
UNIT-1

INTRODUCTION TO SCRIPTING LANGUAGES

1.1 Scripts and programs:

 Scripting is the action of writing scripts using a scripting language, distinguishing neatly

between programs, which are written in conventional programming language such as

C,C++,java, and scripts, which are written using a different kind of language.

We could reasonably argue that the use of scripting languages is just another kind of

programming. Scripting languages are used for is qualitatively different from conventional

programming languages like C++ and Ada address the problem of developing large applications

from the ground up, employing a team of professional programmers, starting from well-defined

specifications, and meeting specified performance constraints.

Scripting languages, on other hand, address different problems:

 Building applications from ‘off the shelf’ components

 Controlling applications that have a programmable interface

 Writing programs where speed of development is more important than

run-time efficiency.

The most important difference is that scripting languages incorporate features that

enhance the productivity of the user in one way or another, making them accessible to people

who would not normally describe themselves as programmers, their primary employment

being in some other capacity. Scripting languages make programmers of us all, to some extent.

1.2 Origin of scripting:

The use of the word ‘script’ in a computing context dates back to the early 1970s,when

the originators of the UNIX operating system create the term ‘shell script’ for sequence of

commands that were to be read from a file and follow in sequence as if they had been typed in

at the keyword. e.g. an ‘AWKscript’, a ‘perl script’ etc.. the name ‘script ‘ being used for a text

file that was intended to be executed directly rather than being compiled to a different form of

file prior to execution.

Other early occurrences of the term ‘script’ can be found. For example, in a DOS-based

system, use of a dial-up connection to a remote system required a communication package that

used proprietary language to write scripts to automate the sequence of operations required to

establish a connection to a remote system.

Note that if we regard a scripts as a sequence of commands to control an application or

a device, a configuration file such as a UNIX ‘make file’ could be regard as a script.

However, scripts only become interesting when they have the added value that comes

from using programming concepts such as loops and branches.

1.3 Scripting today:

SCRIPTING IS USED WITH 3 DIFFRENT MEANINGS:

1. A new style of programming which allows applications to be developed much faster than

traditional methods allow,and maks it possible for applications to evolve rapidly to meet

changing user requirements.This style of programming frequently uses a scripting language to

interconnect ‘off the shelf ‘ components that are themselves written in conventional

language.Applications built in this way are called ‘glue applications’ ,and the language is called

a ‘glue language’.

A glue language is a programming language (usually an interpreted scripting language) that is

designed or suited for writing glue code – code to connect software components. They are

especially useful for writing and maintaining:

 Custom commands for a command shell

 Smaller programs than those that are better implemented in a compiled language

https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://en.wikipedia.org/wiki/Glue_code
https://en.wikipedia.org/wiki/Software_component

 "Wrapper" programs for executables, like a batch file that moves or manipulates files and

does other things with the operating system before or after running an application like a

word processor, spreadsheet, data base, assembler, compiler, etc.

 Scripts that may change

 Rapid prototypes of a solution eventually implemented in another, usually compiled,

language.

Glue language examples:

 AppleScript

 ColdFusion

 DCL

 Embeddable Common Lisp

 ecl

 Erlang

 JCL

 JScript and JavaScript

 Lua

 m4

 Perl

 PHP

 Pure

 Python

 Rebol

 Rexx

 Ruby

 Scheme

 Tcl

 Unix Shell

scripts (ksh, csh,bash, sh and

others)

 VBScript

 Work Flow Language

 Windows PowerShell

 XSLT

2.Using a scripting language to ‘manipulate,customize and automate the facilities of an

existing system’,as the ECMAScript definition puts it.Here the script is used to control an

application that privides a programmable interface:this may be an API,though more

commonly the application is construted from a collection of objects whose properties and

methods are exposed to the scripting language.Example: use of Visual Basic for applications to

control the applications in the Microsoft Office Suite.

3.Using a scripting language with its rich funcationaliy and ease of use as an alternate to a

conventional language for general programming tasks ,particularly system programming and

administration.Examples: are UNIX system adminstrators have for a long time used scripting

languages for system maintenace tasks,and administrators of WINDOWS NT systems are

adopting a scripting language ,PERL for their work.

https://en.wikipedia.org/wiki/Rapid_application_development
https://en.wikipedia.org/wiki/AppleScript
https://en.wikipedia.org/wiki/ColdFusion
https://en.wikipedia.org/wiki/DIGITAL_Command_Language
https://en.wikipedia.org/wiki/Embeddable_Common_Lisp
https://en.wikipedia.org/wiki/ECL_programming_language
https://en.wikipedia.org/wiki/Erlang_(programming_language)
https://en.wikipedia.org/wiki/Job_Control_Language
https://en.wikipedia.org/wiki/JScript
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Lua_(programming_language)
https://en.wikipedia.org/wiki/M4_(computer_language)
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/Pure_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Rebol
https://en.wikipedia.org/wiki/Rexx
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/Tcl
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Shell_script
https://en.wikipedia.org/wiki/Shell_script
https://en.wikipedia.org/wiki/Shell_script
https://en.wikipedia.org/wiki/Korn_shell
https://en.wikipedia.org/wiki/C_shell
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://en.wikipedia.org/wiki/Bourne_shell
https://en.wikipedia.org/wiki/VBScript
https://en.wikipedia.org/wiki/Work_Flow_Language
https://en.wikipedia.org/wiki/Windows_PowerShell
https://en.wikipedia.org/wiki/XSLT

1.4 Characteristics of scripting languages:

These are some properties of scripting languages which differentiate SL from programming

languages.

