

MACHINE LEARNING LAB OBSERVATION

B.Tech AIML - R20 Regulation

Name of the Student

Roll Number

Class & Section

Department of Artificial Intelligence &

Machine Learning

S.No Name of the Experiment
Date of

Completion

Faculty

Signature

1
Familiarizing with Anaconda and Jupyter for importing

modules and dependencies for ML

2
Familiarization with NumPy, Panda and Matplotlib by Loading

Dataset in Python

3

Implement and demonstrate the FIND-S algorithm for finding

the most specific hypothesis based on a given set of training

data samples. Read the training data from a .CSV file.

4

For a given set of training data examples stored in a .CSV file,

implement and demonstrate the Candidate-Elimination

algorithm to output a description of the set of all hypotheses

consistent with the training examples.

5

Write a program to demonstrate the working of the decision

tree based ID3 algorithm. Use an appropriate data set for

building the decision tree and apply this knowledge to classify a

new sample.

6

Build an Artificial Neural Network by implementing the

Backpropagation algorithm and test the same using appropriate

data sets.

7

Write a program to implement the naïve Bayesian classifier for

a sample training data set stored as a .CSV file. Compute the

accuracy of the classifier, considering few test data sets.

8

Assuming a set of documents that need to be classified, use the

naïve Bayesian Classifier model to perform this task. Built-in

python classes/API can be used to write the program. Calculate

the accuracy, precision, and recall for your data set.

9

Write a program to construct a Bayesian network considering

medical data. Use this model to demonstrate the diagnosis of

heart patients using standard Heart Disease Data Set. You can

use Python ML library classes/API.

10

Apply EM algorithm to cluster a set of data stored in a .CSV

file. Use the same data set for clustering using k-Means

algorithm. Compare the results of these two algorithms and

comment on the quality of clustering. You can add Python ML

library classes/API in the program.

11

Write a program to implement k-Nearest Neighbour algorithm

to classify the iris data set. Print both correct and wrong

predictions. Python ML library classes can be used for this

problem.

12

 Implement the non-parametric Locally Weighted Regression

algorithm in order to fit data points. Select appropriate data set

for your experiment and draw graphs.

13
Carry out the performance analysis of classification algorithms

on a specific dataset.

14 Case Study on ML Problem

Machine Learning Lab Syllabus

Pre-Requisites:

1. Data Structures

2. Design and Analysis of Algorithms

3. Python Programming

4. Mathematics for Machine Learning

Course objectives:

The student will:

1. Understand the usage of .csv files for organising data in the form of datasets.

2. Design and analyze the performance of various machine learning algorithms.

3. Identify the real-world problems that can be solved by applying machine learning algorithms.

4. Identify suitable machine learning algorithms for solving real world problems.

5. Understand the limitations of machine learning algorithms.

Lab Experiments:
1. Familiarizing with Anaconda and Jupyter for importing modules and dependencies for ML

2. Familiarization with NumPy, Panda and Matplotlib by Loading Dataset in Python

3. Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on

a given set of training data samples. Read the training data from a .CSV file.

4. For a given set of training data examples stored in a .CSV file, implement and demonstrate the

Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the

training examples.

5. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an

appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

6. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the

same using appropriate data sets.

7. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a

.CSV file. Compute the accuracy of the classifier, considering few test data sets.

8. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to

perform this task. Built-in python classes/API can be used to write the program. Calculate the accuracy,

precision, and recall for your data set.

9. Write a program to construct a Bayesian network considering medical data. Use this model to

demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Python

ML library classes/API.

10. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for

clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the

quality of clustering. You can add Python ML library classes/API in the program.

11. Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both

correct and wrong predictions. Python ML library classes can be used for this problem.

12. Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points.

Select appropriate data set for your experiment and draw graphs.

13. Carry out the performance analysis of classification algorithms on a specific dataset.

14. Case Study: You are owing a supermarket mall and through membership cards, you have some

basic data about your customers like Customer ID, age, gender, annual income, and spending score.

Spending Score is something you assign to the customer based on your defined parameters like

customer behaviour and purchasing data.

Problem Statement

By being the managing director of your Supermarket Mall, You wanted to understand the customers

like who can be easily converge [Target Customers] so that the sense can be given to marketing team

and plan the strategy accordingly.

After carrying out this case study, answer the questions given below.

1- How to achieve customer segmentation using machine learning algorithm (KMeans Clustering) in

Python in simplest way.

2- Who are your target customers with whom you can start marketing strategy [easy to converse]

3- How the marketing strategy works in real world?

Course Outcomes:

The student will be able to:

1. Create .csv files for organising data in the form of datasets.

2. Implement and compare the performance metrics of various machine learning algorithms.

3. Translate the real-world problems into a well posed learning problem that can be solved by a suitable

machine learning algorithm.

4. Decide suitable machine learning algorithms for solving real world problems.

5. Tackle the limitations of machine learning algorithms.

LAB EXPERIMENTS

1. Familiarizing with Anaconda and Jupyter for importing modules and dependencies for ML &

2. Familiarization with NumPy, Panda and Matplotlib by Loading Dataset in Python

 What is Jupyter Notebook?

The Jupyter Notebook is an incredibly powerful tool for interactively developing and presenting data

science projects. This article will walk you through how to use Jupyter Notebooks for data science

projects and how to set it up on your local machine.

 First, though: what is a “notebook”?

 A notebook integrates code and its output into a single document that combines visualizations, narrative

text, mathematical equations, and other rich media. In other words: it’s a single document where you can

run code, display the output, and also add explanations, formulas, charts, and make your work more

transparent, understandable, repeatable, and shareable.

 Using Notebooks is now a major part of the data science workflow at companies across the globe. If

your goal is to work with data, using a Notebook will speed up your workflow and make it easier to

communicate and share your results.

 Best of all, as part of the open source Project Jupyter, Jupyter Notebooks are completely free. You can

download the software on its own, or as part of the Anaconda data science toolkit.

 Although it is possible to use many different programming languages in Jupyter Notebooks, this article

will focus on Python, as it is the most common use case. (Among R users, R Studio tends to be a more

popular choice).

How to Follow This Tutorial

 To get the most out of this tutorial you should be familiar with programming — Python

and pandas specifically. That said, if you have experience with another language, the Python in this

article shouldn’t be too cryptic, and will still help you get Jupyter Notebooks set up locally.

 Jupyter Notebooks can also act as a flexible platform for getting to grips with pandas and even

Python, as will become apparent in this tutorial.

We will:

• Cover the basics of installing Jupyter and creating your first notebook

• Delve deeper and learn all the important terminology

• Explore how easily notebooks can be shared and published online.

(In fact, this article was written as a Jupyter Notebook! It’s published here in read-only form, but this

is a good example of how versatile notebooks can be. In fact, most of our programming tutorials and

even our Python courses were created using Jupyter Notebooks).

Example Data Analysis in a Jupyter Notebook

 First, we will walk through setup and a sample analysis to answer a real-life question. This will

demonstrate how the flow of a notebook makes data science tasks more intuitive for us as we work,

and for others once it’s time to share our work.

 So, let’s say you’re a data analyst and you’ve been tasked with finding out how the profits of the

largest companies in the US changed historically. You find a data set of Fortune 500 companies

https://jupyter.org/
https://jupyter.org/install
https://www.anaconda.com/products/individual
https://www.dataquest.io/blog/tutorial-getting-started-with-r-and-rstudio/
https://pandas.pydata.org/
https://www.dataquest.io/python-tutorials-for-data-science/
https://www.dataquest.io/r-for-data-science-courses/

spanning over 50 years since the list’s first publication in 1955, put together from Fortune’s public

archive. We’ve gone ahead and created a CSV of the data you can use here.

 As we shall demonstrate, Jupyter Notebooks are perfectly suited for this investigation. First, let’s go

ahead and install Jupyter.

Installation

 The easiest way for a beginner to get started with Jupyter Notebooks is by installing Anaconda.

 Anaconda is the most widely used Python distribution for data science and comes pre-loaded with all

the most popular libraries and tools.

 Some of the biggest Python libraries included in Anaconda include NumPy, pandas, and Matplotlib,

though the full 1000+ list is exhaustive.

 Anaconda thus lets us hit the ground running with a fully stocked data science workshop without the

hassle of managing countless installations or worrying about dependencies and OS-specific (read:

Windows-specific) installation issues.

To get Anaconda, simply:

1. Download the latest version of Anaconda for Python 3.8.

2. Install Anaconda by following the instructions on the download page and/or in the executable.

 If you are a more advanced user with Python already installed and prefer to manage your packages

manually, you can just use pip:

 pip3 install jupyter

Creating Your First Notebook

 In this section, we’re going to learn to run and save notebooks, familiarize ourselves with their

structure, and understand the interface. We’ll become intimate with some core terminology that

will steer you towards a practical understanding of how to use Jupyter Notebooks by yourself and

set us up for the next section, which walks through an example data analysis and brings everything

we learn here to life.

Running Jupyter

 On Windows, you can run Jupyter via the shortcut Anaconda adds to your start menu, which will

open a new tab in your default web browser that should look something like the following

screenshot.

https://archive.fortune.com/magazines/fortune/fortune500_archive/full/2005/
https://archive.fortune.com/magazines/fortune/fortune500_archive/full/2005/
https://s3.amazonaws.com/dq-blog-files/fortune500.csv
https://www.anaconda.com/distribution/
https://www.numpy.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://docs.anaconda.com/anaconda/packages/pkg-docs
https://www.anaconda.com/products/individual
https://jupyter.org/install

This isn’t a notebook just yet, but don’t panic! There’s not much to it. This is the Notebook

Dashboard, specifically designed for managing your Jupyter Notebooks. Think of it as the

launchpad for exploring, editing and creating your notebooks.

Be aware that the dashboard will give you access only to the files and sub-folders contained within

Jupyter’s start-up directory (i.e., where Jupyter or Anaconda is installed). However, the start-up

directory can be changed.

It is also possible to start the dashboard on any system via the command prompt (or terminal on

Unix systems) by entering the command jupyter notebook; in this case, the current working

directory will be the start-up directory.

With Jupyter Notebook open in your browser, you may have noticed that the URL for the

dashboard is something like https://localhost:8888/tree. Localhost is not a website, but indicates that

the content is being served from your local machine: your own computer.

Jupyter’s Notebooks and dashboard are web apps, and Jupyter starts up a local Python server to

serve these apps to your web browser, making it essentially platform-independent and opening the

door to easier sharing on the web.

(If you don’t understand this yet, don’t worry — the important point is just that although Jupyter

Notebooks opens in your browser, it’s being hosted and run on your local machine. Your notebooks

aren’t actually on the web until you decide to share them.)

