ACADEMIC REGULATIONS
COURSE STRUCTURE AND DETAILED SYLLABUS

FOR

MINING ENGINEERING

For B.TECH. FOUR YEAR DEGREE COURSE
(Applicable for the batches admitted from 2012-2013)
REGULATION : R12

J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(Autonomous)
Yenkapally, Moinabad Mandal, P.O.Himayath Nagar, R.R.Dist, Hyderabad-500 075
Fax&Phone No.910-8413-235753, Tel:08413-235755,201301
Website:www.jbiet.edu.in ; e-mail:principal@jbiet.edu.in
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

Academic Regulations 2012 for B. Tech (Regular)

(Effective for the students admitted into I year from the Academic Year 2012-2013 onwards)

1. **Award of B.Tech. Degree**
 A student will be declared eligible for the award of the B. Tech. Degree if he fulfils the following academic regulations:
 i. **Pursued a course of study for not less than four academic years and not more than eight academic years.**
 ii. **Register for 200 credits and secure 200 credits**

2. Students, who fail to fulfill all the academic requirements for the award of the degree within eight academic years from the year of their admission, shall forfeit their seat in B.Tech course.

3. **Courses of study**
The following courses of study are offered at present for specialization for the B. Tech. Course:

<table>
<thead>
<tr>
<th>Branch Code</th>
<th>Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>02</td>
<td>Electrical and Electronics Engineering</td>
</tr>
<tr>
<td>03</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>04</td>
<td>Electronics and Communication Engineering</td>
</tr>
<tr>
<td>05</td>
<td>Computer Science and Engineering</td>
</tr>
<tr>
<td>11</td>
<td>Bio-Medical Engineering</td>
</tr>
<tr>
<td>12</td>
<td>Information Technology</td>
</tr>
<tr>
<td>25</td>
<td>Mining Engineering</td>
</tr>
</tbody>
</table>

and any other course as approved by the authorities of the JBIET from time to time.

4. **Credits**

<table>
<thead>
<tr>
<th>I Year</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Periods / Week</td>
</tr>
<tr>
<td>Theory</td>
<td>03</td>
</tr>
<tr>
<td>02</td>
<td>04</td>
</tr>
<tr>
<td>Practical</td>
<td>03</td>
</tr>
<tr>
<td>Drawing</td>
<td>02T/03D</td>
</tr>
<tr>
<td>06</td>
<td>04</td>
</tr>
<tr>
<td>Mini Project</td>
<td>--</td>
</tr>
<tr>
<td>Comprehensive Viva Voce</td>
<td>--</td>
</tr>
<tr>
<td>Seminar</td>
<td>--</td>
</tr>
<tr>
<td>Project</td>
<td>--</td>
</tr>
</tbody>
</table>
5. Distribution and Weightage of Marks

i. The performance of a student in each semester / I year shall be evaluated subject-wise with a maximum of 100 marks for theory and 75 marks for practical subject. In addition, Industry oriented mini-project, seminar and project work shall be evaluated for 50, 50 and 200 marks respectively.

ii. For theory subjects the distribution shall be 25 marks for Internal Evaluation and 75 marks for the End-Examination.

iii. For the subject having design and/or drawing, (such as Engineering Graphics, Engineering Drawing, Machine Drawing) and estimation, the distribution shall be 25 marks for internal evaluation (15 marks for day-to-day work and 10 marks for subjective paper) and 75 marks for end examination. There shall be two internal tests in a Semester.

For theory subjects, the distribution shall be 25 marks for internal evaluation (Midterm exams (20 marks) + Assignment (5 marks)) and 75 marks for end examination. There shall be altogether four assignments (Each assignment consisting of 6 questions from every two units of syllabus) set by the teacher from the whole syllabus of the subject.

The pattern of question paper shall consist of two parts namely Part-A and Part-B out of which the candidate has to answer Part-A compulsorily and from Part-B, the candidate has to answer three questions out of five questions given. The Part-A i.e. question no.1 consists of sub questions, which are based on fundamentals and concept testing nature. These questions may of the following type:

a. Short answer questions for which answer is two to three sentences
b. Multiple choice questions
c. Fill in the blanks
d. True/False type

Any sub question may carry a maximum of 1 or 2 marks. Altogether candidate has to answer 4 questions out of 6 questions but question no.1 of Part-A is compulsory. The time allocated for the mid term examination is 2 hours. There shall be 2 Mid Term Examinations (1st Mid shall be from 1-4 Units and 2nd Mid shall be from 5-8 Units)

The Internal Evaluation is for 25 marks (20 for Mid term Examination and 5 Marks for Assignment), the average of these two shall be considered as the final marks for Internal Evaluation secured by the candidate.