 Integrated compile and run:SL’s are usually characterized as interpreted languages,but

this is just an oversimplification.They operate on an immediate execution,without need

to issue separate commond to compile the program and then to run the resulting object

file,and without the need to link extensive libraries into he object code.This is done

automatically.A few SL’S are indeed implemented as strict interpreters.

 Low overheads and ease of use:

 1.variables can be declared by use

2.the number of different data types is usually limited

3.everything is string by context it will be converted as number(vice versa)

4.number of data strucures is limited(arrays)

 Enhanced functionality:SL’s usually have enhanced functionality in some areas.For

example ,most languages provide string manipulation based on the use of regular

expressions,while other languages provide easy access to low-level operating system

facilities,or to the API,or object exported by an application.

 Efficiency is not an issue:ease of use is achieved at the expense of effeciency,because

efficiency is not an issue in the applications for which SL’S are designed.

 A scripting language is usually interpreted from source code or bytecode. By contrast,

the software environment the scripts are written for is typically written in a compiled

language and distributed in machine code form.

 Scripting languages may be designed for use by end users of a program – end-user

development – or may be only for internal use by developers, so they can write portions

of the program in the scripting language.

https://en.wikipedia.org/wiki/Interpreter_(computing)
https://en.wikipedia.org/wiki/Bytecode
https://en.wikipedia.org/wiki/Compiled_language
https://en.wikipedia.org/wiki/Compiled_language
https://en.wikipedia.org/wiki/Compiled_language
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/End-user_development
https://en.wikipedia.org/wiki/End-user_development

 Scripting languages typically use abstraction, a form of information hiding, to spare

users the details of internal variable types, data storage, and memory management.

 Scripts are often created or modified by the person executing them, but they are also

often distributed, such as when large portions of games are written in a scripting

language.

 The characteristics of ease of use,particularly the lack of an explicit compile-link-load

sequence,are sometimes taken as the sole definition of a scripting language.

1.5 Users For Scripting Lanuages:

Users are classified into two types

1. Modern applications

2. Traditional users

Modern applications of scripting languages are:

1.Visual scripting: A collection of visual objects is used to construct a graphical interface.This

process of constructing a graphical interface is known as visual scripting.the properties of visual

objects include text on button,background and foreground colors.These properties of objects can

be changed by writing program in a suitable language.

The outstanding visual scripting system is visual basic.It is used to develop new

applications.Visual scripting is also used to create enhanced web pages.

2.Scripting components:In scripting languages we use the idea to control the scriptable objects

belonging to scripting architecture.Microsoft's visual basic and excel are the first applications

that used the concept of scriptable objects.To support all the applications of microsoft the

concept of scriptable objects was developed.3.Web scripting:web scripting is classified into three

forms.they are processing forms,dynamic web pages,dynamically generating HTML.

Applications of traditional scripting languages are:

1. system administration,

2. experimental programming,

3. controlling applications.

 Application areas :

 Four main usage areas for scripting languages:

1. Command scripting languages

2.Application scripting languages

3.Markup language

 4. Universal scripting languages

https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/Information_hiding
https://en.wikipedia.org/wiki/Memory_management

1.Command scripting languages are the oldest class of scripting languages. They appeared in

1960, when a need for programs and tasks control arised. The most known language from the

first generation of such languages is JCL (Job Control Language), created for IBM OS/360

operating system. Modern examples of such languages include shell language, described above,

and also text-processing languages, such as sed and awk. These languages were one of the first to

directly include support for regular expression matching - a feature that later was included into

more general-purpose languages, such as Perl.

2.Application scripting languages :Application scripting languages were developed in 1980s, in

the era of personal computers, when such important applications as spreadsheets and database

clients were introduced, and interactive session in front of the PC became the norm. One of the

prime examples of these languages is Microsoft-created Visual Basic language, and especially

it’s subset named Visual Basic for Applications, designed explicitly for office applications

programming

3.Markup languages are a special case in the sense that they are not a real programming

languages, but rather a set of special command words called ’tags’ used to mark up parts of text

documents, that are later used by special programs called processors, to do all kinds of

transformations to the text, such as displaying it in a browser, or converting it to some other data

format. The basic idea of markup languages is the separation of contents and structure, and also

including formatting commands and interactive objects into the documents. The first markup

language named GML (Generic Markup Language) was created in 1969 by IBM. In 1986, ISO

created a standard called SGML, based on GML ideas.

4.Universal scripting languages :The languages that belong to this class are perhaps the most

well-known. The very term ”scripting languages” is associated with them. Most of these

languages were originally created for the Unix environment. The goals however were different.

The Perl programming language was made for report generation, which is even reflected in its

name (Practical Extraction and Report Language). It is commonly said that the primary reason

for it’s enormous popularity is the ability to write simple and efficient CGI scripts for forming

dynamic web pages with this language. Perl was there in the right place at the right time. The

Python language was originally made as a tool for accessing system services of the experimental

operating system Amoeba. Later it became a universal object-oriented scripting language.

Implementations exist for the Java Virtual Machine and also for Microsoft Intermediate

Language used on Microsoft .NET platform.

Unlike Perl and Python, which make it easy to write completely standalone programs, Tcl relies

heavily on C and C++ extension modules.