 The dashboard’s interface is mostly self-explanatory — though we will come back to it briefly

later. So what are we waiting for? Browse to the folder in which you would like to create your

first notebook, click the “New” drop-down button in the top-right and select “Python 3”:

https://stackoverflow.com/q/35254852/604687
https://localhost:8888/tree

Hey presto, here we are! Your first Jupyter Notebook will open in new tab — each notebook

uses its own tab because you can open multiple notebooks simultaneously.

If you switch back to the dashboard, you will see the new file Untitled.ipynb and you should see

some green text that tells you your notebook is running.

What is an ipynb File?

The short answer: each .ipynb file is one notebook, so each time you create a new notebook, a

new .ipynb file will be created.

The longer answer: Each .ipynb file is a text file that describes the contents of your notebook in a

format called JSON. Each cell and its contents, including image attachments that have been

converted into strings of text, is listed therein along with some metadata.

You can edit this yourself — if you know what you are doing! — by selecting “Edit > Edit

Notebook Metadata” from the menu bar in the notebook. You can also view the contents of your

notebook files by selecting “Edit” from the controls on the dashboard

However, the key word there is can. In most cases, there’s no reason you should ever need to

edit your notebook metadata manually.

The Notebook Interface

 Now that you have an open notebook in front of you, its interface will hopefully not look

entirely alien. After all, Jupyter is essentially just an advanced word processor.

 Why not take a look around? Check out the menus to get a feel for it, especially take a few

moments to scroll down the list of commands in the command palette, which is the small button

with the keyboard icon (or Ctrl + Shift + P). There are two fairly prominent terms that you

should notice, which are probably new to you: cells and kernels are key both to understanding

Jupyter and to what makes it more than just a word processor. Fortunately, these concepts are not

difficult to understand.

https://en.wikipedia.org/wiki/JSON
https://ipython.org/ipython-doc/3/notebook/nbformat.html#metadata

• A kernel is a “computational engine” that executes the code contained in a notebook

document.

• A cell is a container for text to be displayed in the notebook or code to be executed by the

notebook’s kernel.

Cells

We’ll return to kernels a little later, but first let’s come to grips with cells. Cells form the body of

a notebook. In the screenshot of a new notebook in the section above, that box with the green

outline is an empty cell. There are two main cell types that we will cover:

• A code cell contains code to be executed in the kernel. When the code is run, the notebook

displays the output below the code cell that generated it.

• A Markdown cell contains text formatted using Markdown and displays its output in-place

when the Markdown cell is run.

The first cell in a new notebook is always a code cell.

Let’s test it out with a classic hello world example: Type print('Hello World!') into the cell and

click the run button in the toolbar above or press Ctrl + Enter.

 The result should look like this:

print('Hello World!')

Hello World!

When we run the cell, its output is displayed below and the label to its left will have changed

from In [] to In [1].

The output of a code cell also forms part of the document, which is why you can see it in this

article. You can always tell the difference between code and Markdown cells because code cells

have that label on the left and Markdown cells do not.

The “In” part of the label is simply short for “Input,” while the label number indicates when the cell

was executed on the kernel — in this case the cell was executed first.

Run the cell again and the label will change to In [2] because now the cell was the second to be run

on the kernel. It will become clearer why this is so useful later on when we take a closer look at

kernels.

From the menu bar, click Insert and select Insert Cell Below to create a new code cell underneath

your first and try out the following code to see what happens. Do you notice anything different?

import time

time.sleep(3)

This cell doesn’t produce any output, but it does take three seconds to execute. Notice how Jupyter

signifies when the cell is currently running by changing its label to In [*].

In general, the output of a cell comes from any text data specifically printed during the cell’s

execution, as well as the value of the last line in the cell, be it a lone variable, a function call, or

something else. For example:

https://www.markdownguide.org/basic-syntax/

def say_hello(recipient):

 return 'Hello, {}!'.format(recipient)

say_hello('Tim')

'Hello, Tim!'

You’ll find yourself using this almost constantly in your own projects, and we’ll see more of it later

on.

Keyboard Shortcuts

One final thing you may have observed when running your cells is that their border turns blue,

whereas it was green while you were editing. In a Jupyter Notebook, there is always one “active”

cell highlighted with a border whose color denotes its current mode:

• Green outline — cell is in “edit mode”

• Blue outline — cell is in “command mode”

So what can we do to a cell when it’s in command mode? So far, we have seen how to run a cell

with Ctrl + Enter, but there are plenty of other commands we can use. The best way to use them is

with keyboard shortcuts

Keyboard shortcuts are a very popular aspect of the Jupyter environment because they facilitate a

speedy cell-based workflow. Many of these are actions you can carry out on the active cell when

it’s in command mode.

Below, you’ll find a list of some of Jupyter’s keyboard shortcuts. You don’t need to memorize

them all immediately, but this list should give you a good idea of what’s possible.

• Toggle between edit and command mode with Esc and Enter, respectively.

• Once in command mode:

o Scroll up and down your cells with your Up and Down keys.

o Press A or B to insert a new cell above or below the active cell.

o M will transform the active cell to a Markdown cell.

o Y will set the active cell to a code cell.

o D + D (D twice) will delete the active cell.

o Z will undo cell deletion.

o Hold Shift and press Up or Down to select multiple cells at once. With multiple cells

selected, Shift + M will merge your selection.

• Ctrl + Shift + -, in edit mode, will split the active cell at the cursor.

• You can also click and Shift + Click in the margin to the left of your cells to select them.

Go ahead and try these out in your own notebook. Once you’re ready, create a new Markdown cell

and we’ll learn how to format the text in our notebooks.

Markdown

Markdown is a lightweight, easy to learn markup language for formatting plain text. Its syntax has

a one-to-one correspondence with HTML tags, so some prior knowledge here would be helpful

but is definitely not a prerequisite.

https://www.markdownguide.org/

Remember that this article was written in a Jupyter notebook, so all of the narrative text and images

you have seen so far were achieved writing in Markdown. Let’s cover the basics with a quick

example:

This is a level 1 heading

This is a level 2 heading

This is some plain text that forms a paragraph. Add emphasis via **bold** and __bold__, or

italic and _italic_.

Paragraphs must be separated by an empty line.

* Sometimes we want to include lists.

* Which can be bulleted using asterisks.

1. Lists can also be numbered.

2. If we want an ordered list.

[It is possible to include hyperlinks](https://www.example.com)

Inline code uses single backticks: foo(), and code blocks use triple backticks:

``` 

bar() 

```  

Or can be indented by 4 spaces:

 foo()

And finally, adding images is easy: ![Alt text](https://www.example.com/image.jpg)

Here’s how that Markdown would look once you run the cell to render it:

(Note that the alt text for the image is displayed here because we didn’t actually use a valid image

URL in our example)

When attaching images, you have three options:

• Use a URL to an image on the web.

• Use a local URL to an image that you will be keeping alongside your notebook, such as in the

same git repo.

• Add an attachment via “Edit > Insert Image”; this will convert the image into a string and store it

inside your notebook .ipynb file. Note that this will make your .ipynb file much larger!

There is plenty more to Markdown, especially around hyperlinking, and it’s also possible to simply

include plain HTML. Once you find yourself pushing the limits of the basics above, you can refer

to the official guide from Markdown’s creator, John Gruber, on his website.

Kernels

Behind every notebook runs a kernel. When you run a code cell, that code is executed within the

kernel. Any output is returned back to the cell to be displayed. The kernel’s state persists over time

and between cells — it pertains to the document as a whole and not individual cells.

For example, if you import libraries or declare variables in one cell, they will be available in

another. Let’s try this out to get a feel for it. First, we’ll import a Python package and define a

function:

import numpy as np

https://daringfireball.net/projects/markdown/syntax

def square(x):

 return x * x

Once we’ve executed the cell above, we can reference np and square in any other cell.

x = np.random.randint(1, 10)

y = square(x)

print('%d squared is %d' % (x, y))

1 squared is 1

This will work regardless of the order of the cells in your notebook. As long as a cell has been run,

any variables you declared or libraries you imported will be available in other cells.

You can try it yourself, let’s print out our variables again.

print('Is %d squared %d?' % (x, y))

Is 1 squared 1?

No surprises here! But what happens if we change the value of y?

y = 10

print('Is %d squared is %d?' % (x, y))

If we run the cell above, what do you think would happen?

We will get an output like: Is 4 squared 10?. This is because once we’ve run the y = 10 code

cell, y is no longer equal to the square of x in the kernel.

Most of the time when you create a notebook, the flow will be top-to-bottom. But it’s common to

go back to make changes. When we do need to make changes to an earlier cell, the order of

execution we can see on the left of each cell, such as In [6], can help us diagnose problems by

seeing what order the cells have run in.

And if we ever wish to reset things, there are several incredibly useful options from the Kernel

menu:

• Restart: restarts the kernel, thus clearing all the variables etc that were defined.

• Restart & Clear Output: same as above but will also wipe the output displayed below your code

cells.

• Restart & Run All: same as above but will also run all your cells in order from first to last.

If your kernel is ever stuck on a computation and you wish to stop it, you can choose the

Interrupt option.

Choosing a Kernel

You may have noticed that Jupyter gives you the option to change kernel, and in fact there are

many different options to choose from. Back when you created a new notebook from the

dashboard by selecting a Python version, you were actually choosing which kernel to use.

There kernels for different versions of Python, and also for over 100 languages including Java,

C, and even Fortran. Data scientists may be particularly interested in the kernels for R and Julia,

as well as both imatlab and the Calysto MATLAB Kernel for Matlab.

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://irkernel.github.io/
https://github.com/JuliaLang/IJulia.jl
https://github.com/imatlab/imatlab
https://github.com/calysto/matlab_kernel

The SoS kernel provides multi-language support within a single notebook.

Each kernel has its own installation instructions, but will likely require you to run some

commands on your computer.

Example Analysis

Now we’ve looked at what a Jupyter Notebook is, it’s time to look at how they’re used in

practice, which should give us clearer understanding of why they are so popular.

It’s finally time to get started with that Fortune 500 data set mentioned earlier. Remember, our

goal is to find out how the profits of the largest companies in the US changed historically.

It’s worth noting that everyone will develop their own preferences and style, but the general

principles still apply. You can follow along with this section in your own notebook if you wish,

or use this as a guide to creating your own approach.

Naming Your Notebooks

Before you start writing your project, you’ll probably want to give it a meaningful name. file

name Untitled in the upper left of the screen to enter a new file name, and hit the Save icon

(which looks like a floppy disk) below it to save.

