger than that of the tube; the ratio -4 is negligible and

the above equation is reduced to fa~ 4z =#gLsing. -

Micro manometer:

)

& L}

Flexible kst — =
S alr

Remerviul

Stanid

M Sent

Fig. L-8.6: Micro manometer
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A typical micro-manometer tube arrangement as shown in fig has a reservoir which can be
moved up and down by means of micrometer screw. A flexible tube is connected between point
A and the reservoir. Another flexible tube connecting point B and the other end of the reservoir
is placed on an inclined surface. A reference mark 'R' is provided on the inclined portion of the
tube. Before application of the pressure, the level of the reservoir is moved so as to coincide this
level with the reference mark. When a pressure difference is applied, the liquid levels will be
disturbed. The micrometer arrangement is then adjusted to vary the reservoir level so as to
coincide with the reference. The extent of movement of the micrometer screw gives the pressure
difference between the two points A and B.

Example 1:

Two pipes on the same elevation convey water and oil of specific gravity 0.88 respectively. They
are connected by a U-tube manometer with the manometric liquid having a specific gravity of
1.25. If the manometric liquid in the limb connecting the water pipe is 2 m higher than the other
find the pressure difference in two pipes.

Solution :
Given data:
Height difference =2 m
Specific gravity of oil s =0.88
Specific gravity of manometric liquid s = 1.25
Equating pressure head at section (A-A)

P +2%1.250, g+(h—2)pg 8= Fy+hx0.880, g
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h=fm

Fig. Ex1

Substituing h = 5 m and density of water 998.2 kg/m* we have P a -P g = 10791

Example 2:

A two liquid double column enlarged-ends manometer is used to measure pressure difference
between two points. The basins are partially filled with liquid of specific gravity 0.75 and the
lower portion of U-tube is filled with mercury of specific gravity 13.6. The diameter of the basin
is 20 times higher than that of the U-tube. Find the pressure difference if the U-tube reading is 25

mm and the liquid in the pipe has a specific weight of 0.475 N/m®.
Solution:

Given data: U-tube reading 25 mm
Specific gravity of liquid in the basin 0.75
Specific gravity of Mercury in the U-tubel3.6
As the volume displaced is constant we have,

1

20°

v =252 295
A
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Fig. Ex 2

Equating pressure head at (A--A)

E{+X%pwg+(z +¥10,2x075+25x13. 60,
0475

=BHA D)o A HEZ+29) %0750,

Put the value of Y while X and Z cancel out.
Answer: 31.51 kPa

Example 3:

As shown in figure water flows through pipe A and B. The pressure difference of these two
points is to be measured by multiple tube manometers. Oil with specific gravity 0.88 is in the
upper portion of inverted U-tube and mercury in the bottom of both bends. Determine the
pressure difference.

Solution

Given data: Specific gravity of the oil in the inverted tube 0.88
Specific gravity of Mercury in the U-tubel3.6

Calculate  the  Pressure  difference  between each two point as follow
Pz-Plzh Dg:hSDWg
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10em

Mercury

Fig. Ex3
Start from one and i.e. Poor P g

How, Pp= P, + 102,21

similarly, =P, - 3x13ép,z
= Py + 4x 088,82
= P, - 5x13ép,.2

Py
Py
Py
Pp = Py — Bo,2

Rearranging and summing all these equations we have Pa - Pg =103.28 (1, 0

Example 4:

A manometer connected to a pipe indicates a negative gauge pressure of 70 mm of mercury .
What is the pressure in the pipe in N/m? ?

Solution :

Given data:
Manometer pressure- 70 mm of mercury (Negative gauge pressure)
A pressure of 70 mm of Mercury, P = r gh = 9.322 kN/m 2
Also we know the gauge pressure is the pressure above the atmosphere.

Thus a negative gauge pressure of 70 mm of mercury indicates the absolute pressure of
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P abs = 101.213 + (-9.322) = 91.819 kN/m?

Answer: 91.819 kN/m?
Example 5:
An empty cylindrical bucket with negligible thickness and weight is forced with its open end first into
water until its lower edge is 4m below the water level. If the diameter and length of the bucket are 0.3m

and 0.8m respectively and the trapped water remains at constant temperature. What would be the force
required to hold the bucket in that position atmospheric pressure being 1.03 N/cm?

Solution :

Let, the water rises a height x in the bucket

By applying the Boyle's Law at constant temperature we have

2, %(0.3)? xgx(ﬂ.ﬁ—x) - xma)?gxus

Also, Downward pressure ion the bucket, £t = Pam + (4 —x)x3810

Solve for, p, and x.
2, = 6.46x10Y W { e

x=0.610m

B = pyx 2 x0.3 = 4.57x10° N f i
Total upward force exerted by the trapped water 4
Downward force due to the overlying water and the Atmospheric Pressure
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A =[1.03x10° +9810><(4—D.8}]><‘§><U.32

Answer: 1.62KN

Example 6:
A pipe connected with a tank (diameter 3 m) has an inclination of (1 with the horizontal and the

diameter of the pipe is 20 cm. Determine the angle ? which will give a deflection of 5 m in the

pipe for a gauge pressure of 1 m water in the tank. Liquid in the tank has a specific gravity of
0.88.

Solution :

al m W. L -

PR -

Given data:

Diameter of tank = 3 m
Diameter of tube = 20 cm
Deflection in the pipe, L = 5 m
From the figure shown
h = L sintJ 0]

If X m fall of liquid in the tank rises L m in the tube. (Note that the volume displaced is the same
in the tank is equal to the volume displaced in the pipe)
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T —=Lr——
4 4
0.04L
or =
g
Difference of head =x+h=_Lsinqg + 0.04 L/9
_ 0.04L
{Lsmé?+ }XUES:I
And

Substitute L = 5m in the above equation.
Answer: [1=12.870

Hydrostatic force on submerged surfaces
Introduction

Designing of any hydraulic structure, which retains a significant amount of liquid, needs to
calculate the total force caused by the retaining liquid on the surface of the structure. Other
critical components of the force such as the direction and the line of action need to be addressed.
In this module the resultant force acting on a submerged surface is derived.

Hydrostatic force on a plane submerged surface

Shown in Fig.L-9.1 is a plane surface of arbitrary shape fully submerged in a uniform liquid.
Since there can be no shear force in a static liquid, the hydrostatic force must act normal to the
surface.

Consider an element of area 44 on the upper surface. The pressure force acting on the element
is

dF = —PdA

Aar Prossare Py Fres sartace
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Fig : L - 9.1: Hydrostatic force and center of pressure on an inclined surface

Note that the direction of 94 is normal to the surface area and the negative sign shows that the

pressure force dF acts against the surface. The total hydrostatic force on the surface can be
computed by integrating the infinitesimal forces over the entire surface area.

F:_[—P-.:;E;El

A

If his the depth of the element, from the horizontal free surface as given in Equation (L2.9)
becomes

o og=w
dh L-9.1

If the fluid density © is constant and P 0 is the atmospheric pressure at the free surface,
integration of the above equation can be carried out to determine the pressure at the element as
given below

]
= & +twh L-9.2
Total hydrostatic force acting on the surface is
F=|padd

P,J+wﬂz]-ﬂ

(
(A +w ysin 5}-.:1?;1

]

=HA+w sin Hj-y-ciz_'i
4 L-9.3

[ o
A

The integral is the first moment of the surface area about the x-axis.

If y. is the y coordinate of the centroid of the area, we can express

[y di=y, 4
! L-9.4
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in which A is the total area of the submerged plane.

Thus
F=5 A+wsn8-{yA)
=44 L-9.5

This equation says that the total hydrostatic force on a submerged plane surface equals to the
pressure at the centroid of the area times the submerged area of the surface and acts normal to it

Centre of Pressure (CP)

The point of action of total hydrostatic force on the submerged surface is called the Centre of
Pressure (CP). To find the co-ordinates of CP, we know that the moment of the resultant force
about any axis must be equal to the moment of distributed force about the same axis. Referring to
Fig. L-9.2, we can equate the moments about the x-axis.