1.6 web scripting:

 Web is the most fertile areas for the application of scripting languages. Web scripting divides

into three areas

a. processing forms

b. creating pages with enhanced visual effects and user interaction and

c. generating pages ’on the fly’ from material held in database.

Processing Web forms:

 In the original implementation of the web , when the form is submitted for processing, the

information entered by the user is encoded and sent to the server for processing by a CGI script

that generates an HTML page to be sent back to the Web browser.

 This processing requires string manipulation to construct the HTML page that constitutes the

replay, and may also require system access , to run other processes and to establish network

connections. Perl is also a language that uses CGI scripting.

Alternatively for processing the form with script running on the server it possible to do some

client –side processing within the browser to validate form data before sending it to the

server by using JavaScript, VBScript etc.

Dynamic Web pages:

‘Dynamic HTML’ makes every component of a Web page (headings, anchors, tables etc.) a

scriptable object. This makes it possible to provide simple interaction with the user using scripts

written in JavaScript/Jscript or VBScript, which are interpreted by the browser.

Microsoft’s ActiveX technology allows the creation of pages with more elaborate user

interaction by using embedded visual objects called ActiveX controls. These controls are

scriptable objects, and can in fact be scripted in a variety languages. This can be scripted by

using Perl scripting engine.

Dynamically generated HTML:

Another form of dynamic Web page is one in which some or all of the HTML is generated by

scripts executed on the server. A common application of the technique is to construct pages

whose content is retrieved from a database. For example, Microsoft’s IIS web server

implements Active Server Pages (ASP), which incorporate scripts in Jscript or VBScript.

1.7 The universe of scripting languages:

Scripting can be traditional or modern scripting, and Web scripting forms an important part of

modern scripting. Scripting universe contains multiple overlapping worlds:

 the original UNIX world of traditional scripting using Perl and Tcl

 the Microsoft world of Visual Basic and Active controls

 the world of VBA for scripting compound documents

 the world of client-side and server-side Web scripting.

The overlap is complex, for example web scripting can be done in VBScript,

JavaScript/Jscript, Perl or Tcl. This universe has been enlarged as Perl and Tcl are used to

implement complex applications for large organizations e.g Tcl has been used to

develop a major banking system, and Perl has been used to implement an enterprise-

wide document management system for a leading aerospace company.

 1.8 Names and Values in Perl:

 1.8.1 Names:

 Like any other programming language,Perl manipulates variables which have a name

(or identifier) and a value: a value is assigned to a variable by an assignment statement of the

form

 name=value;

 Variable names resemble nouns in English, and like English, Perl distinguishes

between singular and plural nouns.A singular name is associated with a variable that holds a

single item of data (a scalar value), a plural name is associated with a variable that holds a

collection of data items (an array or hash). A notable characteristic of Perl is that variable

names start with a special character that denotes the kind of thing that the name stands for -

scalar data ($), array (@), hash (%), subroutine (&) etc. The syntax also allows a name that

consists of a single non-alphanumeric character after the initial special character, eg. $$, $?;

such names are usually reserved for the Perl system.

 If we write an assignment, eg. j=j+1, the occurance of j on the left denotes a storage

location, whilw the right-hand occurance denotes the contents of the storage location. We

sometimes refer to these as the lvalue and rvalue of the variable: more precisely we are

determining the meaning of the identifier in a left-context or a right-context. In the assignment

a[j] = a[j] + 1, both occurances of j are determined in a right-context, even though one of them

appears on the left of the assignment.

 In conventional programming languages, new variables are introduced by a

declaration, which specifies the name of the new variable and also its type, which determines

the kind of value that can be stored in the variable and, by implication, the operations that can

be carried out on that variable.

Scalar data:

Strings and numbers:

 In common with many scripting languages, Perl recognizes just two kinds of scalar

data: strings and numbers. There is no distinction between interger and real numbers as

different types.Perl is a dynamically typed language: the system keeps track of whether a

variable contains a numeric value or a string value, and the user doesn't have to worry about

thedifference between strings and numbers since conversions between the two kinds of data

are done automatically as required by the context in which they are used.

Boolean values:

 All programming languages need some way of representing truth values and Perl is no

exception. Since scalar values are either numbers or strings, some covention is needed for

representing Boolean values, and Perl adopts the simple rule that numeric zero, "0" and the

empty string (" ") mean false, and anything else means true.

Numeric constants:

 Numeric constants can be written in a variety of ways, including specific notation, octal

and hexadecimal. Although Perl tries to emulate natural human communication, the common

practice of using commas or spaces to break up a large integer constant into meaningful digit

groups cannot be used, since the comma has a syntactic significance in Perl. Instead,

underscores can be included in a number literal to improve legibility.

String constants:

 String constants can be enclosed in single or double quotes. The string is terminated by

the first next occurance of the quote which started it, so a single-quoted string can include

double quotes and vice versa. The q (quote) and qq (double quote) operators allow you to use

any character as a quoting character. Thus

q / any string/ or q (any string)

are the same as

'any string' and qq / any string / or qq (any string)

are the same as

"any string"

1.8.2 Variables and assignment:

Assignment:

 Borrowing from C, Perl uses '=' as the assignment operator. It is important to note

that an assignment statement returns a value, the value assigned. This permits statements like

 $b = 4 + ($a = 3) ;

which assigns the value 3 to $a and the value 7 to $b.If it is required to interpolate a variable

value without an intervening space the following syntax, borrowed from UNIX shell scripts , is

used:

 $a = "Java ;

 $b = "$ { a } Script" ; which gives $b the value "JavaScript".