However, for first year, there shall be 3 mid term examinations (Each for 20 Marks) and 3 Assignments (Each for 5 Marks), [1st mid shall be from 1-2 units, 2nd mid from 3-5 units and 3rd mid shall be from 6-8 units]. There shall be altogether six assignments (Each assignment consisting of 6 questions from every unit of syllabus) set by the teacher from the whole syllabus of the subject.

The Internal Evaluation is for 25 marks (20 for Mid term Examination and 5 Marks for Assignment), the average of these three shall be considered as the final marks for Internal Evaluation secured by the candidate.
The question paper shall contain 6 questions, 1 in Part-A and 5 in Part-B. The candidate shall have to answer Part-A compulsorily and shall have to answer any three questions from remaining five questions of Part-B. The Part-A i.e. question no.1 consists of sub questions, which are based on fundamentals and concept testing nature. These questions may of the following type:

a. Short answer questions for which answer is two to three sentences
b. Multiple choice questions
c. Fill in the blanks
d. True/False type

Any sub question may carry a maximum of 1 or 2 marks. Altogether candidate has to answer 4 questions out of 6 questions.

iv. For practical subjects there shall be a continuous evaluation during the semester for 25 sessional marks and 50 end examination marks. Out of the 25 marks for internal, day-to-day work in the laboratory shall be evaluated for 15 marks and internal examination for practical shall be evaluated for 10 marks conducted by the concerned laboratory teacher. The end examination shall be conducted with external examiner and laboratory teacher. The external examiner shall be appointed by the Chief Controller of Examinations.

v. For the subject having design and / or drawing, (such as Engineering Graphics, Engineering Drawing, Machine Drawing) and estimation, the distribution shall be 25 marks for internal evaluation (15 marks for day-to-day work and 10 marks for subjective paper) and 75 marks for end examination. There shall be two internal tests in a Semester and average of the two shall be considered for the award of marks for internal tests. However in the I year class, there shall be three tests and the average of the three mid term examinations will be taken into consideration.

vi. There shall be an industry-oriented mini-Project, in collaboration with an industry of their specialization, to be taken up during the vacation after III year II Semester examination. However, the mini project and its report shall be evaluated with the project work in IV year II Semester. The industry oriented mini project shall be submitted in report form and should be presented before the committee, which shall be evaluated for 50 marks. The committee consists of an external examiner, head of the department, the supervisor of mini project and a senior faculty member of the department. There shall be no internal marks for industry oriented mini project.

vii. There shall be a seminar presentation in IV year II Semester. For the seminar, the student shall collect the information on a specialized topic and prepare a technical report, showing his understanding over the topic, and submit to the department, which shall be evaluated by the Departmental committee consisting of Head of the department, seminar supervisor and a senior faculty member. The seminar report shall be evaluated for 50 marks. There shall be no external examination for seminar.

viii. There shall be a Comprehensive Viva-Voce in IV year II semester. The Comprehensive Viva-Voce will be conducted by a Committee consisting of (i) Head of the Department (ii) two Senior Faculty members of the Department. The Comprehensive Viva-Voce is aimed to assess the students’ understanding in various subjects he / she studied during the B.Tech course of study. The Comprehensive Viva-Voce is evaluated for 100 marks by the Committee. There are no internal marks for the Comprehensive viva-voce.

ix. Out of a total of 200 marks for the project work, 50 marks shall be for Internal Evaluation and 150 marks for the End Semester Examination. The End Semester Examination (viva-voce)
shall be conducted by the same committee appointed for industry oriented mini project. In addition the project supervisor shall also be included in the committee. The topics for industry oriented mini project, seminar and project work shall be different from each other. The evaluation of project work shall be conducted at the end of the IV year. The Internal Evaluation shall be on the basis of two seminars given by each student on the topic of his project.

6. Attendance Requirements:
 i. A student shall be eligible to appear for College End examinations if he acquires a minimum of 75% of attendance in aggregate of all the subjects.
 ii. Shortage of Attendance below 65% in aggregate shall in NO case be condoned.
 iii. Condonation of shortage of attendance in aggregate up to 10% (65% and above and below 75%) in each semester or I year may be granted by the College Academic Committee.
 iv. A student will not be promoted to the next semester unless he satisfies the attendance requirement of the present semester / I year, as applicable. They may seek re-admission for that semester / I year when offered next.
 v. Students whose shortage of attendance is not condoned in any semester / I year are not eligible to take their end examination of that class and their registration shall stand cancelled.
 vi. A stipulated fee shall be payable towards condonation of shortage of attendance.