Note that closing the notebook tab in your browser will not “close” your notebook in the way

closing a document in a traditional application will. The notebook’s kernel will continue to run

in the background and needs to be shut down before it is truly “closed” — though this is pretty

handy if you accidentally close your tab or browser!

If the kernel is shut down, you can close the tab without worrying about whether it is still

running or not.

The easiest way to do this is to select “File > Close and Halt” from the notebook menu.

However, you can also shutdown the kernel either by going to “Kernel > Shutdown” from within

the notebook app or by selecting the notebook in the dashboard and clicking “Shutdown” (see

image below).

Setup

It’s common to start off with a code cell specifically for imports and setup, so that if you choose to

add or change anything, you can simply edit and re-run the cell without causing any side-effects.

https://github.com/vatlab/SOS

%matplotlib inline

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns sns.set(style="darkgrid")

We’ll import pandas to work with our data, Matplotlib to plot charts, and Seaborn to make our

charts prettier. It’s also common to import NumPy but in this case, pandas imports it for us.

That first line isn’t a Python command, but uses something called a line magic to instruct Jupyter to

capture Matplotlib plots and render them in the cell output. We’ll talk a bit more about line magics

later, and they’re also covered in our advanced Jupyter Notebooks tutorial.

For now, let’s go ahead and load our data.

df = pd.read_csv('fortune500.csv')

It’s sensible to also do this in a single cell, in case we need to reload it at any point.

Save and Checkpoint

Now we’ve got started, it’s best practice to save regularly. Pressing Ctrl + S will save our notebook by

calling the “Save and Checkpoint” command, but what is this checkpoint thing?

Every time we create a new notebook, a checkpoint file is created along with the notebook file. It is

located within a hidden subdirectory of your save location called .ipynb_checkpoints and is also

a .ipynb file.

By default, Jupyter will autosave your notebook every 120 seconds to this checkpoint file without

altering your primary notebook file. When you “Save and Checkpoint,” both the notebook and

checkpoint files are updated. Hence, the checkpoint enables you to recover your unsaved work in the

event of an unexpected issue.

You can revert to the checkpoint from the menu via “File > Revert to Checkpoint.”

Investigating Our Data Set

Now we’re really rolling! Our notebook is safely saved and we’ve loaded our data set df into the

most-used pandas data structure, which is called a DataFrame and basically looks like a table. What

does ours look like?

df.head()

https://pandas.pydata.org/
https://matplotlib.org/
https://seaborn.pydata.org/
https://www.numpy.org/
https://www.dataquest.io/blog/advanced-jupyter-notebooks-tutorial/

df.tail()

Looking good. We have the columns we need, and each row corresponds to a single company in a

single year.

Let’s just rename those columns so we can refer to them later.

df.columns = ['year', 'rank', 'company', 'revenue', 'profit']

Next, we need to explore our data set. Is it complete? Did pandas read it as expected? Are any

values missing?

len(df)

25500

Okay, that looks good — that’s 500 rows for every year from 1955 to 2005, inclusive.

Let’s check whether our data set has been imported as we would expect. A simple check is to see if

the data types (or dtypes) have been correctly interpreted.

df.dtypes

year int64 rank int64 company object revenue float64 profit object dtype: object

Uh oh. It looks like there’s something wrong with the profits column — we would expect it to be

a float64 like the revenue column. This indicates that it probably contains some non-integer

values, so let’s take a look.

non_numberic_profits = df.profit.str.contains('[^0-9.-]')

df.loc[non_numberic_profits].head()

Just as we suspected! Some of the values are strings, which have been used to indicate missing

data. Are there any other values that have crept in?

set(df.profit[non_numberic_profits])

{'N.A.'}

That makes it easy to interpret, but what should we do? Well, that depends how many values are

missing.

len(df.profit[non_numberic_profits])

369

It’s a small fraction of our data set, though not completely inconsequential as it is still around 1.5%.

If rows containing N.A. are, roughly, uniformly distributed over the years, the easiest solution

would just be to remove them. So let’s have a quick look at the distribution.

bin_sizes, _, _ = plt.hist(df.year[non_numberic_profits], bins=range(1955, 2006))

At a glance, we can see that the most invalid values in a single year is fewer than 25, and as there

are 500 data points per year, removing these values would account for less than 4% of the data for

the worst years. Indeed, other than a surge around the 90s, most years have fewer than half the

missing values of the peak.

For our purposes, let’s say this is acceptable and go ahead and remove these rows.

df = df.loc[~non_numberic_profits]

df.profit = df.profit.apply(pd.to_numeric)

We should check that worked.

len(df)

25131

df.dtypes

year int64 rank int64 company object revenue float64 profit float64 dtype: object

Great! We have finished our data set setup.

If we were going to present your notebook as a report, we could get rid of the investigatory cells we

created, which are included here as a demonstration of the flow of working with notebooks, and

merge relevant cells (see the Advanced Functionality section below for more on this) to create a

single data set setup cell.

This would mean that if we ever mess up our data set elsewhere, we can just rerun the setup cell to

restore it.

Plotting with matplotlib

Next, we can get to addressing the question at hand by plotting the average profit by year. We

might as well plot the revenue as well, so first we can define some variables and a method to reduce

our code.

group_by_year = df.loc[:, ['year', 'revenue', 'profit']].groupby('year')

avgs = group_by_year.mean()

x = avgs.index

y1 = avgs.profit

def plot(x, y, ax, title, y_label):

 ax.set_title(title)

 ax.set_ylabel(y_label)

 ax.plot(x, y)

 ax.margins(x=0, y=0)

Now let’s plot!

fig, ax = plt.subplots()

plot(x, y1, ax, 'Increase in mean Fortune 500 company profits from 1955 to 2005', 'Profit

(millions)')

Wow, that looks like an exponential, but it’s got some huge dips. They must correspond to the early

1990s recession and the dot-com bubble. It’s pretty interesting to see that in the data. But how

come profits recovered to even higher levels post each recession?

Maybe the revenues can tell us more.

y2 = avgs.revenue

fig, ax = plt.subplots()

plot(x, y2, ax, 'Increase in mean Fortune 500 company revenues from 1955 to 2005', 'Revenue

(millions)')

That adds another side to the story. Revenues were not as badly hit — that’s some great

accounting work from the finance departments.

With a little help from Stack Overflow, we can superimpose these plots with +/- their standard

deviations.

def plot_with_std(x, y, stds, ax, title, y_label):

 ax.fill_between(x, y - stds, y + stds, alpha=0.2)

 plot(x, y, ax, title, y_label)

https://en.wikipedia.org/wiki/Early_1990s_recession
https://en.wikipedia.org/wiki/Early_1990s_recession
https://en.wikipedia.org/wiki/Dot-com_bubble
https://stackoverflow.com/a/47582329/604687

fig, (ax1, ax2) = plt.subplots(ncols=2)

title = 'Increase in mean and std Fortune 500 company %s from 1955 to 2005'

stds1 = group_by_year.std().profit.values

stds2 = group_by_year.std().revenue.values

plot_with_std(x, y1.values, stds1, ax1, title % 'profits', 'Profit (millions)')

plot_with_std(x, y2.values, stds2, ax2, title % 'revenues', 'Revenue (millions)')

fig.set_size_inches(14, 4)

fig.tight_layout()

That’s staggering, the standard deviations are huge! Some Fortune 500 companies make billions

while others lose billions, and the risk has increased along with rising profits over the years.

Perhaps some companies perform better than others; are the profits of the top 10% more or less

volatile than the bottom 10%?

There are plenty of questions that we could look into next, and it’s easy to see how the flow of

working in a notebook can match one’s own thought process. For the purposes of this tutorial, we’ll

stop our analysis here, but feel free to continue digging into the data on your own!

This flow helped us to easily investigate our data set in one place without context switching

between applications, and our work is immediately shareable and reproducible. If we wished to

create a more concise report for a particular audience, we could quickly refactor our work by

merging cells and removing intermediary code.

3. Implement and demonstrate the FIND-S algorithm for finding the most specific

hypothesis based on a given set of training data samples. Read the training data from a .CSV

file.

FIND-S Algorithm

1. Initialize h to the most specific hypothesis in H

2. For each positive training instance x

For each attribute constraint ai in h

If the constraint ai is satisfied by x

Then do nothing

Else replace ai in h by the next more general constraint that is satisfied by x

3. Output hypothesis h

Training Examples:

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny

Warm High Strong Cool Change Yes

Program:

import csv

a = []

with open('enjoysport.csv', 'r') as csvfile:

for row in csv.reader(csvfile):

a.append(row)

print(a)

print("\n The total number of training instances are : ",len(a))

num_attribute = len(a[0])-1

print("\n The initial hypothesis is : ")

hypothesis = ['0']*num_attribute

print(hypothesis)

for i in range(0, len(a)):

if a[i][num_attribute] == 'yes':

for j in range(0, num_attribute):

if hypothesis[j] == '0' or hypothesis[j] == a[i][j]:

hypothesis[j] = a[i][j]

else:

hypothesis[j] = '?'

print("\n The hypothesis for the training instance {} is :

\n" .format(i+1),hypothesis)

print("\n The Maximally specific hypothesis for the training

instance is ")

print(hypothesis)

Data Set:

sunny warm normal strong warm same yes

sunny warm high strong warm same yes

rainy cold high strong warm change no

sunny warm high strong cool change yes

Output:

The Given Training Data Set

['sunny', 'warm', 'normal', 'strong', 'warm', 'same', 'yes']

['sunny', 'warm', 'high', 'strong', 'warm', 'same', 'yes']

['rainy', 'cold', 'high', 'strong', 'warm', 'change', 'no']

['sunny', 'warm', 'high', 'strong', 'cool', 'change', 'yes']

The total number of training instances are : 4

The initial hypothesis is :

['0', '0', '0', '0', '0', '0']

The hypothesis for the training instance 1 is :

['sunny', 'warm', 'normal', 'strong', 'warm', 'same']

The hypothesis for the training instance 2 is :

['sunny', 'warm', '?', 'strong', 'warm', 'same']

The hypothesis for the training instance 3 is :

['sunny', 'warm', '?', 'strong', 'warm', 'same']

The hypothesis for the training instance 4 is :

['sunny', 'warm', '?', 'strong', '?', '?']

The Maximally specific hypothesis for the training instance is

['sunny', 'warm', '?', 'strong', '?', '?']

4. For a given set of training data examples stored in a .CSV file, implement and demonstrate

the Candidate-Elimination algorithm to output a description of the set of all hypotheses

consistent with the training examples.

CANDIDATE-ELIMINATION Learning Algorithm

The CANDIDATE-ELIMINTION algorithm computes the version space containing all

hypotheses from H that are consistent with an observed sequence of training examples.