Y F=|y P a4
i L-9.6

Neglecting the atmospheric pressure (Po= 0) and substituting F=wsin 8-y,4

. P=wh and ’gg:i"smg,

Yo waing y A= wsinﬂ_l-yz-dﬂ
We get 4

Air Pressure Py Fres S

Fig. L-9.2 : Centre of pressure
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Yo weind y A= wsiné‘_l-yz-dﬂ

We get 4
[ s
Yo = 4 A
[ as
4
[

3 second moment of area about 0

first moment of area about "0
From parallel-axis theorem

I =1 _+Ay*

Where L is the second moment of the area about the centroidal axis.

a
Y, = I +4 -y
ﬂ-yc
— ¥ +.}?¢
A, L-9.8

This equation indicates that the centre of the pressure is always below the centroid of the
submerged plane. Similarly, the derivation of X, can be carried out

Hydrostatic force on a Curved Submerged surface

On a curved submerged surface as shown in Fig. L-9.3, the direction of the hydrostatic pressure

being normal to the surface varies from point to point. Consider an elementary area d4 in the
curved submerged surface in a fluid at rest. The pressure force acting on the element is

dF = Fdd
The total hydrostatic force can be computed as
F=|-rda
A

Note that since the direction of the pressure varies along the curved surface, we cannot integrate
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the above integral as it was carried out in the previous section. The force vector & is expressed
in terms of its scalar components as

F=Fi+Fj+Ek

F, P andF

in  which T represent the scalar components of Fin the x,yand z directions

respectively.
For computing the component of the force in the x-direction, the dot product of the force and the
unit vector (i) gives
F,=[dF i
= [-Fad:
A

=_Ipd_(gw

Where %4 is the area projection of the curved element on a plane perpendicular to the x-axis.
This integral means that each component of the force on a curved surface is equal to the force on
the plane area formed by projection of the curved surface into a plane normal to the component.
The magnitude of the force component in the wvertical direction (z direction)

F,= [Pd4
4

P=PE+wh

Since and neglecting EE', we can write

F=[whd4
A

:_[wdv

in which is the weight of liquid above the element surface. This integral shows that the z-
component of the force (vertical component) equals to the weight of liquid between the
submerged surface and the free surface. The line of action of the component passes through the
centre of gravity of the volume of liquid between the free surface and the submerged surface

Example 1 :
A vertical gate of 5 m height and 3 m wide closes a tunnel running full with water. The pressure

at the bottom of the gate is 195 kN/m?. Determine the total pressure on the gate and position of
the centre of the pressure.
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Solution

195 k™ot

Fig. E=1

Given data: Area of the gate =5x3 =15m ?
The equivalent height of water which gives a pressure intensity of 195 kN/m? at the bottom.

h = P/w =19.87m.

Total force ¥ =wx.
And x=1987-25=17.37m

Centre of Pressure h = E+I—'i 3

A [l g=hd?3/12]
Answer: 2.56MN and 17.49 m

Example 2 :

A vertical rectangular gate of 4m x 2m is hinged at a point 0.25 m below the centre of gravity of
the gate. If the total depth of water is 7 m what horizontal force must be applied at the bottom to
keep the gate closed?

Solution
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Given data: Area of the gate = 4x2 =8 m?
Depth of the water =7 m

Hydrostatic force on the gate

F=wdx x=5+1=6m
=47 % 10°K

b= E+E_G= 6.22m1
A%

Taking moments about the hinge we get, & *0.03=Fx0.75

Answer: 18.8 kN.

Buoyancy
Introduction

In our common experience we know that wooden objects float on water, but a small needle of
iron sinks into water. This means that a fluid exerts an upward force on a body which is
immersed fully or partially in it. The upward force that tends to lift the body is called the buoyant

force, £ )
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The buoyant force acting on floating and submerged objects can be estimated by employing
hydrostatic principle.

Fig L 10.1 : Buoyant force

With reference to figure(L- 10.1), consider a fluid element of area ddy

acting on the fluid element is

. The net upward force

dify = (5 - {)ddy
= W{}"z _kl}d‘qﬁ'

The total upward buoyant force becomes

P, = IW{E@Z =k WA, = wlvolume of the body)
10.2

This result shows that the buoyant force acting on the object is equal to the weight of the fluid it
displaces.

Center of Buoyancy

The line of action of the buoyant force on the object is called the center of buoyancy. To find the
centre of buoyancy, moments about an axis OO can be taken and equated to the moment of the
resultant forces. The equation gives the distance to the centeroid to the object volume.

The centeroid of the displaced volume of fluid is the centre of buoyancy, which, is applicable for
both submerged and floating objects. This principle is known as the Archimedes principle which
states:

“A body immersed in a fluid experiences a vertical buoyant force which is equal to the weight of
the fluid displaced by the body and the buoyant force acts upward through the centroid of the
displaced volume".
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Buoyant force in a layered fluid

As shown in figure (L-10.2) an object floats at an interface between two immiscible fluids of density A an

Pula
(R

Fig. L-10.2 Buoyant force in a layersd fluid Fig. L-10.3: Element with hydrostatics forces

Considering the element shown in Figure L-10.3, the buoyant force Fx s

Fy = IdFB = Iaﬂlgfﬂ’rl +_I-F’zgfsz

=¥ ;g {displaced volume)
1 i L-10.3

where d¥yand dv, are the volumes of fluid element submerged in fluid 1 and 2 respectively.

The centre of buoyancy can be estimated by summing moments of the buoyant forces in each
fluid volume displaced.

Buoyant force on a floating body

When a body is partially submerged in a liquid, with the remainder in contact with air (as shown
in figure), the buoyant force of the body can also be computed using equation (L-10.3). Since the

specific weight of the air (11.8 M/ ma) is negligible as compared with the specific weight of the

liquid (for example specific weight of water is 9800 kN ),we can neglect the weight of
displaced air. Hence, equation (L-10.3) becomes
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Fluid 1 p 4

Air

Fig. L-10.4: Partially submerged body

Fe =00 (Displaced volume of the submerged liquid)
= The weight of the liquid displaced by the body.

The buoyant force acts at the centre of the buoyancy which coincides with the centeroid of the
volume of liquid displaced.

Example 1:

A large iceberg floating in sea water is of cubical shape and its specific gravity is 0.9 If 20 cm
proportion of the iceberg is above the sea surface, determine the volume of the iceberg if specific
gravity of sea water is 1.025.

Solution:

Let the side of the cubical iceberg be h.

Total volume of the iceberg = h

volume of the submerged portion is = (h -20) x h 2

Now,
For flotation, weight of the iceberg = weight of the displaced water

(72— EU)XHE %1025 xw=h" =09 xw
ar, =164 om

The side of the iceberg is 164 cm.
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Thus the volume of the iceberg is 4.41m®
Answer: 4.41m?*

Stability

Introduction

Floating or submerged bodies such as boats, ships etc. are sometime acted upon by certain
external forces. Some of the common external forces are wind and wave action, pressure due to
river current, pressure due to maneuvering a floating object in a curved path, etc. These external
forces cause a small displacement to the body which may overturn it. If a floating or submerged
body, under action of small displacement due to any external force, is overturn and then
capsized, the body is said to be in unstable. Otherwise, after imposing such a displacement the
body restores its original position and this body is said to be in stable equilibrium. Therefore, in
the design of the floating/submerged bodies the stability analysis is one of major criteria.

Stability of a Submerged body

Consider a body fully submerged in a fluid in the case shown in figure (Fig. L-11.1) of which the
center of gravity (CG) of the body is below the centre of buoyancy. When a small angular
displacement is applied a moment will generate and restore the body to its original position; the
body is stable.

| . I.'(r:.-ﬁ"l_.tp.pllp;-d Hﬂgulnr:d|.$p|:-u;t'llh:rlt
- u - ‘L\.\ﬁ
#
F

&
1 ) ’
1 F i £
$ l : |
ra
¢
#
W *

-~
£

| p W Fe !.-'
Stable I Unstable
Fig. L-11.1_1 Fig. L-11.1.2

However if the CG is above the centre of buoyancy an overturning moment rotates the body
away from its original position and thus the body is unstable (see Fig L-11.2). Note that as the
body is fully submerged, the shape of the displaced fluid remains the same when the body is
tilted. Therefore the centre of buoyancy in a submerged body remains unchanged.

Stability of a floating body
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A body floating in equilibrium ( Fe = II“""J) is displaced through an angular displacement €. The
weight of the fluid W continues to act through G. But the shape of immersed volume of liquid
changes and the centre of buoyancy relative to body moves from B to B 1 . Since the buoyant

force  ® and the weight W are not in the same straight line, a turning movement proportional to

 Wxd "is produced.

In figure (Fig. L-11.2) the moment is a restoring moment and makes the body stable. In figure
(Fig. L-11.2) an overturning moment is produced. The point ' M ' at which the line of action of
the new buoyant force intersects the original vertical through the CG of the body, is called the
metacentre. The restoring moment

=W x=WGCM®

Provided € is small; SiN&= & (in radians).
The distance GM is called the metacentric height. We can observe in figure that

Stable equilibrium: when M lies above G, a restoring moment is produced. Metacentric
height GM is positive.

Unstable equilibrium: When M lies below G an overturning moment is produced and the
metacentric height GM is negative.

Natural equilibrium: If M coincides with G neither restoring nor overturning moment is
produced and GM is zero.

Determination of Meta-centric Height
Experimental method

The metacentric height of a floating body can be determined in an experimental set up
with a movable load arrangement. Because of the movement of the load, the floating

object is tilted with angle € for its new equilibrium position. The measurement of € is
used to compute the metacentric height by equating the overturning moment and
restoring moment at the new tilted position.

The overturning moment due to the movement of load P for a known
distance, x, is = £

The restoring moment is = W GM8
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For equilibrium in the tilted position, the restoring moment must equal to the overturning
moment. Equating the same yields

Px=WGMé
The metacentric height becomes

e FX

W g

And the true metacentric height is the value of GM a5 8 =0 This may be determined by
plotting a graph between the calculated value of &% for various #values and the angle &.