<STDIN> - a special value:

 When the 'variable' <STDIN> appears in a context where a scalar value is

required, it evaluates to a string containing the next line from standard input, including the

terminating newline. If there is no input queued, Perl will wait until a line is typed and the

return key pressed. The empty string is treated as false in a Boolean context. If <STDIN>

appears on the right-hand side of an assignment to a scalar variable, the string containing the

input line is assigned to the variable named on the ;eft. If it appears in any other scalar context

the string is assigned to the anonymous variable: this can be accessed by the name $- : many

operations use it as a default.

 1.8.3 Scalar Expressions:

 Scalar data items are combined into expressions using operators. Perl has a lot of

operators, which are ranked in 22 precedence levels. These are carefully chosen so that the

‘obvious’ meaning is what You get , but the old advice still applies: if in doubt ,use brackets to

force the order of evaluation . In the following sections we describe the available operators in

their natural groupings-arithmetic , strings,logical etc .

 Arithmetic operators:

 Following the principles of ‘no surprises’ Perl provides the usual

 Arithmetic operators, including auto-increment and auto-decrement operators after the

manner of C: note that in

 $c= 17 ; $d= ++$c;

The sequence is increment and the assign, whereas in

 $c= 17 ; $d = $c++;

The sequence is assign then increment . As C, binary arithmetic operations can be combined

with assignment, e.g.

 $a += 3;

This adds 3 to $a, being equivalent to

 $a =$a + 3;

As in most other languages, unary minus is used to negate a numeric value; an almost never-

used unary plus operator is provided for completeness.

String Operators

 Perl provides very basic operators on strings: most string processing is one using built-in

functions expressions, as described later.

 Unlike many languages use + as a concatenation operator for strings, Perl uses a period for

this purpose: this lack of overloading means that an operator uniquely determines the context

for its operands. The other string operator is x, which is used to replicate strings, e.g.

 $a =”Hello” x 3;

Sets $a to “HelloHelloHello”.

The capability of combining an operator with assignment is extended to string operations. E.g.

 $foo .= “ “ ;

 Appends a space to $foo.

So far, things have been boringly conventional for the most part. However, we begin to get a

taste of the real flavor of perl when we see how it adds a little magic when some operators,

normally used in arithmetic context, are used in a string context.

Two examples illustrate this.

1.Auto increment :

If a variable has only ever been used in a string context, the auto increment operator can be

applied to it. If the value consists of a sequence of letters, or a sequence of letters followed by

a sequence of digits, the auto increment takes place in string mode starting with the right

most character, with ‘carry’ along the string. For example, the sequence

 $a = ‘a0’ ; $b = ‘Az9’ ;

Print ++$a, ‘ ‘, ++$b; “/n”;

 Prints a1 Ba0.

2.Unaryminus :

 This has an unusual effect on non numeric values. Unary minus applied to a string which

starts with a plus or minus character returns the same string, but starting with the opposite

sign. Unary minus applie to an identifier returns a string consists of minus prefixed to the

characters of the identifiers. Thus if we have a variable named $config with the value “ foo”,

then –config evaluates the string “-foo”. This is useful, for example, in constructing command

arguments are introduced by –

Comparison operators:

 The value of comparisons is returned as 1 if true, and an empty string (“ ”) if false, in

accordance with the convention described earlier.

 Two families of comparison operators provide, one for numbers and one for strings. The

operator used determines the context , and perl converts the operands as required to match

the operator.

This duality is necessary because a comparison between strings made up entirely numerical

digits should apply the usual rules for sorting strings ASCII as a collating sequence, and this may

not give the same result as the numerical comparison(‘5’ <’10’) returns the value true as a

numerical comparison having been converted into (5<10) where as the string comparison (‘5’ lt

‘10’) returns false, since 10 comes before 5 in the canonical sort order for ASCII strings.

The comparison operator ( for numbers, cmp for strings), performs a three way test,

returning -1 for less-than, 0 for equal an +1 for greater-than.

Note that the comparison operators are non associative, so an expression like

 $a > $b > $c

Is erroneous.

 logical operators:

 The logical operators allows to combine conditions using the usual logical operations

‘not’(!, not), ‘and’(&&,and) and ‘or’(||,or). Perl implements the ‘and’ and ‘or’ operators in

‘shortcut’mode, i.e evaluation stops as soon as the final result is certain using the rules false

&&b=false, and true||b=true.

 Before Perl 5,only the !, && and || operators were provided.The new set, not, and,or, are

provided partly to increase readability, and partly because their extra-low precedence makes it

possible to omit brackets in most circumstances-the precedence ordering is choosen so that

numerical expressions can be compared without having to enclose them in brackets, e.g.

 Print”OK\n” if $a<10 and $b<12;

 Bitwise operators:

The unary tilde(~) applied to a numerical argument performs bitwise negation on its operand,

generating the one’s compliment. If applied to a string operand it complements all the bits in

the string – effective way of inverting a lot of bits. The remaining bitwise operators - & (and), |

(or) and ^(exclusive or)- have a rather complicated definition. If either operand is a number or a

variable that has previously been used as a number, both operands are converted to integers if

need be, and the bitwise operation takes place between the integers. If the both operands are

strings, and if variables have never been used as numbers, Perl performs the bitwise operation

between corresponding bits in the two strings, padding the shorter strings with zeros as

required.