7. Minimum Academic Requirements:
The following academic requirements have to be satisfied in addition to the attendance requirements mentioned in item no.6
 i. A student shall be deemed to have satisfied the minimum academic requirements and earned the credits allotted to each theory or practical design or drawing subject or project if he secures not less than 35% of marks in the end examination and a minimum of 40% of marks in the sum total of the internal evaluation and end examination taken together.
 ii. A student shall be promoted from II to III year only if he fulfils the academic requirement of 37 credits from one regular and one supplementary examinations of I year, and one regular examination of II year I semester irrespective of whether the candidate takes the examination or not.
 iii. A student shall be promoted from third year to fourth year only if he fulfils the academic requirements of total 62 credits from the following examinations, whether the candidate takes the examinations or not.
 a. Two regular and two supplementary examinations of I year.
 b. Two regular and one supplementary examinations of II year I semester.
 c. One regular and one supplementary examinations of II year II semester.
 d. One regular examination of III year I semester.
 iv. A student shall register and put up minimum attendance in all 200 credits and earn the 200 credits. Marks obtained in all 200 credits shall be considered for the calculation of percentage of marks.
 v. Students who fail to earn 200 credits as indicated in the course structure within eight academic years from the year of their admission shall forfeit their seat in B.Tech course and their admission shall stand cancelled.

8. Course pattern:
i. The entire course of study is of four academic years. The first year shall be on yearly pattern and the second, third and fourth years on semester pattern.

ii. A student eligible to appear for the end examination in a subject, but absent at it or has failed in the end examination may appear for that subject at the supplementary examination.

iii. When a student is detained due to lack of credits / shortage of attendance he may be re-admitted when the semester / year is offered after fulfilment of academic regulations, whereas the academic regulations hold good with the regulations he was first admitted.

9. **Award of Class:**

After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of B. Tech. Degree he shall be placed in one of the following four classes:

<table>
<thead>
<tr>
<th>Class Awarded</th>
<th>% of marks to be secured</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class with Distinction</td>
<td>70% and above</td>
</tr>
<tr>
<td>First Class</td>
<td>Below 70% but not less than 60%</td>
</tr>
<tr>
<td>Second Class</td>
<td>Below 60% but not less than 50%</td>
</tr>
<tr>
<td>Pass Class</td>
<td>Below 50% but not less than 40%</td>
</tr>
</tbody>
</table>

(The marks in internal evaluation and end examination shall be shown separately in the marks memorandum)

10. **Minimum Instruction Days:**

The minimum instruction days for each semester / I year shall be 90/180 clear instruction days.

11. There shall be no branch transfers after the completion of admission process.

12. **General:**

i. Where the words “he”, “him”, “his”, occur in the regulations, they include “she”, “her”, “hers”.

ii. The academic regulation should be read as a whole for the purpose of any interpretation.

iii. In the case of any doubt or ambiguity in the interpretation of the above rules, the decision of the JBIET is final.

iv. The JBIET may change or amend the academic regulations or syllabi at any time and the changes or amendments made shall be applicable to all the students with effect from the dates notified by the JBIET.

*_*_*_*
Academic Regulations for B. Tech. (Lateral Entry Scheme)

(Effective for the students getting admitted into II year from the Academic Year 2011-2012 and onwards)

1. The Students have to acquire 150 credits from II to IV year of B.Tech. Program (Regular) for the award of the degree.

 Register for **150** credits and secure **150** credits.

2. Students, who fail to fulfil the requirement for the award of the degree in 6 consecutive academic years from the year of admission, shall forfeit their seat.

3. The same attendance regulations are to be adopted as that of B. Tech. (Regular).

4. **Promotion Rule:**

 A student shall be promoted from third year to fourth year only if he fulfils the **academic requirements of 37 credits from the examinations.**

 a. Two regular and one supplementary examinations of II year I semester.

 b. One regular and one supplementary examinations of II year II semester.

 c. One regular examination of III year I semester.