Initialize G to the set of maximally general hypotheses in H

Initialize S to the set of maximally specific hypotheses in H

For each training example d, do

• If d is a positive example

• Remove from G any hypothesis inconsistent with d

• For each hypothesis s in S that is not consistent with d

• Remove s from S

• Add to S all minimal generalizations h of s such that

• h is consistent with d, and some member of G is more general than h

• Remove from S any hypothesis that is more general than another hypothesis in S

• If d is a negative example

• Remove from S any hypothesis inconsistent with d

• For each hypothesis g in G that is not consistent with d

• Remove g from G

• Add to G all minimal specializations h of g such that

• h is consistent with d, and some member of S is more specific than h

• Remove from G any hypothesis that is less general than another hypothesis in G

CANDIDATE- ELIMINTION algorithm using version spaces

Training Examples:

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

Program:

import numpy as np

import pandas as pd

data = pd.DataFrame(data=pd.read_csv('enjoysport.csv'))

concepts = np.array(data.iloc[:,0:-1])

print(concepts)

target = np.array(data.iloc[:,-1])

print(target)

def learn(concepts, target):

specific_h = concepts[0].copy()

print("initialization of specific_h and general_h")

print(specific_h)

general_h = [["?" for i in range(len(specific_h))] for i in

range(len(specific_h))]

print(general_h)

for i, h in enumerate(concepts):

if target[i] == "yes":

for x in range(len(specific_h)):

if h[x]!= specific_h[x]:

specific_h[x] ='?'

general_h[x][x] ='?'

print(specific_h)

print(specific_h)

if target[i] == "no":

for x in range(len(specific_h)):

if h[x]!= specific_h[x]:

general_h[x][x] = specific_h[x]

else:

general_h[x][x] = '?'

print(" steps of Candidate Elimination Algorithm",i+1)

print(specific_h)

print(general_h)

indices = [i for i, val in enumerate(general_h) if val ==

['?', '?', '?', '?', '?', '?']]

for i in indices:

general_h.remove(['?', '?', '?', '?', '?', '?'])

return specific_h, general_h

s_final, g_final = learn(concepts, target)

print("Final Specific_h:", s_final, sep="\n")

print("Final General_h:", g_final, sep="\n")

Data Set:

Sky AirTemp Humidity Wind Water Forecast EnjoySport

sunny warm normal strong warm same yes

sunny warm high strong warm same yes

rainy cold high strong warm change no

sunny warm high strong cool change yes

Output:

Final Specific_h:

['sunny' 'warm' '?' 'strong' '?' '?']

Final General_h:

[['sunny', '?', '?', '?', '?', '?'],

['?', 'warm', '?', '?', '?', '?']]

5. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use

an appropriate data set for building the decision tree and apply this knowledge to classify a new

sample.

ID3 Algorithm

ID3(Examples, Target_attribute, Attributes)

Examples are the training examples. Target_attribute is the attribute whose value is to be

predicted by the tree. Attributes is a list of other attributes that may be tested by the

learned decision tree. Returns a decision tree that correctly classifies the given Examples.

• Create a Root node for the tree

• If all Examples are positive, Return the single-node tree Root, with label = +

• If all Examples are negative, Return the single-node tree Root, with label = -

• If Attributes is empty, Return the single-node tree Root, with label = most common value

of Target_attribute in Examples

• Otherwise Begin

• A ← the attribute from Attributes that best* classifies Examples

• The decision attribute for Root ← A

• For each possible value, vi, of A,

• Add a new tree branch below Root, corresponding to the test A = vi

• Let Examples vi, be the subset of Examples that have value vi for A

• If Examples vi , is empty

• Then below this new branch add a leaf node with label = most common

value of Target_attribute in Examples

• Else below this new branch add the subtree

ID3(Examples vi, Targe_tattribute, Attributes – {A}))

• End

• Return Root

* The best attribute is the one with highest information gain

ENTROPY:

Entropy measures the impurity of a collection of examples.

Where, p+ is the proportion of positive examples in S

p- is the proportion of negative examples in S.

INFORMATION GAIN:

• Information gain, is the expected reduction in entropy caused by partitioning the

examples according to this attribute.

• The information gain, Gain(S, A) of an attribute A, relative to a collection of examples

S, is defined as

Training Dataset:

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Test Dataset:

Day Outlook Temperature Humidity Wind

T1 Rain Cool Normal Strong

T2 Sunny Mild Normal Strong

Program:

import math

import csv

def load_csv(filename):

lines=csv.reader(open(filename,"r"));

dataset = list(lines)

headers = dataset.pop(0)

return dataset,headers

class Node:

def init (self,attribute):

self.attribute=attribute

self.children=[]

self.answer=""

def subtables(data,col,delete):

dic={}

coldata=[row[col] for row in data]

attr=list(set(coldata))

counts=[0]*len(attr)

r=len(data)

c=len(data[0])

for x in range(len(attr)):

for y in range(r):

if data[y][col]==attr[x]:

counts[x]+=1

for x in range(len(attr)):

dic[attr[x]]=[[0 for i in range(c)] for j in

range(counts[x])]

pos=0

for y in range(r):

if data[y][col]==attr[x]:

if delete:

del data[y][col]

dic[attr[x]][pos]=data[y]

pos+=1

return attr,dic

def entropy(S):

attr=list(set(S))

if len(attr)==1:

return 0

counts=[0,0]

for i in range(2):

counts[i]=sum([1 for x in S if attr[i]==x])/(len(S)*1.0)

sums=0

for cnt in counts:

sums+=-1*cnt*math.log(cnt,2)

return sums

def compute_gain(data,col):

attr,dic = subtables(data,col,delete=False)

total_size=len(data)

entropies=[0]*len(attr)

ratio=[0]*len(attr)

total_entropy=entropy([row[-1] for row in data])

for x in range(len(attr)):

ratio[x]=len(dic[attr[x]])/(total_size*1.0)

entropies[x]=entropy([row[-1] for row in

dic[attr[x]]])

total_entropy-=ratio[x]*entropies[x]

return total_entropy

def build_tree(data,features):

lastcol=[row[-1] for row in data]

if(len(set(lastcol)))==1:

node=Node("")

node.answer=lastcol[0]

return node

n=len(data[0])-1

gains=[0]*n

for col in range(n):

gains[col]=compute_gain(data,col)

split=gains.index(max(gains))

node=Node(features[split])

fea = features[:split]+features[split+1:]

attr,dic=subtables(data,split,delete=True)

for x in range(len(attr)):

child=build_tree(dic[attr[x]],fea)

node.children.append((attr[x],child))

return node

def print_tree(node,level):

if node.answer!="":

print(" "*level,node.answer)

return

print(" "*level,node.attribute)

for value,n in node.children:

print(" "*(level+1),value)

print_tree(n,level+2)

def classify(node,x_test,features):

if node.answer!="":

print(node.answer)

return

pos=features.index(node.attribute)

for value, n in node.children:

if x_test[pos]==value:

classify(n,x_test,features)

'''Main program'''

dataset,features=load_csv("data3.csv")

node1=build_tree(dataset,features)

print("The decision tree for the dataset using ID3 algorithm

is")

print_tree(node1,0)

testdata,features=load_csv("data3_test.csv")

for xtest in testdata:

print("The test instance:",xtest)

print("The label for test instance:",end=" ")

classify(node1,xtest,features)

Output:

The decision tree for the dataset using ID3 algorithm is

Outlook

rain

Wind

overcast

yes

strong

weak

no

yes

sunny

Humidity

normal

yes

high

no

The test instance: ['rain', 'cool', 'normal', 'strong']

The label for test instance: no

The test instance: ['sunny', 'mild', 'normal', 'strong']

The label for test instance: yes

6. Build an Artificial Neural Network by implementing the Backpropagation algorithm and

test the same using appropriate data sets.

BACKPROPAGATION Algorithm

BACKPROPAGATION (training_example, ƞ, nin, nout, nhidden)

Each training example is a pair of the form (𝑥⃗ →, 𝑡→), where (𝑥→) is the vector of network

input values, (𝑡→) and is the vector of target network output values.

ƞ is the learning rate (e.g., .05). ni, is the number of network inputs, nhidden the number

of units in the hidden layer, and nout the number of output units.

The input from unit i into unit j is denoted xji, and the weight from unit i to unit j is

denoted wji

• Create a feed-forward network with ni inputs, nhidden hidden units, and nout output

units.

• Initialize all network weights to small random numbers

• Until the termination condition is met, Do

• For each (𝑥⃗→, 𝑡→), in training examples, Do

Propagate the input forward through the network:

1. Input the instance 𝑥⃗→, to the network and compute the output ou of every

unit u in the network.

Propagate the errors backward through the network:

Training Examples:

Example Sleep Study
Expected % in

Exams

1 2 9 92

2 1 5 86

3 3 6 89

Normalize the input

Example Sleep Study
Expected %

in Exams

1 2/3 = 0.66666667 9/9 = 1 0.92

2 1/3 = 0.33333333 5/9 = 0.55555556 0.86

3 3/3 = 1 6/9 = 0.66666667 0.89

Program:

import numpy as np

X = np.array(([2, 9], [1, 5], [3, 6]), dtype=float)

y = np.array(([92], [86], [89]), dtype=float)

X = X/np.amax(X,axis=0) # maximum of X array longitudinally

y = y/100

#Sigmoid Function

def sigmoid (x):

return 1/(1 + np.exp(-x))

#Derivative of Sigmoid Function

def derivatives_sigmoid(x):

return x * (1 - x)

#Variable initialization

epoch=5000 #Setting training iterations

lr=0.1 #Setting learning rate

inputlayer_neurons = 2 #number of features in data set

hiddenlayer_neurons = 3 #number of hidden layers neurons

output_neurons = 1 #number of neurons at output layer

#weight and bias initialization

wh=np.random.uniform(size=(inputlayer_neurons,hiddenlayer_neur

ons))

bh=np.random.uniform(size=(1,hiddenlayer_neurons))

wout=np.random.uniform(size=(hiddenlayer_neurons,output_neuron

s))

bout=np.random.uniform(size=(1,output_neurons))

#draws a random range of numbers uniformly of dim x*y

for i in range(epoch):

#Forward Propogation

hinp1=np.dot(X,wh)

hinp=hinp1 + bh

hlayer_act = sigmoid(hinp)

outinp1=np.dot(hlayer_act,wout)

outinp= outinp1+ bout

output = sigmoid(outinp)

#Backpropagation

EO = y-output

outgrad = derivatives_sigmoid(output)

d_output = EO* outgrad

EH = d_output.dot(wout.T)

#how much hidden layer wts contributed to error

hiddengrad = derivatives_sigmoid(hlayer_act)

d_hiddenlayer = EH * hiddengrad

dotproduct of nextlayererror and currentlayerop

wout += hlayer_act.T.dot(d_output) *lr

wh += X.T.dot(d_hiddenlayer) *lr

print("Input: \n" + str(X))

print("Actual Output: \n" + str(y))

print("Predicted Output: \n" ,output)

Output:

Input:

[[0.66666667 1.]