Theoretical method:

|} (‘)u

For a floating object of known shape such as a ship or boat determination of meta-centric height
can be calculated as follows.

The initial equilibrium position of the object has its centre of Buoyancy, B, and the original
water line is AC . When the object is tilted through a small angle € the center of buoyancy will
move to new position &'. As a result, there will be change in the shape of displaced fluid. In the
new position “'C"js the waterline. The small wedge ©CC"is submerged and the wedge ©144°
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Is uncovered. Since the vertical equilibrium is not disturbed, the total weight of fluid displaced
remains unchanged.

Weight of wedge ©/44° = Weight of wedge @CC"

In the waterline plan a small area, da at a distance x from the axis of rotation OO uncover the
volume of the fluid is equal to DL'xda = x&da

Integrating over the whole wedge and multiplying by the specific weight w of the liquid,

0AA = [ wexda
Weight of wedge oa4

Similarly,

OCC = _[ w &xda
Weight of wedge eles)

Equating Equations () and (),

We I xtla = We I xia

QA48 Qo

Ixr:fa:[]

in which, this integral represents the first moment of the area of the waterline plane about OO ,
therefore the axis OO must pass through the centeroid of the waterline plane.

Computation of the Meta-centric Height

Refer to Figure(), the distance BM is

5M=B%é

The distance £&" is calculated by taking moment about the centroidal axis ¥ .

BEWV 4 e = I Xwh + _[ Xwily — _[ xw v
Ad'ECO (] w oy [REEY

il

The integral A+€co equals to zero, because ¥ ¥ axis symmetrically divides the submerged
portion AA'ECT
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Ata distance x , &v = Lxtan &.ax

Substituting it into the above equation gives

BBV, 000 =0+ | xixtansdx— [ xi{-xtang)dx

Qo oA
=tand I A o prie
wa e e
=tané& !,

Where | ¢ is the second moment of area of water line plane about ©'©" . Thus,

BM = BB'/8
[ 1anég

E'VAEGG‘D

Distance

Since il eged
Example:

A large iceberge, floating in seawater, is of cubical shape and its average specific gravity is 0.9.
If a 20-cm -high proportion of the iceberg is above the surface of the water, determine the
volume of the iceberg if the specific gravity of the seawater is 1.025.

Solution:

Let the side of the cubical iceberg is h.

Then volume of the submerged portion is = (h -20) x h ?

Total volume of the iceberg = h®
Now,
For flotation, weight of the iceberg = weight of the displaced water
(—20)xA* x1.025=4" % 0.9
ar, k=164

So, the side of the iceberg is 164 cm.
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Thus the volume of the iceberg is 4.41m®

Example

A log of wood of 1296 cm 2 cross section (square) with specific gravity 0.8 floats in water. Now
if one of its edges is depressed to cause the log roll, find the period of roll.

Solution

Let, h be the depth of immersion and L be the length (perpendicular to the page)

Since the section is square its dimension should be 036 m x 036 m
For flotation
Weight of water displaced = Weight of the log

L0 1296 =0 8=k=x036x 1

Then, h =0.288 m.

=0.036

lu ]

5 036
2

ro | o

lxﬁxo.363
12

= = 0.0375
Vimerga 036 %0.288x L

M=

)
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G = (BM—BGJ = 0.0015 s

I 2
) 036

Time period, ANGM and we have, ° la

Answer: 5.38 second
Example
To find the metacentre of a ship of 10,000 tonnes a weight of 55 tonnes is placed at a distance of
6 m from the longitudinal centre plane to cause a heel through an angle of 3°. What is the
metacentre height? Hence find the angle of heel and its direction when the ship is moving ahead
and 2.8 MW is being transmitted by a single propeller shaft at the rate of 90 rpm.
Solution
Given data: Weight of the ship, W = 10 7 kg

Angle of heel 7 = 3°

Distance of the weight X =6 m

Weight placed w =5.5x 10 4

Meta-centric height

_ow.A
Wotan 8
=0.62% m.
Torque transmitted - T=P/ @=2 97 =107 W — m.
@htan8'=T

Answer:- 0.629 m and 0.27°,
Example

A hollow cylinder closed in both end, of outside diameter 1.5 m and length of 3.8 m and specific
weight 75 kN per cubic meter floats just in stable equilibrium condition. Find the thickness of the
cylinder if the sea water has a specific weight of 10 kN per cubic meter.
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Foagel =20 o

Solution

Given data : Outside diameter 1.5 m
LengthL=3.8m
Specific weight 75 kN/m
Let the thickness t and immersion depth h .
For flotation
Weight of water displaced = weight of the cylinder

%T(l.ﬁ:‘x}z)x10= ;?T{l.ﬁxf,}3.8+2><§><1.52x5}<?5

Ageuming the thickness is very small compared to the diam eter

h=91t
. =
EM = Xy = 1.545x10 as we have J; = T oqst
L ¢ 64
— | £ 28 91
BG=[——?3:| =[———1£]
2 2 2

For the cylinder to be in equilibrium BEM =BG
Solving for t we have t = 0.0409 or 0.000829m
Answer:-t=0.83 mm

Example
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A wooden cylinder of length L and diameter D is to be floated in stable equilibrium on a liquid
keeping its axis vertical. What should be the relation between L and D if the specific gravity of

liquid and that of the wood are 0.6 and 0.8 respectively?

Froree sl

Solution

Given data: Specific gravity of liquid = 0.6
Specific gravity of liquid = 0.8

If the depth of immersion is h

Weight of water displaced = weight of the cylinder

TR Ix0.6=2D%x0.8
4 4

.y
The depth of immersion 4

| e
=l N
[

Height of centre of pressure from bottom x =
Then, BM=1iV=D%12L

E:@_@;.:g

EM =BG
oL

[
For Stable equilibrium 12L&

Answer: L <0.817D.
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UNIT 11

FLUID KINEMATICS
Introduction

Kinematics is the geometry of Motion.

Kinematics of fluid describes the fluid motion and its consequences without consideration of the
nature of forces causing the motion.

The fluid kinematics deals with description of the motion of the fluids without reference to the
force causing the motion.

Thus it is emphasized to know how fluid flows and how to describe fluid motion. This concept
helps us to simplify the complex nature of a real fluid flow.

When a fluid is in motion, individual particles in the fluid move at different velocities. Moreover
at different instants fluid particles change their positions. In order to analyze the flow behavior, a
function of space and time, we follow one of the following approaches

1. Lagarangian approach
2. Eularian approach

In the Lagarangian approach a fluid particle of fixed mass is selected. We follow the fluid
particle during the course of motion with time

—_ —_
— —
— —
—_— —k

The fluid particles may change their shape, size and state as they move. As mass of fluid
particles remains constant throughout the motion, the basic laws of mechanics can be applied to
them at all times. The task of following large number of fluid particles is quite difficult.
Therefore this approach is limited to some special applications for example re-entry of a
spaceship into the earth's atmosphere and flow measurement system based on particle imagery.
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In the Eularian method a finite region through which fluid flows in and out is used. Here we do
not keep track position and velocity of fluid particles of definite mass. But, within the region, the
field variables which are continuous functions of space dimensions ( x,Yy, z) and time (t), are
defined to describe the flow. These field variables may be scalar field variables, vector field
variables and tensor quantities. For example, pressure is one of the scalar fields. Sometimes this
finite region is referred as control volume or flow domain.

For example the pressure field 'P" is a scalar field variable and defined as
P=FP(xy.zi)

Velocity field, a vector field, is defined as © = ¥ (X¥:2.1)

Similarly shear stress T is a tensor field variable and defined as

o xy xE
P10 Ty Ty
sz v Iz

Note that we have defined the fluid flow as a three dimensional flow in a Cartesian co-ordinates
system.

Advantages of Lagrangian Method:

1. Since motion and trajectory of each fluid particle is known, its history can be traced.

2. Since particles are identified at the start and traced throughout their motion, conservation
of mass is inherent.

Disadvantages of Lagrangian Method:

1. The solution of the equations presents appreciable mathematical difficulties except

certain special cases and therefore, the method is rarely suitable for practical applications.
Types of Fluid Flow

Uniform and Non-uniform flow : If the velocity at given instant is the same in both magnitude
and direction throughout the flow domain, the flow is described as uniform.
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Uniform flow N

Non-uniform k'

FLOW THROUGH WIND TUNNEL

Fig. L-16.2 : Uniform and Non-uniform flow.

Mathematically the velocity field is defined as V= v(f)’ independent to space dimensions

(x,y,2).

When the velocity changes from point to point it is said to be non-uniform flow. Fig. shows
uniform flow in test section of a well designed wind tunnel and describing non uniform velocity
region at the entrance.

Steady and unsteady flows

The flow in which the field variables don't vary with time is said to be steady flow. For steady
flow,

Y _g

7 o T=ixr)

It means that the field variables are independent of time. This assumption simplifies the fluid
problem to a great extent. Generally, many engineering flow devices and systems are designed to
operate them during a peak steady flow condition.

If the field variables in a fluid region vary with time the flow is said to be unsteady flow.