5. **Award of Class:**

 After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of B. Tech. Degree he shall be placed in one of the following four classes:

<table>
<thead>
<tr>
<th>Class</th>
<th>Mark Range</th>
<th>From the aggregate marks secured for 150 Credits. (i.e. II year to IV year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class with Distinction</td>
<td>70% and above</td>
<td></td>
</tr>
<tr>
<td>First Class</td>
<td>Below 70% but not less than 60%</td>
<td></td>
</tr>
<tr>
<td>Second Class</td>
<td>Below 60% but not less than 50%</td>
<td></td>
</tr>
<tr>
<td>Pass Class</td>
<td>Below 50% but not less than 40%</td>
<td></td>
</tr>
</tbody>
</table>

 (The marks in internal evaluation and end examination shall be shown separately in the marks memorandum)

6. All other regulations as applicable for B. Tech. Four-year degree course (Regular) will hold good for B. Tech. (Lateral Entry Scheme)
MALPRACTICES RULES

DISCIPLINARY ACTION FOR / IMPROPER CONDUCT IN EXAMINATIONS

<table>
<thead>
<tr>
<th>Nature of Malpractices/Improper conduct</th>
<th>Punishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the candidate:</td>
<td></td>
</tr>
<tr>
<td>1. (a) Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only.</td>
</tr>
<tr>
<td>(b) Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.</td>
</tr>
<tr>
<td>2. Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that Semester/year. The Hall Ticket of the candidate is to be cancelled and sent to the University.</td>
</tr>
<tr>
<td>3. Impersonates any other candidate in connection with the examination.</td>
<td>The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred and forfeits the seat. The performance of the original candidate who has been impersonated, shall be cancelled in all the subjects of the examination (including practicals and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.</td>
</tr>
<tr>
<td>4. Smuggles in the Answer book or additional sheet</td>
<td>Expulsion from the examination hall and</td>
</tr>
<tr>
<td></td>
<td>or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5.</td>
<td>Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.</td>
</tr>
<tr>
<td>6.</td>
<td>Refuses to obey the orders of the Chief Superintendent/Assistant – Superintendent / any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in-charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.</td>
</tr>
<tr>
<td>7.</td>
<td>Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.</td>
</tr>
<tr>
<td>8.</td>
<td>Possess any lethal weapon or firearm in the examination hall.</td>
</tr>
</tbody>
</table>
and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.

9.	If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.	Student of the colleges expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat. Person(s) who do not belong to the College will be handed over to police and, a police case will be registered against them.
10.	Comes in a drunken condition to the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year.
11.	Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.	Cancellation of the performance in that subject and all other subjects the candidate has appeared including practical examinations and project work of that semester/year examinations.
12.	If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the University for further action to award suitable punishment.	

Malpractices identified by squad or special invigilators

1. Punishments to the candidates as per the above guidelines.
2. Punishment for institutions : (if the squad reports that the college is also involved in encouraging malpractices)
 (i) A show cause notice shall be issued to the college.
 (ii) Impose a suitable fine on the college.
 (iii) Shifting the examination centre from the college to another college for a specific period of not less than one year.

10
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)
B.TECH. MINING ENGINEERING
I YEAR
COURSE STRUCTURE

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6751001</td>
<td>English</td>
<td>2</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>6751002</td>
<td>Mathematics-I</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>6751003</td>
<td>Engineering Mechanics</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>6751004</td>
<td>Engineering Physics</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6751005</td>
<td>Engineering Chemistry</td>
<td>2</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>6751006</td>
<td>Computer Programming & Data Structures</td>
<td>3</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>6751007</td>
<td>Engineering Drawing</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6751672</td>
<td>Computer Programming Lab.</td>
<td>-</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6751673</td>
<td>Engineering Physics& Engineering Chemistry Lab.</td>
<td>-</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6751674</td>
<td>English Language Communication Skills Lab.</td>
<td>-</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6751611</td>
<td>Engineering Workshop/IT Workshop</td>
<td>-</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>17</td>
<td>18</td>
<td>50</td>
</tr>
</tbody>
</table>

II YEAR I SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6753013</td>
<td>Environmental Studies</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6753014</td>
<td>Probability and Statistics</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6753015</td>
<td>Elements of Electrical and Electronics Engineering</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6753050</td>
<td>Mechanical Technology</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6753051</td>
<td>Fundamentals of Geology</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6753052</td>
<td>Development of Mineral Deposits</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6753636</td>
<td>Electrical and Electronics Engineering Lab.</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6753637</td>
<td>Geology Lab.</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>21</td>
<td>9</td>
<td>25</td>
</tr>
</tbody>
</table>