 Conditional expressions:

A conditional expression is one whose values is choosen from two alternatives at run-time

depending on the outcome of a test. The syntax is borrowed from C:

 Test ? true_exp: false_exp

The first expression is evaluated as Boolean value : if it returns true the whole expression is

replaced by true_exp,otherwise it is replaced by false_exp, e.g.

 $a= ($a<0)? 0 : $a;

 1.8.4 Control structures:

 The Control Structures for conditional execution and repetition all the control

mechanisms is similar to C.

1. BLOCKS:

 A block is a sequence i\of one or more statements enclosed in curly braces.

Eg: { $positive =1;

 $negative=-1;}

The last statement is the block terminated by the closing brace.

In, Perl they use conditions to control the evaluation of one or more blocks. Blocks can

appear almost anywhere that a statement can appear such a block called bare block.

2. CONDITIONS:

 A condition is a Perl expression which is evaluated in a Boolean context: if it

evaluates to zero or the empty string the condition is false, otherwise it is true.

 Conditions usually make use of relational operators.

Eg: $total>50

 $total>50 and $total<100

 Simple Conditions can be combined into a complex condition using the logical

operators. A condition can be negated using the ! operator.

Eg: !($total>50 and $total<100)

3. CONDITIONAL EXECUTION:

If-then-else statements

 if ($total>0){

 print “$total\n”-

 if ($total>0){

 print “$total\n”

} else {

 print “bad total!\n”-

A single statement is a block and requires braces round it. The if statement requires

that the expression forming the condition is enclosed in brackets. The construct extends

to multiple selections

Eg: if ($total>70) {

 $grade=”A”;

 } elsif ($total >50) {

 $grade=”B”;

 } elsif ($total>40) {

 $grade=”C”;

 } else {

 $grade=”F”;

 $total=0;

 }

 Alternatives to if-then-else

 To use a conditional expression in place of an if-then-else construct.

 if ($a<0)

 ($b=0)

 else ($b=1)

can be written as

 $b= ($a<0)? 0:1;

To use the ‘or’ operator between statements

Eg: open (IN, $ARGV[0] or die

 “Can’t open $ARGV*0+\n”;

Statement qualifiers

 A single statement(not a block) can be followed by a conditional modifier.

Eg: print “OK\n” if $volts>=1.5;

 print “Weak\n” if $volts>=1.2 and

 $volts<1.5;

 print “Replace\n” if $volts<1.2;

 Code using Conditional expressions,

 Eg: print (($volts>=1.5)? “Ok\n”;

 (($volts>=1.2)? “Weak\n”;

 “Replace\n”));

4. REPETITION:

 Repetition mechanisms include both

 Testing Loops

 Counting Loops

TESTING LOOPS

 While ($a! = $b)

 if ($a > $b) {

 $a=$a-$b

 } else {

 $b=$b-$a

 }

}

With the if statement, the expression that forms the condition must be enclosed in

brackets. But now, while can be replaced by until to give the same effect. Single

statement can use while and until as statement modifiers to improve readability.

Eg: $a += 2 while $a <$b;

 $a += 2 until $a > $b;

Here, although the condition is written after the statement, it is evaluated before the

statement is executed, if the condition is initially false the statement will be never

executed.

 When the condition is attached to a do loop is same as a statement modifier, so the

block is executed at least once.

 do {

 ……….

 } while $a! = $b;

Counting Loops:

 In C,

 for ($i= 1;$i<=10;$i++) {

 $i_square=$i*$i;

 $i_cube=$i**3;

 print “$i\t$i_square\t$i_cube\n”;

}

In Perl,

 foreach $i (1…10),

 $i_square=$i* $i;

 $i_cube=$i**3;

 print “$i\t$i_square\t$i_cube\n”;

}

1.9 LIST,ARRAYS AND HASHES:

1.9.1 LISTS:

 A list is a collection of scalar data items which can be treated as a whole, and has a

temporary existence on the run-time stack.

 It is a collection of variables, constants (numbers or strings) or expressions, which is to

be treated as a whole.

 It is written as a comma-separated sequence of values, eg: “red” , “green” , “blue”.

 A list often appears in a script enclosed in round brackets. For eg:

 (“red” , “green”, “blue”)

 Shorthand notation is acceptable in lists, for eg:

 (1..8)

 (“A”..”H” , “O”..”Z”)

 qw(the quick brown fox) is a shorthand for (“the” , ”quick” , ”brown” , ”fox”).

Arrays and Hashes: These are the collections of scalar data items which have an assigned

storage space in memory, and can therefore be accessed using a variable name.

Arrays:

 An array is an ordered collection of data whose comparisions are identified by an ordinal

index: It is usually the value of an array variable.

 The name of the variable always starts with an @, eg: @days_of_week.

NOTE: An array stores a collection, and List is a collection, So it is natural to assign a list

to an array.

 Eg: @rainfall = (1.2 , 0.4 , 0.3 , 0.1 , 0 , 0 , 0);

 A list can occur as an element of another list.

 Eg: @foo = (1 , 2 , 3, “string”);

 @foobar = (4 , 5 , @foo , 6);

The foobar result would be (4 , 5 , 1 , 2 , 3 , “string” , 6);

Hashes:

 An associative array is one in which each element has two components : a key and a

value, the element being ‘indexed’ by its key.