Y 0
5 7 =7 (xy.zi)
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Four possible combinations

Type Example
Flow at constant rate through a duct of umform
1. Steady Uniform flow cross-sechion (The region close to the walls of the
duct 15 disregarded)

: Flow at constant rate through a duct of non-
2. Steady non-umiform flow e e
Flow at varymg rates through a long straight pipe
3. Unsteady Uniform flow of umform cross-sechon. (Agam the region close
to the walls 1s 1gnored )

Flow at varying rates through a duct of non-

4. Unsteady non-umform flow umiform cross.section

One, two and three dimensional flows

Although fluid flow generally occurs in three dimensions in which the velocity field vary with
three space co-ordinates and time. But, in some problem we may use one or two space
components to describe the velocity field. For example consider a steady flow through a long
straight pipe of constant cross-section. The velocity distributions shown in figure are

independent of co-ordinate xand € and a function of ronly. Thus the flow field is one
dimensional.
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Sl N

Fig L-16.4

But in the case of flow over a weir of constant cross-section (), we can use two co-ordinate
system x and z in defining the velocity field. So, this flow is a case of two dimensional flow. The
reduction of independent space variable in a fluid flow problem makes it simpler to solve.

Laminar and Turbulent flow

In fluid flows, there are two distinct fluid behaviors experimentally observed. These behaviors
were first observed by Sir Osborne Reynolds. He carried out a simple experiment in which water
was discharged through a small glass tube from a large tank (the schematic of the experiment
shown in Fig.). A colour dye was injected at the entrance of the tube and the rate of flow could
be regulated by a valve at the out let.

When the water flowed at low velocity, it was found that the die moved in a straight line. This
clearly showed that the particles of water moved in parallel lines. This type of flow is called
laminar flow, in which the particles of fluid moves along smooth paths in layers. There is no
exchange of momentum from fluid particles of one layer to the fluid particles of another layer.

This type of flow mainly occurs in high viscous fluid flows at low velocity, for example, oil
flows at low velocity. Fig. shows the steady velocity profile for a typical laminar flow.

When the water flowed at high velocity, it was found that the dye colour was diffused over the
whole cross section. This could be interpreted that the particles of fluid moved in very irregular
paths, causing an exchange of momentum from one fluid particle to another. This type of flow is
known as turbulent flow. The time variation of velocity at a point for the turbulent flow is shown
in Fig
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¥
Time = Time -
Fig-L16.5 : “elocity profile for laminar flow Fig. L-15.6 : “elocity profile for turbulent flow

It means that the flow is characterized by continuous random fluctuations in the magnitude and
the direction of velocity of the fluid particles.

Velocity Field

Consider a uniform stream flow passing through a solid cylinder (Fig.). The typical velocities at
different locations within the fluid domain vary from position to position at a particular time t .
At different time instants this velocity distribution may change. Keeping this observation in
mind, the velocity within a flow domain can be represented as function of position ( x,y, z) and
timet.

In the Cartesian co-ordinates the variation of velocity can be represented as a
vector ¥ =M HWHWE where y v, ware the velocity scalar components

in x, y and z directions respectively.
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Fig. L-17.1

The scalar components u, v and w are dependent functions of position and time. Mathematically
we can express them as

) :u[x,y,z,f,]
v=v{x,y,z,.ﬁ]
w:w{x,y,z,.t}

This type of continuous function distribution with position and time for velocity is known as
velocity field. It is based on the Eularian description of the flow. We also can represent the
Lagrangian description of velocity field.

Let a fluid particle exactly positioned at point A moving to another point 4" during time

interval &£, The velocity of the fluid particle is the same as the local velocity at that point as
obtained from the Eulerian description

Attimet,V particleatx,y, z &)=V (x.y.z¢)

74 Y S B |
At time £+ M , V partide at > 5 (f+ﬂf]—V(x,y,z,z+ﬁr.}

This means that instead of describing the motion of the fluid flow using the Lagrangian
description, the use of Eularian description makes the fluid flow problems quite easier to solve.
Besides this difficult, the complete description of a fluid flow using the Lagrangian description
requires to keep track over a large number of fluid particles and their movements with time.
Thus, more computation is required in the Lagrangian description.

The Acceleration field
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At given position A, the acceleration of a fluid particle is the time derivative of the particle's
velocity.

_ AW

b
Acceleration of a fluid particle: "

Since the particle velocity is a function of four independent variables ( x,y,zand t), we can
express the particle velocity in terms of the position of the particle as given below

L ‘ﬂr{xmcwypmwzpm.@)

@ rrticie
Barm dt dt

Applying chain rule, we get

Where & and d are the partial derivative operator and total derivative operator respectively.

The time rate of change of the particle in the x -direction equals to the x -component of velocity
vector, u . Therefore

dx

poticle

et

i

‘f}’pmm =

Similarly, dt
dzpﬂ?‘!‘&'i‘ —w

el

As discussed earlier the position vector of the fluid particle ( x particle , y particle , z particle ) in
the Lagranian description is the same as the position vector ( x, Yy, z) in the Eulerian frame at
time t and the acceleration of the fluid particle, which occupied the position (x,y, z) is equal

to #%.Y:2.8} i the Eularian description.

Therefore, the acceleration is defined by

65




in vector form

- ar o
Dxpat) = m + (V.‘F) ¥
(Tocal accelarationy (commectime accebrtion)

where ¥ is the gradient operator.

The first term of the right hand side of equation represents the time rate of change of velocity
field at the position of the fluid particle at timet. This acceleration component is also
independent to the change of the particle position and is referred as the local acceleration.

AT : :
However the term ( ) accounts for the affect of the change of the velocity at various
positions in this field. This rate of change of velocity because of changing position in the field is
called the convective acceleration.

Type of Flow Material Acceleration
Temporal Convective
1. Steady Unnform flow 0 0
2. Steady non-umiform flow 0 exists
3. Unsteady Umiform flow exists 0

4. Unsteady non-umiform

exists exists
flow

Continuity Equation - Differential Form
Derivation

1. The point at which the continuity equation has to be derived, is enclosed by an elementary
control volume.

2. The influx, efflux and the rate of accumulation of mass is calculated across each surface
within the control volume.
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p+ %‘*‘I ﬂ‘f%—fﬂ Mz dy

£
r,,:w;j,'g.*im:-- G i e
b
—t— (D +?"_f§=r‘.m #1—%;{:)@; iz
pudyde) L |
Q,z;. i o
R
ppr
ﬁ{:‘?‘;”‘r,-"{,—f t
C G-
prw i dy

A Control Volume Appropriate to a Rectangular Cartesian coordinate system

Consider a rectangular parallelopiped in the above figure as the control volume in a rectangular
cartesian frame of coordinate axes.

[1 Net efflux of mass along x -axis must be the excess outflow over inflow across faces normal to
X -axis.

[] Let the fluid enter across one of such faces ABCD with a velocity u and a density p.The
-
ut—dx

velocity and density with which the fluid will leave the face EFGH will be &  and
respectively (neglecting the higher order terms in dx).

(1 Therefore, the rate of mass entering the control volume through face ABCD = pu dy dz.

[J The rate of mass leaving the control volume through face EFGH will be

8o B
a A
=] oo + —{ahdx dp
ax !
(neglecting the higher order terms in dx)

Similarly influx and efflux take place in all y and z directions also.

Rate of accumulation for a point in a flow field
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-
=== OEY) = oV

Using, Rate of influx = Rate of Accumulation + Rate of Efflux
_ae e B
Fidydz + pydair + predzdy = i'ﬂ +{#l'idﬂﬂl+iﬁm
do v an e
Hpt p VNt L ek et o deyincy

Transferring everything to right side

"'[["_ “#]’[ ‘> ar] ]‘“"""’{#

[ﬁ+—tn1+—m+—w]a-n

This is the Equation of Continuity for a compressible fluid in a rectangular Cartesian coordinate
system.

Continuity Equation - Vector Form

The continuity equation can be written in a vector form as
A [ @ o g = =
| =]+ —k| — o+ -0
> [a: >’ i][ﬂﬁﬂﬂ]

%"+ V.o

o,

Streamlines, Pathlines and Streakline
Streamlines

Definition: Streamlines are the Geometrical representation of the of the flow velocity.
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Description:

] In the Eulerian method, the velocity vector is defined as a function of time and space
coordinates.

(1 If for a fixed instant of time, a space curve is drawn so that it is tangent everywhere to the
velocity vector, then this curve is called a Streamline.

Therefore, the Eulerian method gives a series of instantaneous streamlines of the state of motion.

Streamlines
Alternative Definition: A streamline at any instant can be defined as an imaginary curve or line
in the flow field so that the tangent to the curve at any point represents the direction of the
instantaneous velocity at that point.
In an unsteady flow where the velocity vector changes with time, the pattern of streamlines also
changes from instant to instant.
In a steady flow, the orientation or the pattern of streamlines will be fixed.

FEE-“

From the above definition of streamline, it can be written as

e

1. is the length of an infinitesimal line segment along a streamline at a point .