[0.33333333 0.55555556]

[1. 0.66666667]]

Actual Output:

[[0.92]

[0.86]

[0.89]]

Predicted Output:

[[0.89726759]

[0.87196896]

[0.9000671]]

7. Write a program to implement the naïve Bayesian classifier for a sample training data set

stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

Bayes’ Theorem is stated as:

Where,

P(h|D) is the probability of hypothesis h given the data D. This is called the posterior

probability.

P(D|h) is the probability of data d given that the hypothesis h was true.

P(h) is the probability of hypothesis h being true. This is called the prior probability of h.

P(D) is the probability of the data. This is called the prior probability of D

After calculating the posterior probability for a number of different hypotheses h, and is

interested in finding the most probable hypothesis h ∈ H given the observed data D. Any such

maximally probable hypothesis is called a maximum a posteriori (MAP) hypothesis.

Bayes theorem to calculate the posterior probability of each candidate hypothesis is hMAP is a

MAP hypothesis provided

(Ignoring P(D) since it is a constant)

Gaussian Naive Bayes

A Gaussian Naive Bayes algorithm is a special type of Naïve Bayes algorithm. It’s specifically

used when the features have continuous values. It’s also assumed that all the features are

following a Gaussian distribution i.e., normal distribution

Representation for Gaussian Naive Bayes

We calculate the probabilities for input values for each class using a frequency. With real-

valued inputs, we can calculate the mean and standard deviation of input values (x) for each

class to summarize the distribution.

This means that in addition to the probabilities for each class, we must also store the mean and

standard deviations for each input variable for each class.

Gaussian Naive Bayes Model from Data

The probability density function for the normal distribution is defined by two parameters (mean

and standard deviation) and calculating the mean and standard deviation values of each input

variable (x) for each class value.

Example: Refer the link

http://chem-eng.utoronto.ca/~datamining/dmc/naive_bayesian.htm

http://chem-eng.utoronto.ca/~datamining/dmc/naive_bayesian.htm

Examples:

• The data set used in this program is the Pima Indians Diabetes problem.

• This data set is comprised of 768 observations of medical details for Pima Indians

patents. The records describe instantaneous measurements taken from the patient such

as their age, the number of times pregnant and blood workup. All patients are women

aged 21 or older. All attributes are numeric, and their units vary from attribute to

attribute.

• The attributes are Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin,

BMI, DiabeticPedigreeFunction, Age, Outcome

• Each record has a class value that indicates whether the patient suffered an onset of

diabetes within 5 years of when the measurements were taken (1) or not (0)

Sample Examples:

Examples Pregnancies Glucose BloodPressure SkinThickness Insulin BMI Diabetic

Pedigree

Function

Age Outcome

1 6 148 72 35 0 33.6 0.627 50 1

2 1 85 66 29 0 26.6 0.351 31 0

3 8 183 64 0 0 23.3 0.672 32 1

4 1 89 66 23 94 28.1 0.167 21 0

5 0 137 40 35 168 43.1 2.288 33 1

6 5 116 74 0 0 25.6 0.201 30 0

7 3 78 50 32 88 31 0.248 26 1

8 10 115 0 0 0 35.3 0.134 29 0

9 2 197 70 45 543 30.5 0.158 53 1

10 8 125 96 0 0 0 0.232 54 1

#generate indices for the dataset list randomly to pick ele for

training data

#creates a dictionary of classes 1 and 0 where the values are

#the instances belonging to each class

Program:

import csv

import random

import math

def loadcsv(filename):

lines = csv.reader(open(filename, "r"));

dataset = list(lines)

for i in range(len(dataset)):

 #converting strings into numbers for processing

dataset[i] = [float(x) for x in dataset[i]]

return dataset

def splitdataset(dataset, splitratio):

 #67% training size

trainsize = int(len(dataset) * splitratio);

trainset = []

copy = list(dataset);

while len(trainset) < trainsize:

index = random.randrange(len(copy));

trainset.append(copy.pop(index))

return [trainset, copy]

def separatebyclass(dataset):

separated = {} #dictionary of classes 1 and 0

for i in range(len(dataset)):

vector = dataset[i]

if (vector[-1] not in separated):

separated[vector[-1]] = []

separated[vector[-1]].append(vector)

return separated

def mean(numbers):

return sum(numbers)/float(len(numbers))

def stdev(numbers):

avg = mean(numbers)

variance = sum([pow(x-avg,2) for x in

numbers])/float(len(numbers)-1)

return math.sqrt(variance)

#for key,value in dic.items()

#summaries is a dic of tuples(mean,std) for each class value

def summarize(dataset): #creates a dictionary of classes

summaries = [(mean(attribute), stdev(attribute)) for

attribute in zip(*dataset)];

del summaries[-1] #excluding labels +ve or -ve

return summaries

def summarizebyclass(dataset):

separated = separatebyclass(dataset);

#print(separated)

summaries = {}

for classvalue, instances in separated.items():

summaries[classvalue] = summarize(instances)

#summarize is used to cal to mean and std

return summaries

def calculateprobability(x, mean, stdev):

exponent = math.exp(-(math.pow(x-mean,2)/

(2*math.pow(stdev,2))))

return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent

def calculateclassprobabilities(summaries, inputvector):

probabilities contains the all prob of all class of test data

probabilities = {}

for classvalue, classsummaries in summaries.items():

#class and attribute information as mean and sd

probabilities[classvalue] = 1

for i in range(len(classsummaries)):

mean, stdev = classsummaries[i] #take mean and

sd of every attribute for class 0 and 1 seperaely

x = inputvector[i] #testvector's first attribute

probabilities[classvalue] *=

calculateprobability(x, mean, stdev);#use normal dist

return probabilities

def predict(summaries, inputvector): #training and test data

is passed

probabilities = calculateclassprobabilities(summaries,

inputvector)

bestLabel, bestProb = None, -1

for classvalue, probability in probabilities.items():

#assigns that class which has the highest prob

if bestLabel is None or probability > bestProb:

bestProb = probability

bestLabel = classvalue

return bestLabel

def getpredictions(summaries, testset):

predictions = []

for i in range(len(testset)):

result = predict(summaries, testset[i])

predictions.append(result)

return predictions

def getaccuracy(testset, predictions):

correct = 0

for i in range(len(testset)):

if testset[i][-1] == predictions[i]:

correct += 1

return (correct/float(len(testset))) * 100.0

def main():

filename = 'naivedata.csv'

splitratio = 0.67

dataset = loadcsv(filename);

trainingset, testset = splitdataset(dataset, splitratio)

print('Split {0} rows into train={1} and test={2}

rows'.format(len(dataset), len(trainingset), len(testset)))

prepare model

summaries = summarizebyclass(trainingset);

#print(summaries)

test model

predictions = getpredictions(summaries, testset) #find the

predictions of test data with the training data

accuracy = getaccuracy(testset, predictions)

print('Accuracy of the classifier is :

{0}%'.format(accuracy))

main()

Output:

Split 768 rows into train=514 and test=254 rows

Accuracy of the classifier is : 71.65354330708661%

8. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier

model to perform this task. Built-in Java classes/API can be used to write the program.

Calculate the accuracy, precision, and recall for your data set.

Naive Bayes algorithms for learning and classifying text

LEARN_NAIVE_BAYES_TEXT (Examples, V)

Examples is a set of text documents along with their target values. V is the set of all possible

target values. This function learns the probability terms P(wk |vj,), describing the probability

that a randomly drawn word from a document in class vj will be the English word wk. It also

learns the class prior probabilities P(vj).

1. collect all words, punctuation, and other tokens that occur in Examples

• Vocabulary ← c the set of all distinct words and other tokens occurring in any text

document from Examples

2. calculate the required P(vj) and P(wk|vj) probability terms

• For each target value vj in V do

• docsj ← the subset of documents from Examples for which the target value is vj

• P(vj) ← | docsj | / |Examples|

• Textj ← a single document created by concatenating all members of docsj

• n ← total number of distinct word positions in Textj

• for each word wk in Vocabulary

• nk ← number of times word wk occurs in Textj

• P(wk|vj) ← (nk + 1) / (n + | Vocabulary|)

CLASSIFY_NAIVE_BAYES_TEXT (Doc)

Return the estimated target value for the document Doc. ai denotes the word found in the ith
position within Doc.

• positions ← all word positions in Doc that contain tokens found in Vocabulary

• Return VNB, where

Data set:

 Text Documents Label

1 I love this sandwich pos

2 This is an amazing place pos

3 I feel very good about these beers pos

4 This is my best work pos

5 What an awesome view pos

6 I do not like this restaurant neg

7 I am tired of this stuff neg

8 I can't deal with this neg

9 He is my sworn enemy neg

10 My boss is horrible neg

11 This is an awesome place pos

12 I do not like the taste of this juice neg

13 I love to dance pos

14 I am sick and tired of this place neg

15 What a great holiday pos

16 That is a bad locality to stay neg

17 We will have good fun tomorrow pos

18 I went to my enemy's house today neg

Program:

import pandas as pd

msg=pd.read_csv('naivetext.csv',names=['message','label'])

print('The dimensions of the dataset',msg.shape)

msg['labelnum']=msg.label.map({'pos':1,'neg':0})

X=msg.message

y=msg.labelnum

print(X)

print(y)

#splitting the dataset into train and test data

from sklearn.model_selection import train_test_split

xtrain,xtest,ytrain,ytest=train_test_split(X,y)

print ('\n The total number of Training Data :',ytrain.shape)

print ('\n The total number of Test Data :',ytest.shape)

#output of count vectoriser is a sparse matrix

from sklearn.feature_extraction.text import CountVectorizer

count_vect = CountVectorizer()

xtrain_dtm = count_vect.fit_transform(xtrain)

xtest_dtm=count_vect.transform(xtest)

print('\n The words or Tokens in the text documents \n')

print(count_vect.get_feature_names())

df=pd.DataFrame(xtrain_dtm.toarray(),columns=count_vect.get_fe

ature_names())

Training Naive Bayes (NB) classifier on training data.

from sklearn.naive_bayes import MultinomialNB

clf = MultinomialNB().fit(xtrain_dtm,ytrain)

predicted = clf.predict(xtest_dtm)