 Such arrays are usually stored in a hash table to facilitate efficient retrieval, and for this

reason Perl uses the term hash for an associative array.

 Names of hashes in Perl start with a % character: such a name establishes a list context.

 The index is a string enclosed in braces(curly brackets).

 Eg: $somehash{aaa} = 123;

 $somehash,“$a”- = 0; //The key is a the current value of $a.

 %anotherhash =%somehash;

 Working With Arrays And Lists:

Array Creation:

 Array variables are prefixed with the @sign and are populated using either paranthesis

or the qw operator.

Eg: @array = (1 , 2 ,”Heelo”);

 @array = qw/This is an array/;

 In C, C++, Java; Array is a collection of homogeneous elements, whereas; In Perl, Array is

a collection of heterogeneous elements.

Accessing Array Elements:

 When accessing an individual element, we have to use the ‘$’ symbol followed by

variable name along with the index in the square brackets.

 Eg: $bar = $foo[2];

 $foo[2] = 7;

 A group of contiguous elements is called a slice , and is accessed using a simple syntax:

 @foo[1..3] is the same as the list ($foo[1], $foo[2], $foo[3])

 A slice can be used as the destination of an assignment,

 Eg: @foo*1..3+ = (“hop” , “skip” , “jump”);

 Like a slice, a selection can appear on the left of an assignment: this leads to a useful

idiom for rearranging the elements in a list.

 Eg: To swap the first two elements of an array, we write as;

 @foo[0 , 1] = @foo[1 , 0];

Manipulating Lists:

 Perl provides several built-in functions for list manipulation. Three useful ones are:

 shift LIST : Returns the first item of LIST, and moves the remaining items down, reducing

the size of LIST by 1.

 unshift ARRAY, LIST : The opposite of shift. Puts the items in LIST at the beginning of

ARRAY, moving the original contents up by the required amount.

 push ARRAY, LIST : Similar to unshift, but adds the values in LIST to the end of ARRAY.

Iterating over Lists:

 foreach: The foreach loop performs a simple iteration over all the elements of a list.

 Eg: foreach $item (list) {

 ……………

 }

 The block is executed repeatedly with the variables $item taking each value from the list

in turn. The variable can be omitted, in which case $_ will be used.

 The natural Perl idiom for manipulating all items in an array is ;

 foreach (@array) {

 ……..#process $_

 }

Working With Hashes:

 A hash is a set of key/value pairs.

 Hash variables are preceded by a “%” sign.

 To refer to a single element of a hash, you will use the hash variable name preceded by

a ‘$’ sign and followed by the “key” associated with the value in the curly brackets.

 It is also called as associative array.

Creating Hashes:

 We can assign a list of key-value pairs to a hash, as, for example,

 %foo = (key1, value1, key2, value2, …….);

 An alternative syntax is provided using the => operator to associate key-value pairs,

thus:

 %foo = (banana => ‘yellow’ , apple => ‘red’ , grapes => ‘green’,);

Manipulating Hashes:

 Perl provides a number of built-in functions to facilitate manipulation of hashes. If we have a

hash called HASH,

 keys % HASH returns a list of the keys of the elements in the hash, and

 values % HASH returns a list of the values of the elements in the hash.

 Eg: %foo = (banana => ‘yellow’ , apple => ‘red’ , grapes => ‘green’,);

 keys % HASH returns banana, apple ,grapes

 values % HASH returns yellow, red, green.

These functions provide a convenient way to iterate over the elements of a hash using foreach:

 foreach (keys % HASH) {

 process $magic($_)

 }

Other useful operators for manipulating hashes are delete and exists.

 delete $HASH{$key} removes the element

 exists $HASH{$key} returns true.

1.10 Strings, Pattern Matching & Regular Expressions in Perl:

The most powerful features of Perl are in its vast collection of string manipulation operators

and functions. Perl would not be as popular as it is today in bioinformatics applications if it did

not contain its flexible and powerful string manipulation capabilities.

 String concatenation:

To concatenate two strings together, just use the . dot:

 $a . $b;

 $c = $a . $b;

 $a = $a . $b;

 $a .= $b;

The first expression concatenates $a and $b together, but the the result was immediately lost

unless it is saved to the third string $c as in case two. If $b is meant to be appended to the end

of $a, use the .= operator will be more convenient. As is any other assignments in Perl, if you

see an assignment written this way $a = $a op expr, where op stands for any operator and expr

stands for the rest of the statement, you can make a shorter version by moving the op to the

front of the assignment, e.g., $a op= expr.

Substring extraction

The counterpart of string concatenation is substring extraction. To extract the substring at

certain location inside a string, use the substr function:

 $second_char = substr($a, 1, 1);

 $last_char = substr($a, -1, 1);

 $last_three_char = substr($a, -3);

The first argument to the substr function is the source string, the second argument is the start

position of the substring in the source string, and the third argument is the length of the

substring to extract. The second argument can be negative, and if that being the case, the start

position will be counted from the back of the source string. Also, the third argument can be

omitted. In that case, it will run to the end of the source string.