2. ]is the instantaneous velocity vector.
The above expression therefore represents the differential equation of a streamline. In a
cartesian coordinate-system, representing

Foiider Joy 1 ke Pt Fo1 bo

the above equation may be simplified as

dx dy &

Stream tube:
A bundle of neighboring streamlines may be imagined to form a passage through which the fluid
flows. This passage is known as a stream-tube.
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Properties of Stream tube:
1. The stream-tube is bounded on all sides by streamlines.

2. Fluid velocity does not exist across a streamline, no fluid may enter or leave a stream-tube
except through its ends.

3. The entire flow in a flow field may be imagined to be composed of flows through streamtubes
arranged in some arbitrary positions

Path Lines

Definition: A path line is the trajectory of a fluid particle of fixed identity

Path lines

A family of path lines represents the trajectories of different particles, say, P1, P 2, P3, etc.

Differences between Path Line and Stream Line
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Path Line Stream Line

«  This refers to a path followed by a flud «  Tlns 15 an magmary curve m a flow
particle over a period of tme. field for a fixed mstant of time, tangent

to which gives the mstanfaneous
velocity at that pomt

» Two path lines can mtersecteach otherasora »  Two siream lines can never mersect
smgle path lme can form a loop as different each other, as the mstantaneous velocify
particles or even same particle can armve at the vector at any given point 15 umgue.
same point at different mstants of time

In a steady flow path lines are identical to streamlines as the Eulerian and Lagrangian
versions become the same.

Vorticity

Definition: The vorticity Q in its simplest form is defined as a vector which is equal to two
times the rotation vector

Q1= 2&=Vxl
For an irrotational flow, vorticity components are zero.

Vortex line:

If tangent to an imaginary line at a point lying on it is in the direction of the Vorticity vector at
that point , the line is a vortex line.

The general equation of the vortex line can be written as,

Clxgd =10

In a rectangular cartesian cartesian coordinate system, it becomes

dx dy ok

Q, Q, o

where,
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QJ, = Emy
Ll =Z2ay,

Vorticity components as vectors:

The vorticity is actually an anti symmetric tensor and its three distinct elements transform like
the components of a vector in cartesian coordinates.

This is the reason for which the vorticity components can be treated as vectors.

Existence of Flow

= A fluid must obey the law of conservation of mass in course of its flow as it is a material
body.

= For a Velocity field to exist in a fluid continuum, the velocity components must obey
the mass conservation principle.

= Velocity components which follow the mass conservation principle are said to constitute
a possible fluid flow

= Velocity components violating this principle, are said to describe an impossible flow.

= The existence of a physically possible flow field is verified from the principle of
conservation of mass.

The detailed discussion on this is deferred to the next chapter along with the discussion on
principles ofconservation of momentum and energy.

Definition of rotation at a point:

The rotation at a point is defined as the arithmetic mean of the angular velocities of two
perpendicular linear segments meeting at that point.

Example: The angular velocities of AB and AD about A are
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da  df
di and 4 respectively.

Considering the anticlockwise direction as positive, the rotation at A can be written as,

1(d
o _L(da_d8
2\ df df

1[av auJ
@, =—|———
ACEE.

The suffix z in w represents the rotation about z-axis.

or

Whenu = u (x, y)and v = v (X, y) the rotation and angular deformation of a fluid element
exist simultaneously.

Special case : Situation of pure Rotation

; @
A or &
Observation:

= The linear segments AB and AD move with the same angular velocity (both in magnitude
and direction).

= The included angle between them remains the same and no angular deformation takes
place. This situation is known as pure rotation.
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UNIT 11

FLUID DYNAMICS

Euler and Navier Stokes Equation:
Euler’s Equation: The Equation of Motion of an Ideal Fluid

Using the Newton's second law of motion the relationship between the velocity and pressure
field for a flow of an inviscid fluid can be derived. The resulting equation, in its differential
form, is known as Euler’s Equation. The equation is first derived by the scientist Euler.

Derivation:

Let us consider an elementary parallelopiped of fluid element as a control mass system in a
frame of rectangular cartesian coordinate axes as shown in Fig.. The external forces acting on a
fluid element are the body forces and the surface forces.

fh'%d" r:l—%d"’
F

F
r

o

¥ »

- pHiv s

EL,
e =
ol J

A Fluid Element appropriate to a Cartesian Coordinate System
used for the derivation of Euler's Equation

Let Xx, Xy, Xz be the components of body forces acting per unit mass of the fluid element along
the coordinate axes X, y and z respectively. The body forces arise due to external force fields like
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gravity, electromagnetic field, etc., and therefore, the detailed description of Xx, Xy and Xz are
provided by the laws of physics describing the force fields. The surface forces for an inviscid
fluid will be the pressure forces acting on different surfaces as shown in Fig. Therefore, the net
forces acting on the fluid element along X, y and z directions can be written as

£,m oX fr dy ds+ Py dr- (0 + 2 ity de = (0¥, i dy o
B, = P phs dy e+ Pubs e (g ¥ ¥ i = (X, - Doy di
Bn pIAr dyde s D dyde- 0+ 2 dindr (o, - Din by dr

Since each component of the force can be expressed as the rate of change of momentum in the
respective directions, we have

D dp
E[ﬂ###:]- H.—E]M

b Al ot -2
= (pdxdy de v) | o, 2 |

D
w{pde dy dew) = oy~ = |drys

Pdxdwds

s the mass of a control mass system does not change with time, -is constant with

time and can be taken common. Therefore we can write as
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Expanding the material accelerations in Egs in terms of their respective
temporal and convective components, we get

e B G B e 1
.-l-m:l.-|-||n-‘w-|-1||l pt

C O NPT,
X & &F & Ay
e B Ow v . 1
Il+-ﬁ“'ir+'l A 2%
ov __Ve
== P+.E
W _p_ 1
E"'ﬂ”—f -

Derivation of Bernoulli’s Equation for Inviscid and Viscous Flow
Field

Bernoulli's Equation

Energy Equation of an ideal Flow along a Streamline

Euler’s equation (the equation of motion of an inviscid fluid) along a stream line for a steady

flow with gravity as the only body force can be written as




4 LAY

Application of a force through a distance ds along the streamline would physically imply work
interaction. Therefore an equation for conservation of energy along a streamline can be obtained
by integrating the above Eq. with respect to ds as

Where C is a constant along a streamline. In case of an incompressible flow, above Eq. can be

2 e
F+=+- -

Pressure head + Velocity head + Potential head =Total head (total energy per unit weight).
Bernoulli's Equation with Head Loss

The derivation of mechanical energy equation for a real fluid depends much on the information
about the frictional work done by a moving fluid element and is excluded from the scope of the
book. However, in many practical situations, problems related to real fluids can be analysed with
the help of a modified form of Bernoulli’s equation as

A

where, hf represents the frictional work done (the work done against the fluid friction) per unit
weight of a fluid element while moving from a station 1 to 2 along a streamline in the direction
of flow. The term hf is usually referred to as head loss between 1 and 2, since it amounts to the
loss in total mechanical energy per unit weight between points 1 and 2 on a streamline due to the
effect of fluid friction or viscosity. It physically signifies that the difference in the total
mechanical energy between stations 1 and 2 is dissipated into intermolecular or thermal energy
and is expressed as loss of head hf in above Eq. The term head loss, is conventionally
symbolized as hL instead of hf in dealing with practical problems. For an inviscid flow hL = 0,
and the total mechanical energy is constant along a streamline.

Bernoulli's Equation In Irrotational Flow
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1 This equation was obtained by integrating the Euler’s equation (the equation of motion) with
respect to a displacement 'ds' along a streamline. Thus, the value of C in the above equation is
constant only along a streamline and should essentially vary from streamline to streamline.

(1 The equation can be used to define relation between flow variables at point B on the
streamline and at point A, along the same streamline. So, in order to apply this equation, one
should have knowledge of velocity field beforehand. This is one of the limitations of application
of Bernoulli's equation.

Irrotationality of flow field

Under some special condition, the constant C becomes invariant from streamline to streamline
and the Bernoulli’s equation is applicable with same value of C to the entire flow field. The
typical condition is the irrotationality of flow field.

Momentum Equation in Integral Form:

Conservation of Momentum: Momentum Theorem

In Newtonian mechanics, the conservation of momentum is defined by Newton’s second law of
motion.

Newton’s Second Law of Motion

1 The rate of change of momentum of a body is proportional to the impressed action and takes
place in the direction of the impressed action.

(1 If a force acts on the body ,linear momentum is implied.

(1 If a torque (moment) acts on the body,angular momentum is implied.

Reynolds Transport Theorem

A study of fluid flow by the Eulerian approach requires a mathematical modeling for a control
volume either in differential or in integral form. Therefore the physical statements of the
principle of conservation of mass, momentum and energy with reference to a control volume
become necessary. This is done by invoking a theorem known as the Reynolds transport theorem
which relates the control volume concept with that of a control mass system in terms of a general
property of the

system.