#printing accuracy, Confusion matrix, Precision and Recall

from sklearn import metrics

print('\n Accuracy of the classifer is’,

metrics.accuracy_score(ytest,predicted))

print('\n Confusion matrix')

print(metrics.confusion_matrix(ytest,predicted))

print('\n The value of Precision' ,

metrics.precision_score(ytest,predicted))

print('\n The value of Recall' ,

metrics.recall_score(ytest,predicted))

Output:

The dimensions of the dataset (18, 2)

0 I love this sandwich

1 This is an amazing place

2 I feel very good about these beers

3 This is my best work

4 What an awesome view

5 I do not like this restaurant

6 I am tired of this stuff

7 I can't deal with this

8 He is my sworn enemy

9 My boss is horrible

10 This is an awesome place

11 I do not like the taste of this juice

12 I love to dance

13 I am sick and tired of this place

14 What a great holiday

15 That is a bad locality to stay

16 We will have good fun tomorrow

17 I went to my enemy's house today

Name: message, dtype: object

0 1

1 1

2 1

3 1

4 1

5 0

6 0

7 0

8 0

9 0

10 1

11 0

12 1

13 0

14 1

15 0

16 1

17 0

Name: labelnum, dtype: int64

The total number of Training Data: (13,)

The total number of Test Data: (5,)

The words or Tokens in the text documents

['about', 'am', 'amazing', 'an', 'and', 'awesome', 'beers', 'best', 'can', 'deal', 'do', 'enemy', 'feel',

'fun', 'good', 'great', 'have', 'he', 'holiday', 'house', 'is', 'like', 'love', 'my', 'not', 'of', 'place',

'restaurant', 'sandwich', 'sick', 'sworn', 'these', 'this', 'tired', 'to', 'today', 'tomorrow', 'very',

'view', 'we', 'went', 'what', 'will', 'with', 'work']

Accuracy of the classifier is 0.8

Confusion matrix

[[2 1]

[0 2]]

The value of Precision 0.6666666666666666

The value of Recall 1.0

Basic knowledge

Confusion Matrix

True positives: data points labelled as positive that are actually positive

False positives: data points labelled as positive that are actually negative

True negatives: data points labelled as negative that are actually negative

False negatives: data points labelled as negative that are actually positive

Example:

Accuracy: how often is the classifier correct?

Example: Movie Review

Doc Text Class

1 I loved the movie +

2 I hated the movie -

3 a great movie. good movie +

4 poor acting -

5 great acting. good movie +

Unique word

< I, loved, the, movie, hated, a, great, good, poor, acting>

Doc I loved the movie hated a great good poor acting Class

1 1 1 1 1 +

2 1 1 1 1 -

3 2 1 1 1 +

4 1 1 -

5 1 1 1 1 +

Doc I loved the movie hated a great good poor acting Class

1 1 1 1 1 +

3 2 1 1 1 +

5 1 1 1 1 +

𝑃(+) =

3
= 0.6

5

1 + 1

𝑃(𝐼 |+) = = 0.0833
14 + 10

1 + 1
𝑃(𝑙𝑜𝑣𝑒𝑑 |+) = = 0.0833

14 + 10

1 + 1
𝑃(𝑡ℎ𝑒 |+) = = 0.0833

14 + 10

4 + 1
𝑃(𝑚𝑜𝑣𝑖𝑒 |+) = = 0.2083

14 + 10

0 + 1
𝑃(ℎ𝑎𝑡𝑒𝑑 |+) = = 0.0416

14 + 10

1 + 1
𝑃(𝑎 |+) = = 0.0833

14 + 10

2 + 1
𝑃(𝑔𝑟𝑒𝑎𝑡 |+) = = 0.125

14 + 10

2 + 1
𝑃(𝑔𝑜𝑜𝑑 |+) = = 0.125

14 + 10

0 + 1
𝑃(𝑝𝑜𝑜𝑟 |+) = = 0.0416

14 + 10

1 + 1
𝑃(𝑎𝑐𝑡𝑖𝑛𝑔 |+) = = 0.0833

14 + 10

Doc I loved the movie hated a great good poor acting Class

2 1 1 1 1 -

4 1 1 -

𝑃(−) =

2
= 0.4

5

1 + 1
𝑃(𝐼 |−) = = 0.125

6 + 10

0 + 1
𝑃(𝑙𝑜𝑣𝑒𝑑 |−) = = 0.0625

6 + 10

1 + 1
𝑃(𝑡ℎ𝑒 |−) = = 0.125

6 + 10

1 + 1
𝑃(𝑚𝑜𝑣𝑖𝑒|−) = = 0.125

6 + 10

1 + 1
𝑃(ℎ𝑎𝑡𝑒𝑑 |−) = = 0.125

6 + 10

0 + 1
𝑃(𝑎 |−) = = 0.0625

6 + 10

0 + 1
𝑃(𝑔𝑟𝑒𝑎𝑡 |−) = = 0.0625

6 + 10

0 + 1
𝑃(𝑔𝑜𝑜𝑑 |−) = = 0.0625

6 + 10

1 + 1
𝑃(𝑝𝑜𝑜𝑟|−) = = 0.125

6 + 10

1 + 1
𝑃(𝑎𝑐𝑡𝑖𝑛𝑔|−) = = 0.125

6 + 10

Let’s classify the new document

I hated the poor acting

If Vj = +

then,

= P(+) P(I | +) P(hated | +) P(the | +) P(poor | +) P(acting | +)

= 0.6 * 0.0833 * 0.0416 * 0.0833 * 0.0416 * 0.0833

= 6.03 X 10−2

If Vj = −

then,

= P(−) P(I | −) P(hated | −) P(the | −) P(poor | −) P(acting | −)

= 0.4 * 0.125 * 0.125 * 0.125 * 0.125 * 0.125

= 1.22 X 10−5

= 1.22 X 10−5 > 6.03 X 10−2

So, the new document belongs to (−) class

9. Write a program to construct a Bayesian network considering medical data. Use this model

to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You

can use Java/Python ML library classes/API

Theory

A Bayesian network is a directed acyclic graph in which each edge corresponds to a conditional

dependency, and each node corresponds to a unique random variable.

Bayesian network consists of two major parts: a directed acyclic graph and a set of conditional

probability distributions

• The directed acyclic graph is a set of random variables represented by nodes.

• The conditional probability distribution of a node (random variable) is defined for every

possible outcome of the preceding causal node(s).

For illustration, consider the following example. Suppose we attempt to turn on our computer,

but the computer does not start (observation/evidence). We would like to know which of the

possible causes of computer failure is more likely. In this simplified illustration, we assume

only two possible causes of this misfortune: electricity failure and computer malfunction.

The corresponding directed acyclic graph is depicted in below figure.

Fig: Directed acyclic graph representing two independent possible causes of a computer failure.

The goal is to calculate the posterior conditional probability distribution of each of the possible

unobserved causes given the observed evidence, i.e. P [Cause | Evidence].

Data Set:

Title: Heart Disease Databases

The Cleveland database contains 76 attributes, but all published experiments refer to using a

subset of 14 of them. In particular, the Cleveland database is the only one that has been used

by ML researchers to this date. The "Heartdisease" field refers to the presence of heart disease

in the patient. It is integer valued from 0 (no presence) to 4.

Database: 0 1 2 3 4 Total

Cleveland: 164 55 36 35 13 303

Attribute Information:

1. age: age in years

2. sex: sex (1 = male; 0 = female)

3. cp: chest pain type

• Value 1: typical angina

• Value 2: atypical angina

• Value 3: non-anginal pain

• Value 4: asymptomatic

4. trestbps: resting blood pressure (in mm Hg on admission to the hospital)

5. chol: serum cholestoral in mg/dl

6. fbs: (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)

7. restecg: resting electrocardiographic results

• Value 0: normal

• Value 1: having ST-T wave abnormality (T wave inversions and/or ST elevation

or depression of > 0.05 mV)

• Value 2: showing probable or definite left ventricular hypertrophy by Estes'

criteria

8. thalach: maximum heart rate achieved

9. exang: exercise induced angina (1 = yes; 0 = no)

10. oldpeak = ST depression induced by exercise relative to rest

11. slope: the slope of the peak exercise ST segment

• Value 1: upsloping

• Value 2: flat

• Value 3: downsloping

12. thal: 3 = normal; 6 = fixed defect; 7 = reversable defect

13. Heartdisease: It is integer valued from 0 (no presence) to 4.

Some instance from the dataset:

 age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal Heartdisease

63 1 1 145 233 1 2 150 0 2.3 3 0 6 0

67 1 4 160 286 0 2 108 1 1.5 2 3 3 2

67 1 4 120 229 0 2 129 1 2.6 2 2 7 1

41 0 2 130 204 0 2 172 0 1.4 1 0 3 0

62 0 4 140 268 0 2 160 0 3.6 3 2 3 3

60 1 4 130 206 0 2 132 1 2.4 2 2 7 4

Program:

import numpy as np

import pandas as pd

import csv

from pgmpy.estimators import MaximumLikelihoodEstimator

from pgmpy.models import BayesianModel

from pgmpy.inference import VariableElimination

#read Cleveland Heart Disease data

heartDisease = pd.read_csv('heart.csv')

heartDisease = heartDisease.replace('?',np.nan)

#display the data

print('Sample instances from the dataset are given below')

print(heartDisease.head())

#display the Attributes names and datatyes

print('\n Attributes and datatypes')

print(heartDisease.dtypes)

#Creat Model- Bayesian Network

model =

BayesianModel([('age','heartdisease'),('sex','heartdisease'),(

'exang','heartdisease'),('cp','heartdisease'),('heartdisease',

'restecg'),('heartdisease','chol')])

#Learning CPDs using Maximum Likelihood Estimators

print('\n Learning CPD using Maximum likelihood estimators')

model.fit(heartDisease,estimator=MaximumLikelihoodEstimator)

Inferencing with Bayesian Network

print('\n Inferencing with Bayesian Network:')

HeartDiseasetest_infer = VariableElimination(model)

#computing the Probability of HeartDisease given restecg

print('\n 1.Probability of HeartDisease given evidence=

restecg :1')

q1=HeartDiseasetest_infer.query(variables=['heartdisease'],evi

dence={'restecg':1})

print(q1)

#computing the Probability of HeartDisease given cp

print('\n 2.Probability of HeartDisease given evidence= cp:2 ')

q2=HeartDiseasetest_infer.query(variables=['heartdisease'],evi

dence={'cp':2})

print(q2)

Output:

10. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for

clustering using k-Means algorithm. Compare the results of these two algorithms and

comment on the quality of clustering. You can add Python ML library classes/API in the

program.