A particularly interesting feature in Perl is that the substr function can be assigned into as well,

meaning that in addition to string extraction, it can be used as string replacement:

 substr($a, 1, 1) = 'b'; # change the second character to b

 substr($a, -1) = 'abc'; # replace the last character as abc (i.e., also add two new letters

bc)

 substr($a, 1, 0) = 'abc'; #insert abc in front of the second character

Substring search

In order to provide the second argument to substr, usually you need to locate the substring to

be extracted or replaced first. The index function does the job:

 $loc1 = index($string, "abc");

 $loc2 = index($string, "abc", $loc+1);

 print "not found" if $loc2<0;

The index function takes two arguments, the source string to search, and the substring to be

located inside the source string. It can optionally take a third argument to mean the start

position of the search. If the index function finds no substring in the source string anymore,

then it returns -1.

 Regular expression

Regular expression is a way to write a pattern which describes certain substrings. In general,

the number of possible strings that can match a pattern is large, thus you need to make use of

the regular expression to describe them instead of listing all possibilities. If the possible

substring matches are just one, then maybe the index function is more efficient.

The following are some basic syntax rules of regular expression:

 Any character except the following special ones stands for itself. Thus abc matches 'abc',

and xyz matches 'xyz'.

 The character . matches any single character. To match it only with the . character itself,

put an escape \ in front of it, so \. will match only '.', but . will match anything. To match

the escape character itself, type two of them \\ to escape itself.

 If instead of matching any character, you just want to match a subset of characters, put

all of them into brackets [], thus [abc] will match 'a', 'b', or 'c'. It is also possible to

shorten the listing if characters in a set are consecutive, so [a-z] will match all lowercase

alphabets, [0-9] will match all single digits, etc. A character set can be negated by the

special ^ character, thus [^0-9] will match anything but numbers, and [^a-f] will match

anything but 'a' through 'f'. Again, if you just want to match the special symbols

themselves, put an escape in front of them, e.g., \[, \^ and \].

 All the above so far just match single characters. The power of regular expression lies in

its ability to match multiple characters with some meta symbols. The * will match 0 or

more of the previous symbol, the + will match 1 or more of the previous symbol, and ?

will match 0 or 1 of the previous symbol. For example, a* will match 'aaaa...' for any

number of a's including none '', a+ will match 1 or more a's, and a? will match zero or

one a's. A more complicated example is to match numbers, which can be written this

way [0-9]+. To matching real numbers, you need to write [0-9]+\.?[0-9]*. Note that the

decimal point and fraction numbers can be omitted, thus we use ?, and * instead of +.

 If you want to combine two regular expressions together, just write them consecutively.

If you want to use either one of the two regular expressions, use the | meta symbol.

Thus, a|b will match a or b, which is equivalent to [ab], and a+|b+ will match any string

of a's or b's. The second case cannot be expressed using character subset because [ab]+

does not mean the same thing as a+|b+.

 Finally, regular expressions can be grouped together with parentheses to change the

order of their interpretation. For example, a(b|c)d will match 'abd' or 'acd'. Without the

parentheses, it would match 'ab' or 'cd'.

The rules above are simple, but it takes some experience to apply them successfully on the

actual substrings you wish to match. There are no better ways to learn this than simply to write

some regular expressions and see if they match the substrings you have in mind.

The following are some examples:

 [A-Z][a-z]* will match all words whose first character are capitalized

 [A-Za-z_][A-Za-z0-9_]* will match all legal perl variable names

 [+-]?[0-9]+\.?[0-9]*([eE][+-]?[0-9]+)? will match scientific numbers

 [acgtACGT]+ will match all DNA strings

 ^> will match the > symbol only at the beginning of a string

 a$ will match the a letter only at the end of a string

In the last two examples above, we introduced another two special symbols. The ^ which when

not used inside a character set to negate the character set, stands for the beginning of the

string. Thus, ^> will match '>' only when it is the first character of the string. Similarly, $ inside a

regular expression means the end of the string, so a$ will match 'a' only when it is the last

character of the string. These are so called anchor symbols.

 Another commonly used anchor is \b which stands for the boundary of a word. In addition, Perl

introduces predefined character sets for some commonly used patterns, thus \d stands for

digits and is equivalent to [0-9], \w stands for word letters or numbers, and \s stands for space

characters ' ', \t, \n, \r, etc. The captial letter version of these negates their meaning, thus \D

matches non-digit characters, \W matches non-word characters, and \S matches non-

whitespaces. The scientific number pattern above can therefore be rewritten as:

 [+-]?\d+\.?\d*([eE][+-]?\d+)?

Pattern matching:

Regular expressions are used in a few Perl statements, and their most common use is in pattern

matching. To match a regular expression pattern inside a $string, use the string operator =~

combines with the pattern matching operator / /:

 $string =~ /\w+/; # match alphanumeric words in $string

 $string =~ /\d+/; # match numbers in $string

The pattern matching operator / / does not alter the source $string. Instead, it just returns a

true or false value to determine if the pattern is found in $string:

 if ($string =~ /\d+/) {

 print "there are numbers in $string\n";

}

Sometimes not only you want to know if the pattern exists in a string, but also what it actually

matched. In that case, use the parentheses to indicate the matched substring you want to

know, and they will be assigned to the special $1, $2, ..., variables if the match is successful:

 if ($string =~ /(\d+)\s+(\d+)\s+(\d+)/) {

 print "first three matched numbers are $1, $2, $3 in $string\n";

}

Note that all three numbers above must be found for the whole pattern to match successfully,

thus $1, $2 and $3 should be defined when the if statement is true. The same memory of

matched substrings within the regular expression are \1, \2, \3, etc. So, to check if the same

number happened twice in the $string, you can do this:

 if ($string =~ /(\d).+\1/) {

 print "$1 happened at least twice in $string\n";

}

You cannot use $1 in the pattern to indicate the previously matched number because $ means

the end of the line inside the pattern. Use \1 instead.