Statement of Reynolds Transport Theorem

The theorem states that "the time rate of increase of property N within a control mass system is
equal to the time rate of increase of property N within the control volume plus the net rate of
efflux of the property N across the control surface”.
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Equation of Reynolds Transport Theorem

After deriving Reynolds Transport Theorem according to the above statement we get

B

In this equation

N - flow property which is transported

n - intensive value of the flow property

Application of the Reynolds Transport Theorem to Conservation of Mass and Momentum

Angular Momentum Equation in Integral Form:
Angular Momentum
The angular momentum or moment of momentum theorem is also derived from below Eq in

consideration of the property N as the angular momentum and accordingly m as the angular
momentum per unit mass. Thus,

ZUaa) =5 [[[ oPxoa + [| P, dby

where
Control mass system is the angular momentum of the control mass system. . It has to be noted
that the origin for the angular momentum is the origin of the position vector

Laplace Equation:
Potential Flow Theory

Let us imagine a pathline of a fluid particle. Rate of spin of the particle is @z . The flow in which
this spin is zero throughout is known as irrotationalflow.

Yul =0

For irrotational flows,
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Pathline of a Fluid Particle

Velocity Potential and Stream Function

Since for irrotational flows . -c.
the velocity for an irrotational flow, can be expressed as the gradient of a scalar function called

F eV

the velocity potential, denoted by @
Combination of above eq’ns yields

Tigs 0
Laplace equation

For irrotational flows
F=i

For two-dimensional case

which is again Laplace's equation.
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From the above Eqg. we see that an inviscid, incompressible, irrotational flow is governed by
Laplace's equation.

A complicated flow pattern for an inviscid, incompressible, irrotational flow can be synthesized
by adding together a number of elementary flows ( provided they are also inviscid,
incompressible and irrotational)----- The Superposition Principle

Stream Function

Let us consider a two-dimensional incompressible flow parallel to the x - y plane in a rectangular
cartesian coordinate system. The flow field in this case is defined by

B =X ¥, i
V=WL Y I
w=1_

The equation of continuity is

If a function w(x, y, ¢) is defined in the manner

ynZE

e

".--_

so that it automatically satisfies the equation of continuity , then the function is known as stream
function.
Note that for a steady flow, y is a function of two variables x and y only.

Constancy of y on a Streamline

Since y is a point function, it has a value at every point in the flow field. Thus a change in the
stream function y can be written as
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The equation of a streamline is given by

Ser @ e Ofinoe tmgent dfde s the elocity vh)

It follows that dy = 0 on a streamline.This implies the value of y is constant along a streamline.
Therefore, the equation of a streamline can be expressed in terms of stream function as
w(x, y) = constant

Once the function y is known, streamline can be drawn by joining the same values of y in
the flow field.

Stream function for an irrotational flow

In case of a two-dimensional irrotational flow
* & _[ a' _l ]—n
& B
=_$_$ln =%+$-ﬂ

=y, i, =0
= ﬁ-l

Conclusion drawn: For an irrotational flow, stream function satisfies the Laplace’s
equation
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Concept of Circulation in a Free Vortex Flow

Free Vortex Flow

(1 Fluid particles move in circles about a point.

[1 The only non-trivial velocity component is tangential.

(1 This tangential speed varies with radius r so that same circulation is maintained.

1 Thus,all the streamlines are concentric circles about a given point where the velocity
along each streamline is inversely proportional to the distance from the centre. This flow is
necessarily irrotational.

Flownet for a vortex (free vortex)
Lift and Drag for Flow Past a Cylinder without Circulation
Pressure in the Cylinder Surface

Pressure becomes uniform at large distances from the cylinder ( where the influence of doublet is
small).

Let us imagine the pressure p0 is known as well as uniform velocity Uy .

We can apply Bernoulli's equation between infinity and the points on the boundary of the
cylinder.

Neglecting the variation of potential energy between the aforesaid point at infinity and any point
on the surface of the cylinder, we can write
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where the subscript b represents the surface on the cylinder.

Since fluid cannot penetrate the solid boundary, the velocity Ub should be only in the

transverse direction , or in other words, only vO component of velocity is present on the
streamline y =0 .

e )
“-‘L'{aﬂ“ '%EL{&]‘“ = —2lLf sin &

g e
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UNIT - IV

Boundary Layer theory
Navier Stokes Equation in Vector Form:
A general way of deriving the Navier-Stokes equations from the basic laws of physics.
1 Consider a general flow field as represented in Fig. 4.1.

1 Imagine a closed control volume, within the flow field. The control volume is fixed in space
and the fluid is moving through it. The control volume occupies reasonably large finite region of
the flow field.

(1 A control surface , Ag is defined as the surface which bounds the volume .

[ According to Reynolds transport theorem, " The rate of change of momentum for a system

equals the sum of the rate of change of momentum inside the control volume and the rate of
efflux of momentum across the control surface™.

(1 The rate of change of momentum for a system (in our case, the control volume boundary
and the system boundary are same) is equal to the net external force acting on it.

Now, we shall transform these statements into equation by accounting for each term,

FIG 4.1 Finite control volume fixed in space with the fluid moving through it
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We know that is the general form of mass conservation equation

(popularly known as the continuity equation), valid for both compressible and incompressible
flows.

Exact Solutions to Navier Stokes Equations:

Consider a class of flow termed as parallel flow in which only one velocity term is nontrivial
and all the fluid particles move in one direction only.

# We choose xto be the directon alome which all fhwd partces travel | 1e
melr= =0 foking this in consinmity quation, we gt
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«  Mow. Navier-Sokes equations for ncompressible Sow becoms
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Couette Flow:

Couette flow is the flow between two parallel plates. Here, one plate is at rest and the other is
moving with a velocity U . Let us assume the plates are infinitely large in z direction, so the z
dependence is not there.

The governing equation is

flow is independent of any variation in z-direction.

The boundary conditions are ---())Aty =0, u =0 (i)Aty=h,u=U.

Boundary Layer Concept:
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Introduction

[1 The boundary layer of a flowing fluid is the thin layer close to the wall

1 In a flow field, viscous stresses are very prominent within this layer.

(1 Although the layer is thin, it is very important to know the details of flow within it.

1 The main-flow velocity within this layer tends to zero while approaching the wall (noslip
condition).

[1 Also the gradient of this velocity component in a direction normal to the surface is large as
compared to the gradient in the streamwise direction.

Boundary Layer Properties:

Boundary Layer Equations

1 In 1904, Ludwig Prandtl, the well known German scientist, introduced the concept of
boundary layer and derived the equations for boundary layer flow by correct reduction of
Navier-Stokes equations.

He hypothesized that for fluids having relatively small viscosity, the effect of internal friction
in the fluid is significant only in a narrow region surrounding solid boundaries or bodies
over which the fluid flows.

[1 Thus, close to the body is the boundary layer where shear stresses exert an increasingly
larger effect on the fluid as one moves from free stream towards the solid boundary.

1 However, outside the boundary layer where the effect of the shear stresses on the flow is
small compared to values inside the boundary layer (since the velocity gradient is
negligible),---------

1. the fluid particles experience no vorticity and therefore,

2. the flow is similar to a potential flow.

[1 Hence, the surface at the boundary layer interface is a rather fictitious one, that

divides rotational and irrotational flow. Fig 28.1 shows Prandtl's model regarding boundary
layer flow.

1 Hence with the exception of the immediate vicinity of the surface, the flow is frictionless
(inviscid) and the velocity is U (the potential velocity).

In the region, very near to the surface (in the thin layer), there is friction in the flow which
signifies that the fluid is retarded until it adheres to the surface (no-slip condition).

[1 The transition of the mainstream velocity from zero at the surface (with respect to the surface)
to full magnitude takes place across the boundary layer.

About the boundary layer

[ Boundary layer thickness is which is a function of the coordinate direction x .

[1 The thickness is considered to be very small compared to the characteristic length L of the
domain.

1 In the normal direction, within this thin layer, the gradient is very large compared to the
gradient in the flow direction .
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Now we take up the Navier-Stokes equations for : steady, two dimensional, laminar,
incompressible flows.

Considering the Navier-Stokes equations together with the equation of continuity, the following
dimensional form is obtained.
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Fig 28.]1 Boundary layer and Free Stream for Flow Cwer a flat plate

] u - velocity component along x direction.

1 v - velocity component along y direction

[ p - static pressure

1 p - density.

1 u - dynamic viscosity of the fluid

[1 The equations are now non-dimensionalised.

[J The length and the velocity scales are chosen as L and respectively.
[1 The non-dimensional variables are:
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Derivation of Prandtl Bounday Layer Equation:

Order of Magnitude Analysis

(1 Let us examine what happens to the u velocity as we go across the boundary layer.

At the wall the u velocity is zero [ with respect to the wall and absolute zero for a stationary wall
(which is normally implied if not stated otherwise)].

The value of u on the inviscid side, that is on the free stream side beyond the boundary layer is
U

For the case of external flow over a flat plate, this U is equal to .
[1 Based on the above, we can identify the following scales for the boundary layer variables:

Varabie | Dimersional scale | Non-dmensional seale

¥ n, 1
x 1
> 3 r=4&FEL

The symbol describes a value much smaller than 1.