SOURCE CODE:

import matplotlib.pyplot as plt from sklearn

import datasets

from sklearn.cluster import KMeans import

sklearn.metrics as sm

import pandas as pd import numpy as np

iris = datasets.load_iris()

X = pd.DataFrame(iris.data)

X.columns =

['Sepal_Length','Sepal_Width','Petal_Length',

'Petal_Width']

y = pd.DataFrame(iris.target) y.columns =

['Targets']

model = KMeans(n_clusters=3) model.fit(X)

plt.figure(figsize=(14,7))

colormap = np.array(['red', 'lime', 'black'])

Plot the Original Classifications

plt.subplot(1, 2, 1)

plt.scatter(X.Petal_Length, X.Petal_Width,

c=colormap[y.Targets], s=40) plt.title('Real

Classification')

plt.xlabel('Petal Length') plt.ylabel('Petal

Width')

Plot the Models Classifications

plt.subplot(1, 2, 2)

plt.scatter(X.Petal_Length, X.Petal_Width,

c=colormap[model.labels_], s=40) plt.title('K

Mean Classification')

plt.xlabel('Petal Length') plt.ylabel('Petal

Width')

print('The accuracy score of K-Mean:

',sm.accuracy_score(y, model.labels_))

print('The Confusion matrixof K-Mean:

',sm.confusion_matrix(y, model.labels_))

from sklearn import preprocessing scaler =

preprocessing.StandardScaler() scaler.fit(X)

xsa = scaler.transform(X)

xs = pd.DataFrame(xsa, columns = X.columns)

#xs.sample(5)

from sklearn.mixture import GaussianMixture

gmm = GaussianMixture(n_components=3)

gmm.fit(xs)

y_gmm = gmm.predict(xs) #y_cluster_gmm

plt.subplot(2, 2, 3)

plt.scatter(X.Petal_Length, X.Petal_Width,

c=colormap[y_gmm], s=40) plt.title('GMM

Classification')

plt.xlabel('Petal Length') plt.ylabel('Petal

Width')

print('The accuracy score of EM:

',sm.accuracy_score(y, y_gmm)) print('The

Confusion matrix of EM:

',sm.confusion_matrix(y, y_gmm))

 Output:

The accuracy score of K-Mean: 0.8933333333333333

The Confusion matrixof K-Mean:

[[50 0 0]

 [0 48 2]

 [0 14 36]]

The accuracy score of EM: 0.9666666666666667

The Confusion matrix of EM: [[50 0 0]

 [0 45 5]

 [0 0 50]]

11. Write a program to implement k-Nearest Neighbour algorithm to classify the iris data

set. Print both correct and wrong predictions. Java/Python ML library classes can be used for

this problem.

K-Nearest Neighbor Algorithm

Training algorithm:

• For each training example (x, f (x)), add the example to the list training examples

Classification algorithm:

• Given a query instance xq to be classified,

• Let x1 . . .xk denote the k instances from training examples that are nearest to xq

• Return

• Where, f(xi) function to calculate the mean value of the k nearest training

examples.

Data Set:

Iris Plants Dataset: Dataset contains 150 instances (50 in each of three classes)

Number of Attributes: 4 numeric, predictive attributes and the Class

""" Iris Plants Dataset, dataset contains 150 (50 in each of three

classes)Number of Attributes: 4 numeric, predictive attributes and

the Class

"""

""" The x variable contains the first four columns of the dataset

(i.e. attributes) while y contains the labels.

"""

""" Splits the dataset into 70% train data and 30% test data. This

means that out of total 150 records, the training set will contain

105 records and the test set contains 45 of those records

"""

""" For evaluating an algorithm, confusion matrix, precision, recall

and f1 score are the most commonly used metrics.

"""

Program:

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import classification_report, confusion_matrix

from sklearn import datasets

iris=datasets.load_iris()

x = iris.data

y = iris.target

print ('sepal-length', 'sepal-width', 'petal-length', 'petal-width')

print(x)

print('class: 0-Iris-Setosa, 1- Iris-Versicolour, 2- Iris-Virginica')

print(y)

x_train, x_test, y_train, y_test =

train_test_split(x,y,test_size=0.3)

#To Training the model and Nearest nighbors K=5

classifier = KNeighborsClassifier(n_neighbors=5)

classifier.fit(x_train, y_train)

#to make predictions on our test data

y_pred=classifier.predict(x_test)

print('Confusion Matrix')

print(confusion_matrix(y_test,y_pred))

print('Accuracy Metrics')

print(classification_report(y_test,y_pred))

Output:

sepal-length sepal-width petal-length petal-width

[[5.1 3.5 1.4 0.2]

[4.9 3. 1.4 0.2]

[4.7 3.2 1.3 0.2]

[4.6 3.1 1.5 0.2]

[5. 3.6 1.4 0.2]

.

.

[6.2 3.4 5.4 2.3]

[5.9 3. 5.1 1.8]]

class: 0-Iris-Setosa, 1- Iris-Versicolour, 2- Iris-Virginica

[0 0 0 ………0 0 1 1 1 …………1 1 2 2 2 ………… 2 2]

Confusion Matrix

Accuracy Metrics

 Precision recall f1-score support

0 1.00 1.00 1.00 20

1 0.91 1.00 0.95 10

2 1.00 0.93 0.97 15

avg / total 0.98 0.98 0.98 45

[[20 0 0]

[0 10 0]

[0 1 14]]

Basic knowledge

Confusion Matrix

True positives: data points labelled as positive that are actually positive

False positives: data points labelled as positive that are actually negative

True negatives: data points labelled as negative that are actually negative

False negatives: data points labelled as negative that are actually positive

Accuracy: how often is the classifier correct?

F1-Score:

Support: Total Predicted of Class.

Support = TP + FN

Example:

• Support _ A = TP_A + FN_A

= 30 + (20 + 10)

= 60

12. Implement the non-parametric Locally Weighted Regression algorithm in order to fit data

points. Select appropriate data set for your experiment and draw graphs.

Locally Weighted Regression Algorithm

Regression:

• Regression is a technique from statistics that is used to predict values of a desired

target quantity when the target quantity is continuous.

• In regression, we seek to identify (or estimate) a continuous variable y associated with

a given input vector x.

• y is called the dependent variable.

• x is called the independent variable.

Loess/Lowess Regression:

Loess regression is a nonparametric technique that uses local weighted regression to fit a

smooth curve through points in a scatter plot.

Lowess Algorithm:

• Locally weighted regression is a very powerful nonparametric model used in statistical

learning.

• Given a dataset X, y, we attempt to find a model parameter β(x) that minimizes

residual sum of weighted squared errors.

• The weights are given by a kernel function (k or w) which can be chosen arbitrarily

Algorithm

a. Read the Given data Sample to X and the curve (linear or non linear) to Y

b. Set the value for Smoothening parameter or Free parameter say τ

c. Set the bias /Point of interest set x0 which is a subset of X

d. Determine the weight matrix using :

e. Determine the value of model term parameter β using :

f. Prediction = x0*β:

Program

import numpy as np

from bokeh.plotting import figure, show, output_notebook

from bokeh.layouts import gridplot

from bokeh.io import push_notebook

def local_regression(x0, X, Y, tau):# add bias term

x0 = np.r_[1, x0] # Add one to avoid the loss in

information

X = np.c_[np.ones(len(X)), X]

fit model: normal equations with kernel

xw = X.T * radial_kernel(x0, X, tau) # XTranspose * W

beta = np.linalg.pinv(xw @ X) @ xw @ Y #@ Matrix

Multiplication or Dot Product

predict value

return x0 @ beta # @ Matrix Multiplication or Dot Product

for prediction

def radial_kernel(x0, X, tau):

return np.exp(np.sum((X - x0) ** 2, axis=1) / (-2 * tau *

tau))

Weight or Radial Kernal Bias Function

n = 1000

generate dataset

X = np.linspace(-3, 3, num=n)

print("The Data Set (10 Samples) X :\n",X[1:10])

Y = np.log(np.abs(X ** 2 - 1) + .5)

print("The Fitting Curve Data Set (10 Samples) Y

:\n",Y[1:10])

jitter X

X += np.random.normal(scale=.1, size=n)

print("Normalised (10 Samples) X :\n",X[1:10])

domain = np.linspace(-3, 3, num=300)

print(" Xo Domain Space(10 Samples) :\n",domain[1:10])

def plot_lwr(tau):

prediction through regression

prediction = [local_regression(x0, X, Y, tau) for x0 in

domain]

plot = figure(plot_width=400, plot_height=400)

plot.title.text='tau=%g' % tau

plot.scatter(X, Y, alpha=.3)

plot.line(domain, prediction, line_width=2, color='red')

return plot

show(gridplot([

[plot_lwr(10.), plot_lwr(1.)],

[plot_lwr(0.1), plot_lwr(0.01)]]))

Output

13. Carry out the performance analysis of classification algorithms on a specific dataset.

Performance Comparison of Multi-Class Classification Algorithms:

This experiment comprises the application and comparison of supervised multi-class

classification algorithms to a dataset, which involves the chemical compositions (features) and

types (four major types – target) of stainless steels. The dataset is quite small in numbers, but

very accurate.

Stainless steel alloy datasets are commonly limited in size, thus restraining applications of

Machine Learning (ML) techniques for classification. I explored the potential of 6 different

classification algorithms, in the context of a small dataset of 62 samples, for outcome prediction

in type classification.

In this article, multi-class classification was analyzed using various algorithms, with the target of

classifying the stainless steels using their chemical compositions (15 elements). There are four

basic types are of stainless steels and some alloys have very close compositions. Hyperparameter

tuning by Grid Search was also applied for Random Forest and XGBoost algorithms in order to

observe possible improvements on the metrics. Finally, the performances of the algorithms were

compared. After the application of these algorithms, the successes of the models were evaluated

with appropriate performance metrics.

The dataset was prepared using “High-Temperature Property Data: Ferrous Alloys”.

Wikipedia’s definition for multi-class classification is: “In machine learning, multiclass or

multinomial classification is the problem of classifying instances into one of three or more classes

(classifying instances into one of two classes is called binary classification).”

The following algorithms were used for classification analysis:

• Decision Tree Classifier,

• Random Forest Classifier,

• XGBoost Classifier,

• Naïve Bayes,

• Support Vector Machines (SVM),

• AdaBoost.

The following issues were the scope of this study:

• Which algorithm provided the best results for multi-class classification?

• Was hyperparameter tuning successful in improving the metrics?

• Reason for poor (if any) metrics.