Pattern substitution:

In addition to matching a pattern, you can replace the matched substring with a new string

using the substitution operator. In this case, just write the substitution string after the pattern

to match and replace:

 $string =~ s/\d+/0/; # replace a number with zero

 $string =~ s:/:\\:; # replace the forward slash with backward slash

Unlike the pattern matching operator, the substitution operator does change the $string if a

match is found. The second example above indicates that you do not always need to use / to

break the pattern and substitution parts apart; you can basically use any symbol right after the

s operator as the separator. In the second case above, since what we want to replace is the

forward slash symbol, using it to indicate the pattern boundary would be very cumbersome and

need a lot of escape characters:

 $string =~ s/\//\\/; # this is the same but much harder to read

For pattern matching, you can also use any separator by writing them with m operator, i.e.,

m:/: will match the forward splash symbol. Natually, the substitution string may (and often

does) contain the \1, \2 special memory substrings to mean the just matched substrings. For

example, the following will add parentheses around the matched number in the source $string:

 $string =~ s/(\d+)/(\1)/;

The parentheses in the replacement string have no special meanings, thus they were just added

to surround the matched number.

Modifiers to pattern matching and substitution:

You can add some suffix modifiers to Perl pattern matching or substitution operators to tell

them more precisely what you intend to do:

 /g tells Perl to match all existing patterns, thus the following prints all numbers in

$string

while ($string =~ /(\d+)/g) {

 print "$1\n";

}

 $string =~ s/\d+/0/g; # replace all numbers in $string with zero

 /i tells Perl to ignore cases, thus

$string =~ /abc/i; # matches AbC, abC, Abc, etc.

 /m tells perl to ignore newlines, thus

"a\na\na" =~ /a$/m will match the last a in the $string, not the a before the first newline

if /m is not given.

 Perl- Subroutines:

A Perl subroutine or function is a group of statements that together performs a task. You can

divideup your code into separate subroutines. How you divide up your code among different

subroutines is up to you, but logically the division usually is so each function performs a specific

task.

Define and Call a Subroutine

The general form of a subroutine definition in Perl programming language is as follows −

sub subroutine_nam e{

body of the subroutine

}

The typical way of calling that Perl subroutine is as follows –

subroutine_nam e(list of argum ents);

Let's have a look into the following example, which defines a simple function and then call it.

Because Perl compiles your program before executing it, it doesn't matter where you declare

your

subroutine.

#!/usr/bin/perl

Function definition

sub Hello{

print "Hello, World!\n";

}

Function call

Hello();

When above program is executed, it produces the following result −

Hello, World!

Passing Arguments to a Subroutine

You can pass various arguments to a subroutine like you do in any other programming language

and they can be acessed inside the function using the special array @_. Thus the first argument

to the function is in [0], thesecondisin_[1], and so on.

You can pass arrays and hashes as arguments like any scalar but passing more than one array or

hash normally causes them to lose their separate identities.

Passing Lists to Subroutines

Because the @_ variable is an array, it can be used to supply lists to a subroutine. However,

because of the way in which Perl accepts and parses lists and arrays, it can be difficult to extract

the individual elements from @_. If you have to pass a list along with other scalar arguments,

then

make list as the last argument as shown below −

#!/usr/bin/perl

Function definition

sub PrintList{

m y @ list = @ _;

print "Given list is @ list\n";

}

$ a = 10;

@ b = (1, 2, 3, 4);

Function call with list param eter

PrintList($ a, @ b);

When above program is executed, it produces the following result −

Given list is 10 1 2 3 4

Passing Hashes to Subroutines

When you supply a hash to a subroutine or operator that accepts a list, then hash is

automatically

translated into a list of key/value pairs. For example −

#!/usr/bin/perl

Function definition

sub PrintHash{

m y (%hash) = @ _;

foreach m y $ key (keys %hash){

m y $ value = $ hash{$ key};

print "$ key : $ value\n";

}

}

%hash = ('nam e' => 'Tom ', 'age' => 19);

Function call with hash param eter

PrintHash(%hash);

When above program is executed, it produces the following result −

nam e : Tom

age : 19

Returning Value from a Subroutine

You can return a value from subroutine like you do in any other programming language. If you

are

not returning a value from a subroutine then whatever calculation is last performed in a

subroutine is automatically also the return value.

You can return arrays and hashes from the subroutine like any scalar but returning more than

one

array or hash normally causes them to lose their separate identities. So we will use references

explainedinthenextchapter to return any array or hash from a function.

Let's try the following example, which takes a list of numbers and then returns their average −

#!/usr/bin/perl

Function definition

sub Average{

get total num ber of argum ents passed.

$ n = scalar(@ _);

$ sum = 0;

foreach $ item (@ _){

$ sum += $ item ;

}

$ average = $ sum / $ n;

return $ average;

}

Function call

$ num = Average(10, 20, 30);

print "Average for the given num bers : $ num \n";

When above program is executed, it produces the following result −

Average for the given num bers : 20