Now we analyse equations 28.4 - 28.6, and look at the order of magnitude of each individual
term
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§.4 Blasius Solotion:

Blasim: Flow Over A Flat Plate

# The classical problem considersd by H. Blasios was
1. Two-dirensional steady, inconmressibls flosy over a flat plate at zero angls af
i:ddaxenﬂhxﬁpaﬂm'ﬂmmi.ﬁmmﬂmnfﬁluﬂrf”*.
2. The fiosd exgends to infinity m all directions from the plate:

The physical problem is already dlusmrated in Fiz. 251

» Blasms wanted to deternyine
i(a) the velocky field selely within the bomdary layver,
() the bomndary layer thickness 1)
i) the shear strecs distribofion on the plafe, and
i(d) the drag force on the plaie.
« The Prandi] boumdary layer equations in the case undsr consideration are

-!"!_.ﬂ (2513

W
b il

;‘.‘;-.

The boundary conditions ane

PP (2816)

& F=m, ==0_

| dp
= Dlote thar the substitaion of the term F*in'ltemlgim]h-amﬂaryln}wm
v, e

ﬂtﬂmiﬂtﬂﬁnfﬂ]ﬂ-ﬁ'&mt‘&hl:ﬂf # which is equal to zero.
» e the povemning Eq. (28.15) does not contain amy pressurs-sradient term.
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+ However, the chamctenistic parameters of this problem ame UM E 0 that is,

w=u{ll_v.2y)

»  This relation has Sve variables Paam

= It mwobves two dimensions, length and tima.

=« Thus it can be reduced 1o a dimensionlsss relaton in temms of (3-2) =3 quantifes |
Buclinsham Pi Theorem)

« This a similanty variables can be used to Gnd the solutdon

« Such flow felds are called self-somilar fow Seld

Law of Similaryty for Boandary Laver Flows

= It states that the u component of velocity with two velocity profiles of mixy) at
different x locations differ only by scale facto= Inw and y .

« Therefore, the velocity profiles gy at all vales of x can be made congmaent
if they are plotied m coardinates which have been made domensionless with
reference to the scale factors.

« The local free siream velocsy Lz} af section x s an obwious scale factor for i,
becanse the dimensioniess ufx) vanes between zero and ity with v at all
segions.

= The scale factor for y , denoted by g%} |, is proportional to the local boundary
layer thickmess so that ¥ itself vanes between zero and urity.

» Veloaty at two arbitrary x locations, namely %, and %; should satisfy the
equation

vt elall_ vl bt el -
W) U 1

« Mow, for Blasms flow, it &5 possible to identify g'x) with the boundany layars
thickness & we know

e=d__1
N

Thus i terms of © we 2et
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Turbulent Boundary Layer over Flat Plate:

Derrvation of Coverning Equations for Torbulent Flow

« For incompressible flows, the Navier-Stokes equations can be reamans=d in

the form

g
SRS

LS

& b Dw

-II--II--.I

& 0

+ Express the velocity components and pressure m tems of fime-mean vahes and
comespondme fuchatans. In contmaity

subsament fimes averagme will lzad to

..Et#‘ (33.1a)
el 31k

> + Yy (33.1h)
. 'E" e (33.1¢)

@33)

55,5553

v dw) (& ¥ W
[E'I'E'I'I_]f[I'lE'l'I]l'
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Since, i iy i

=00 (33.3a)
We can wiife

From Egs (33 3a) and (33.2), we obin

!+E+%.u (33.3h)

& O

« It s evadent that the time-averaged velocity components and the flnctatine
velocity compoments, each sagsfy the contmuity equation for ncompressible
flow:.

+ Imagine a two-dimenssonal fow in which the trbulent components are
independent of the = -direction. Eventually, Eq.(33 3b) tends to

&’ E -
Pl (33.4)

O the basis of condition (33 4), if is postulated that if at an instant thers 15 an increase
in v’ in the x -direction. it will be followed by an increass in v' in the nesative y -
direction In other words, 4’ is non-zero and negative (see Fimme 33.2)

Fig 331 Each dot represenis v pair at an instant
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], we obiain expressions in terms of mean and fluctuating conponsnts. Now,
formins tme averazes and considenng the nides of averazing we discem the
Ty

faliowinz. The terms which are linear, suchas ® and &0 vamish when they
are averazed [from (31.4)]. The same is true for the mixed terms like @-»', or
@-¥ bt the quadratic terms in the flacniating components remain in the
squations. After jverzing. they form 89 Wy

« [fwe perform the aforesaid exsrcize on the x-momentom equation, we obdain

»[# A o)
2 oo ool

nsing rles of dme averages,

o' ' e
'—'-‘-!E-..u F il--ﬂ

We obtain

%ﬂ i’ -B} m*;—p[:t:’ -m-;*;]

+ Iniroducing simplifications arising out of contimaity Eq. (33 3a), we shall chiain

Aot i
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« DPerformmg a similar freatment on v and z momenhom equatkons, Snally we obtam the

marenhom eguatons in the form.
In % direction,
x - -Gu —Gu| dp - |2 a a 335
e E e Eal S
In y direction,

W oo .-_+,..ﬂ“; p[—-"F+—F+—F'i'] (33.50)

,.[_,.;”_'_;“_'H_]._Eﬂﬂ- p[ +£f_u'+—;"] (33.50)

« Conmments an the SN |

1. The left band side of Egs (33.3a)433.5C) are essentally sirnilar io the sieady-state
Nawer-Stokes equabions if the velocity components o v and w are replaced by &,
and .

2. Ths same argument bolds zood for the first two terms on the nzht hand side of
Egs (33 5a)433.50).

3. However, the squations coofain some additional terms which dapend on torialent
fhucraamons of the stream These additional terms can be interpreted as
components of a stress temsor.

« HNow, the resultant surface force per umit area due to these tenms may be considarad as

B S 8] F s 22

Pl (33.62)

’{T’"I T"';-]"g*ﬁ*[%f, -I-En',q-;f'] (33.6t)

In z direction,
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E,,.Eq-ﬁq-'ﬂ--—q-,ﬂ*iq-[—f —v . +—-* ](}3:'.;]

+ Conparing Egs (33.5) and (33.6), we can wiife

Ty Ty Ty FE_‘,-?N
g, 0 T, |==4&v ' 317
e N -

¢ [t canbe said that the mean veloaty components of turbulent fow satisfy the same
Nawier-Stokies equations of laminar flow. However, for the furbulent fow, the bminar
smesses must be increaced by addmonal siresses which are siven by the stress temsor
(33.7). These addinoral smesses are known 25 apparent siresses of turbulent flow or

Revoolds stresses . Since taroulence s considared as eddvine mofon md the aforesaid
adfitional stresses are addsd to the viscous smesses due to mean modon in order to

enxplain the complete stress fiald it is often said that the apparent siresses ar= caused by
eddy viscosity . The total swesses are now

-,
#.--r-ﬁl-n;-ﬂ-"

@y
_*_']-

and 50 on. The apparent stresses are much [arzer than the viscous components, and the viscous
stresses can even be dropped m mamy actual cakoalations,
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Boundary Layer Control:

Seperation of Boundary Layer

o It has been observed that the flow is reversed at the vicinity of the wall under certain
condifions,

- The phenomenon s termed as separation of boundary layer.

o Separation takes place due fo excessive momentum loss near the wall in a boundary

¢>0

layer trying to move downstream against increasing pressure, i.e, d | whichis
called adverse pressure gradient,
v Figute 29.2 shows the flow past a circular cylinder, i an tnfinite medum.

. Upto 0=90" the flow aren s ke & constrieed passage and the flow behaviour
1 like that of a nozzle.

). Beyoud 9= the flow aeas dixJFrged, therefore, the flow behaviour 15 much
stnular fo a ditfuser
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Flow separation and formation of wake behind a circular cylinder
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Velocity distribution within a boundary layer

(a) Favourable pressure gradient,

IIE.':n-ll

(b) adverse pressure gradient
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Let us reconsider the flow past a circular cylinder and continue our discussion on the wake
behind a cylinder. The pressure distribution which was shown by the firm line in Fig. 21.5 is
obtained from the potential flow theory. However. somewhere near (in experiments it has been
observed to be at) . the boundary layer detaches itself from the wall.

2. Meanwhile, pressure in the wake remains close to separation-point-pressure since the
eddies (formed as a consequence of the retarded layers being carried together with the upper
layer through the action of shear) cannot convert rotational kinetic energy into pressure head.
The actual pressure distribution is shown by the dotted line in Fig. 29.3.

3. Since the wake zone pressure is less than that of the forward stagnation point (pressure at
point A in Fig. 29.3), the cylinder experiences a drag force which is basically attributed to the
pressure difference.

The drag force, brought about by the pressure difference is known as form drag whereas
the shear stress at the wall gives rise to skin friction drag.

Generally, these two drag forces together are responsible for resultant drag on a body

Control Of Boundary Layer Separation —

[1 The total drag on a body is attributed to form drag and skin friction drag. In some flow
configurations, the contribution of form drag becomes significant.