• Is it safe to use these methods for multi-class classification of alloys.

https://en.wikipedia.org/wiki/Stainless_steel
https://books.google.com/books/about/High_temperature_Property_Data.html?id=NstRAAAAMAAJ
https://en.wikipedia.org/wiki/Multiclass_classification
https://en.wikipedia.org/wiki/Binary_classification

Data Cleaning

The first step is to import and clean the data (if needed) using pandas before starting the analysis.

There are 25 austenitic (A), 17 martensitic (M), 11 ferritic (F) and 9 precipitation-hardening (P)

stainless steels in the dataset.

There are 62 rows (stainless steels) and 17 columns (attributes) of data. 15 columns cover the

chemical composition information of the alloys. The first column is the AISI designation and the

last column is the type of the alloy. Our target is to estimate the type of the steel.

Descriptive statistics of the dataset are shown below. Some element percentages are almost

stable (Sulphur), but Chromium and Nickel percentages have a very wide range (and these two

elements are the defining elements of stainless steels).

Correlation can be defined as a measure of the dependence of one variable on the other one. Two

features being highly correlated with each other will provide too much and useless information on

finding the target. The heatmap below shows that the highest correlation is between manganese

and nitrogen. Manganese is present in every steel, but nitrogen is not even present in most of the

alloys; so, I kept both.

https://heartbeat.fritz.ai/hands-on-with-feature-selection-techniques-filter-methods-f248e0436ce5

The dataset is clean (there are no NaNs, Dtype are correct), so we will directly start by Train-Test-

Split and then apply the algorithms.

Decision Tree Classifier

First algorithm is the Decision Tree Classifier. It uses a decision tree (as a predictive model) to

go from observations about an item (represented in the branches) to conclusions about the item's

target value (represented in the leaves).

The results are very good; actually, only one alloy type was classified mistakenly.

https://en.wikipedia.org/wiki/Decision_tree
https://en.wikipedia.org/wiki/Predictive_modelling

Random Forest Classifier

Random forests or random decision forests are an ensemble learning method for classification,

regression and other tasks that operate by constructing a multitude of decision trees at training time

and outputting the class that is the mode of the classes (classification) or mean/average

prediction (regression) of the individual trees.

Random forests generally outperform decision trees, but their accuracy is lower than gradient

boosted trees. However, data characteristics can affect their performance [ref].

https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Mode_(statistics)
https://ascelibrary.org/doi/10.1061/JPEODX.0000175

Hyperparameter Tuning with Grid Search

Even though I got satisfactory results with Random Forest Analysis, I applied hyperparameter

tuning with Grid Search. Grid search is a common method for tuning a model’s hyperparameters.

The grid search algorithm is simple: feed it a set of hyperparameters and the values to be tested for

each hyperparameter, and then run an exhaustive search over all possible combinations of these

values, training one model for each set of values. The algorithm then compares the scores of each

model it trains and keeps the best one. Here are the results:

https://jamesrledoux.com/code/grid_search

Hyperparameter tuning with Grid Search took the results to the perfect level – or overfitting.

XGBoost Classifier

XGBoost is well known to provide better solutions than other machine learning algorithms. In

fact, since its inception, it has become the "state-of-the-art” machine learning algorithm to deal

with structured data.

The results of the XGBoost Classifier provided the best results for this classification study.

Hyperparameter Tuning with Grid Search

Once again, I applied the hyperparameter tuning with Grid Search, even though the results were

near perfect.

https://www.datacamp.com/community/tutorials/xgboost-in-python

Naïve Bayes Classifier

Naïve Bayes algorithm is a supervised learning algorithm, which is based on Bayes theorem and

used for solving classification problems. Naïve Bayes Classifier is one of the simple and most

effective Classification algorithms which helps in building the fast machine learning models that

can make quick predictions.

The results are shown below:

Support Vector Machines (SVM)

Support-vector machines (SVMs, also support-vector networks) are supervised learning models

with associated learning algorithms that analyze data for classification and regression analysis.

An SVM maps training examples to points in space to maximize the width of the gap between

https://www.javatpoint.com/machine-learning-naive-bayes-classifier
https://en.wikipedia.org/wiki/Support_vector_machine

the two categories. New examples are then mapped into that same space and predicted to belong

to a category based on which side of the gap they fall.

The results are shown below:

AdaBoost

AdaBoost, short for Adaptive Boosting, is a machine learning meta-algorithm, which can be used

in conjunction with many other types of learning algorithms to improve performance. The output

of the other learning algorithms ('weak learners') is combined into a weighted sum that represents

the final output of the boosted classifier.

The results are shown below:

https://en.wikipedia.org/wiki/AdaBoost

Conclusion

In this experiment, we used six different Supervised Machine Learning (Classification) algorithms

with the purpose of classifying four types of stainless steels (multi-class) according to their

chemical compositions comprised of 15 elements in the alloy. The dataset included 62 alloys;

which made it a small, but a very accurate dataset (all the information was taken from ASM

International Sources (formerly known as American Society of Metals)).

https://books.google.com/books/about/High_temperature_Property_Data.html?id=NstRAAAAMAAJ
https://books.google.com/books/about/High_temperature_Property_Data.html?id=NstRAAAAMAAJ

The analysis provides evidence that:

• Considering the f1 scores, Random Forest and XGBoost methods produced the best results

(0.94).

• After hyperparameter tuning by Grid Search, RF and XGBoost f1 scores jumped to 100 %.

• Multiple tries of the same algorithm resulted different results with a huge gap – most

probably due to the limited data size.

• The poorest f1 scores were mostly for the classification of the types that have the least-

numbered groups; which were ferritic and precipitation-hardened steels.

• Finally, test classification accuracy of 95% achieved by 3 models (DT, RF and XGBoost) and 100%

by 2 tuned models demonstrates that the ML approach can be effectively applied to steel

classification despite the small number of alloys and heterogeneous input parameters (chemical

compositions). Based on only 62 cases, the models achieved a very high level of performance for

multi-class alloy type classification.

Classification Metrics

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Decision Random RF Tuned XGBoost XGBoost Naïve Support AdaBoost

Tree Forest (RF) Tuned Bayes Vector

Machines

f1 Score Accuracy

https://www.sciencedirect.com/topics/engineering/classification-accuracy

14. Case Study: You are owing a supermarket mall and through membership cards , you have

some basic data about your customers like Customer ID, age, gender, annual income, and

spending score. Spending Score is something you assign to the customer based on your defined

parameters like customer behaviour and purchasing data.

Problem Statement

By being the managing director of your Supermarket Mall, You wanted to understand the

customers like who can be easily converge [Target Customers] so that the sense can be given to

marketing team and plan the strategy accordingly.

After carrying out this case study, answer the questions given below.

1- How to achieve customer segmentation using machine learning algorithm (KMeans

Clustering) in Python in simplest way.

2- Who are your target customers with whom you can start marketing strategy [easy to converse]

3- How the marketing strategy works in real world?

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

Input data files are available in the read-only "../input/" directory
For example, running this (by clicking run or pressing Shift+Enter) will list
all files under the input directory

import os
for dirname, _, filenames in os.walk('/kaggle/input'):
 for filename in filenames:
 print(os.path.join(dirname, filename))

You can write up to 20GB to the current directory (/kaggle/working/) that gets
preserved as output when you create a version using "Save & Run All"
You can also write temporary files to /kaggle/temp/, but they won't be saved
outside of the current session

/kaggle/input/customer-segmentation-tutorial-in-python/Mall_Customers.csv

Importing the Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans

Data Collection and Analysis
loading the data from csv file to a pandas Dataframe

df = pd.read_csv('../input/customer-segmentation-tutorial-in-
python/Mall_Customers.csv')

first five rows of the Dataframe

df.head()

 CustomerID Gender Age Annual Income (k$) Spending Score (1-100)
0 1 Male 19 15 39
1 2 Male 21 15 81
2 3 Female 20 16 6
3 4 Female 23 16 77
4 5 Female 31 17 40

finding the number of rows and columns

df.shape

(200, 5)

getting information of the data

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 CustomerID 200 non-null int64
 1 Gender 200 non-null object
 2 Age 200 non-null int64
 3 Annual Income (k$) 200 non-null int64
 4 Spending Score (1-100) 200 non-null int64
dtypes: int64(4), object(1)
memory usage: 7.9+ KB

checking missing values

df.isnull().sum()

CustomerID 0
Gender 0
Age 0
Annual Income (k$) 0
Spending Score (1-100) 0
dtype: int64

choosing Only Annual Income & Spending Score Column
X = df.iloc[:,[3,4]].values

Choosing number of clusters
WCSS - Within clusters sum of squares

finding wcss vlaue for different number of cluster

wcss = []

for i in range(1,11):
 kmeans = KMeans(n_clusters=i,init='k-means++',random_state=30)
 kmeans.fit(X)
 wcss.append(kmeans.inertia_)

plot an elbow graph

sns.set()
plt.plot(range(1,11), wcss)
plt.title('The elbow Point Graph')
plt.xlabel('Number of Clusters')
plt.ylabel('WCSS')
plt.show()

• Optimum number of cluster = 5

Training the KMean Cluster Model
kmeans = KMeans(n_clusters=5,init='k-means++',random_state=30)

#return a label for each data point based on their cluster

Y = kmeans.fit_predict(X)

print(Y)

[4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4
 0 4 0 4 0 4 1 4 0 1
 1
 1 1 1 1 1 1 1 1 1 1 1 1 3 2 3 1 3 2 3 2 3 1 3 2 3 2 3 2 3 2 3 1 3 2 3 2 3
 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2
 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3]

Plotting all the clusters and their Centroids

plt.figure(figsize=(8,8))
plt.scatter(X[Y==0,0],X[Y==0,1],s=50,c='green',label='Cluster 1')
plt.scatter(X[Y==1,0],X[Y==1,1],s=50,c='red',label='Cluster 2')
plt.scatter(X[Y==2,0],X[Y==2,1],s=50,c='yellow',label='Cluster 3')
plt.scatter(X[Y==3,0],X[Y==3,1],s=50,c='violet',label='Cluster 4')
plt.scatter(X[Y==4,0],X[Y==4,1],s=50,c='blue',label='Cluster 5')

plot the centroids
plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:,1],s=100,
c='cyan',label='Centroids')
plt.title('Customer Groups')
plt.xlabel('Annual Income')
plt.ylabel('Spending Score')
plt.show()

Observations

• As we can see in the above figure that some person who has greater annual income
spends less but some person has greater annual income spend more in blue color

• Also, person has less income with less spending in color violet.

• person has greater income spent more in color green.

we can give this information to different teams of the company they can make offers
accordingly.