(1 In order to reduce the form drag, the boundary layer separation should be prevented or
delayed so that better pressure recovery takes place and the form drag is reduced
considerably. There are some popular methods for this purpose which are stated as follows.

I. By giving the profile of the body a streamlined shape
1. This has an elongated shape in the rear part to reduce the magnitude of the pressure gradient.

2. The optimum contour for a streamlined body is the one for which the wake zone is very
narrow and the form drag is minimum.
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Reduction of drag coefficient (CD) by giving the profile a streamlined shape
The injection of fluid through porous wall can also control the boundary

layer separation. This is generally accomplished by blowing high energy fluid
particles tangentially from the location where separation would have taken place otherwise.

1. The injection of fluid promotes turbulence

2. This increases skin friction. But the form drag is reduced considerably due to
suppression of flow separation

3. The reduction in form drag is quite significant and increase in skin friction drag can
be ignored.
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»
Fig. 31.3 Boundary layer control by blowing

Lift and Drag

Lift :force acting on the cylinder (per unit length) in the direction normal to uniform flow.

Drag: force acting on the cylinder (per unit length) in the direction parallel to uniform flow.

LS 3 =JI-|_I:.-|:.

Calculation of Drag in a Cylinder

The drag is calculated by integrating the force components arising out of pressure, in the X
direction on the boundary. Referring to Fig.22.4, the drag force can be written as
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Sinmlarky, the Lft force may be calculated as
; I
L== enf| —| 48
(e 2]

However, in reality, the cylinder will always experience some drag force. This contradiction
between the inviscid flow result and the experiment is usually known as D 'Almbert paradox.
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UNIT V

Closed Conduit Flow

Energy equation
EGL and HGL
Head loss

— major losses
— minor losses

Non circular conduits

Conservation of Energy

* Kinetic, potential, and thermal

energy

hp = head supplied by a pump

h= head given to a turbine

hy= head loss between sections 1 and 2

Cross section 2 isdownstream  from cross section 1!

2 2
pl \i+z +h Bz \é+z +h +h
—+at 1P, =—=2 + & p T

/4 29 v 29
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Energy Equation Assumptions

Pressure is __hydrostatic _ in both cross sections

— pressure changes are due to elevationonly p = h

section is drawn perpendicular to the
streamlines (otherwise the _neiic _ energy
term is incorrect)

Constant ___density _at the cross section

Steady f | W
—= 0O

+o, +z,+h = + o, +z, +y -y,

Y 29 y 29

2

Bernoulli Equation Assumption

Frictionless (\/iscosity can’t be a significant
parameter!)

A | ong a streamline

Steady flow
density

Constant

2

Vv p
z + — + — = const

29 vy

287
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Pipe Flow: Review

* We have the control volume energy equation

for pipe flow.
* We need to be able to predict the head loss
term.

 How do we predict head loss?
Dimensional analysis

Pipe Flow Energy Losses

&4— _|_z, / &+oc —I—Z/—l— —l—h
y /29 7 /29/

Horizontal pipe

h, =- —
g
D . . .
f = C R =function Ofaef Reo Dimensional Analysis
e Lo ép %]
— 2Ap 2gh;
C.= C ., = >
p pV2 \Vi
2gh, D LV?
fff=—H>=— By, = —— Darcy-Weisbach equation

vV L Y D 2g

289
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Friction Factor: Major losses

e Laminar flow

— Hagen-Poiseuille

* Turbulent (Smooth, Transition, Rough)
— Colebrook Formula

— Moody diagram

— Swamee-Jain

Laminar Flow Friction Factor

2

h
V= o, Hagen-Poiseuille
32u L
- = hf = 4
f " gD2 prgb
Lv? .
hy=f—— Darcy-Weishach
D 2g
32mLV LV?
r gD2 D 2g
64m 64
f= T Slope of -! on log-log plot
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Turbulent Pipe Flow Head Loss

» Proportional to the length of the pipe

» _Proportio nal to the square of the velocity
(almost)

» _ncreases with surface roughness

* |s a function of density and viscosity
« |s_Independentof pressure .

Smooth, Transition, Rough

LV
Turbulent Flow n =+ _
g
. Hydraulically smooth E are /1 6
pipe law (von Karman, N =2l 1 3
1930)
* Rough pipe law (von 1 _iog a3.7Do
Karman, 1930) NES & e o
e Transition function for
both smooth and rough /, B
ipe laws (Colebrook) = 2log /b, 251 °
P Jf €37 Re.f5

(used to draw the Moody diagram)
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Moody Diagram

0.05

0.04

0.03

0.02
0.015
0.01
0.008
0.006

friction factor

0.004 D
N
oor
1E+03 1E+04 1E+05 Re1E+06 1E+07 1E+08 294-
Pipe roughness
pipe material pipe roughness ¢ (mm)
glass, drawn brass, copper 0.0015
commercial steel or wrought iron 0.045
asphalted cast iron 0.12
galvanized iron 0.15
cast iron 0.26
concrete 0.18-0.6
rivet steel 0.9-9.0
corrugated metal 45
PVC 0.12

112




Exponential Friction Formulas

* Commonly used in commercial and industrial
. RL n
settings h = =9

m

D
* Only applicable over _ran geof datacollected

* Hazen-Williams exponential friction
formula

(4.727

USC units 10.675L(Q 1.852
| ch o PR p 8704 ( J Sl units
R :j 10.675 _ D" C
Slunits
L C” C = Hazen-Williams coefficient »
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Head loss:
Hazen-Williams Coefficient

C Condition

150 PVC

140 Extremely smooth, straight pipes; asbestos cement
130 Very smooth pipes; concrete; new cast iron

120 Wood stave; new welded steel

110 Vitrified clay; new riveted steel
100 Cast iron after years of use
95 Riveted steel after years of use
60-80 Old pipes in bad condition

297

1.852
o _ 10.675L(Q\

Hazen-Williams (T Dt (o)

S| units

8 LQ?

Darcy-Weisbach ™ ="y o

Both equations are empirical

Darcy-Weisbach is rationally based,
dimensionally correct, and preferred .

Hazen-Williams can be considered valid only
over the range of gathered data.

Hazen-Williams can’t be extended to other

fluids without further experimentation.
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Head Loss: Minor Losses

* Head loss due to
outlet, inlet, bends, elbows, valves, pipe size
changes

* Losses due to expansions are greater than
losses due to contractions

* Losses can be minimized by gradual
transitions

Minor Losses

* Most minor losses can not be obtained
analytically, so they must be measured

* Minor losses are often expressed as a loss
coefficient, K, times the velocity head.

C,= f (geometry, Re)

—2Ap 2gh, v h=K

C = P I P >
p pV2 N&: g
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Head Loss due to Sudden Expansion:
Conservation of Energy

P zZ
|01—|—zl—|—ocl Lo =Pt Y21 4h
P 2 2 t 1
V1 29 Y > 29
= AV Vi
P, p2: 2 1+h| Z,=1,

h — " 2 What is p; - p»?

Head Loss due to Sudden Expansion:
Conservation of Momentum

e mmmm NN @
A, . _
——— X 1 2

M. - M. — W 4+ E +FE - = Apply in direction of flow
1 2 D1 Do ss
M, ™M b = F = Neglect surface shear
M, = — lez A M, = PV22 A, Pre§sure is applied over all of
S - section 1.
— PV A +— POV A = p @ —p A Momentum is transferred over
ot = 2 L 2 =2 =z area corresponding to
A, upstream pipe diameter.
Vj 7VJ_2 V1 is velocity upstream.

116




Head Loss due to *
Sudden Expansion

) &) V," —\V. 7 \V4
Energy h, =" B 8 Mass Ve
- ¥ 2g AL V.,
!
VR
Momentum 2 1
P, P> A
Y g
AV 2 —\/ 2 \é
2 1 2 2 2 2
hl _ V, +V:L —V2 h| _ Vz — 2V1V2 Vi
g 2g 29
2 v -, ( A 2 A 2
V., —\V/
hlzg h|: 1!1_ulw Kz(lf\_llw
A
2g 2g U A ) L 2/
EGL
&
HGL h =K, —
\\\ 2g

vena contracta
losses are reduced with a gradual contraction
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Entrance Losses

v
* Losses can be =
reduced by Ko ~1.
accelerating the )
V
flow gradually and K, ~0.5 h=K. ——
.. . g
eliminating the
vena contracta \_
K, ~ 0.04

!

Head Loss in Valves

* Function of valve type and
valve position
P h =K —

* The complex flow path
through valves often
results in high head loss

* What is the maximum
value that K,can have?
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Non-Circular Conduits:
Hydraulic Radius Concept

LV?

A is cross sectional area h, =f —
g

P is wetted perimeter

R, is the “Hydraulic Radius” (Area/Perimeter)
Don’t confuse with radius!

) :
D* 5 For a pipe L V2
= = — h =f

D = 4R, ' 4R, 2g

We can use Moody diagram or Swamee Jain with D = 4R!
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