II YEAR II SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6754018</td>
<td>Numerical Methods</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6754016</td>
<td>Mechanics of Fluids and Hydraulic Machines</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6754054</td>
<td>Machine Drawing and Computer Aided Graphics</td>
<td>0</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6754055</td>
<td>Mechanics of Solids</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6754056</td>
<td>Mining Geology</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6754057</td>
<td>Drilling and Blasting</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6754636</td>
<td>Mechanics of Fluids and Hydraulic Machines Lab.</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6754637</td>
<td>Mechanics of Solids Lab.</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>18</td>
<td>15</td>
<td>25</td>
</tr>
</tbody>
</table>
III YEAR I SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6755015</td>
<td>Managerial Economics and Financial Analysis</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6755081</td>
<td>Mine Surveying-I</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6755082</td>
<td>Mine Environmental Engineering –I</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6755083</td>
<td>Surface Mining Technology</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>6755084</td>
<td>Underground Coal Mining Technology</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>6755085</td>
<td>Mine Mechanization-I</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6755638</td>
<td>Mine Surveying-I Lab</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6755639</td>
<td>Mine Environmental Engineering Lab</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>21</td>
<td>13</td>
<td>25</td>
</tr>
</tbody>
</table>

III YEAR II SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6756016</td>
<td>Industrial Management</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6756086</td>
<td>Mine Surveying-II</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6756087</td>
<td>Underground Metal Mining Technology</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>6756088</td>
<td>Mine Environmental Engineering –II</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6756089</td>
<td>Mine Mechanization-II</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6756090</td>
<td>Mineral Economics</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6756643</td>
<td>Mine Surveying-II Lab</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6756644</td>
<td>Advanced English Communication Skills Lab</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>19</td>
<td>13</td>
<td>25</td>
</tr>
</tbody>
</table>
IV YEAR I SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6757143</td>
<td>Mineral Processing</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6757144</td>
<td>Rock Mechanics</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6757145</td>
<td>Mine Systems Engineering</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6757146</td>
<td>Mine Legislation</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Elective-I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6757147</td>
<td>Rock Slope Engineering</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6757148</td>
<td>Mine Subsidence Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6757149</td>
<td>Rock Excavation Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6757150</td>
<td>Rock Fragmentation Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective-II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6757151</td>
<td>Computer Applications in Mining</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6757152</td>
<td>Mine Construction Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6757153</td>
<td>Tunneling Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6757154</td>
<td>Strata Control Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6757637</td>
<td>Mineral Processing Lab</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6757638</td>
<td>Rock Mechanics Lab</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>11</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

IV YEAR II SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6758108</td>
<td>Mine Ground control</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Elective-III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6758109</td>
<td>Planning of Surface Mining Project</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6758110</td>
<td>Planning of Underground Coal Mining Project</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6758111</td>
<td>Planning of Underground Metal Mining Project</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6758112</td>
<td>Mine Electrical Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective-IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6758113</td>
<td>Geological and Technological Factors Coal Gasification</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6758114</td>
<td>Mine Health & Safety Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6758115</td>
<td>Maintenance and Reliability Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6758116</td>
<td>Deep Seam Mining</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6758673</td>
<td>Industrial Training</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6758674</td>
<td>Seminar</td>
<td>0</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>6758675</td>
<td>Project Work</td>
<td>0</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>6758676</td>
<td>Comprehensive Viva</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>22</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Note: All End Examinations (Theory and Practical) are of three hours duration.

T=Tutorial L = Theory P = Practical/ Drawing C = Credits
1. INTRODUCTION:
In view of the growing importance of English as a tool for global communication and the consequent emphasis on training students to acquire communicative competence, the syllabus has been designed to develop linguistic and communicative competence of Engineering students. The prescribed books and the exercises are meant to serve broadly as students’ handbooks. In the English classes, the focus should be on the skills of reading, writing, listening and speaking and for this the teachers should use the text prescribed for detailed study. For example, the students should be encouraged to read the texts/selected paragraphs silently. The teachers can ask comprehension questions to stimulate discussion and based on the discussions students can be made to write short paragraphs/essays etc.

The text for non-detailed study is for extensive reading/reading for pleasure by the students. Hence, it is suggested that they read it on their own with topics selected for discussion in the class. The time should be utilized for working out the exercises given after each section, as also for supplementing the exercises with authentic materials of a similar kind for example, from newspaper articles, advertisements, promotional material etc. However, the stress in this syllabus is on skill development and practice of language skills.

2. OBJECTIVES:
a. To improve the language proficiency of the students in English with emphasis on LSRW skills.
b. To equip the students to study academic subjects with greater facility through the theoretical and practical components of the English syllabus.
c. To develop the study skills and communication skills in formal and informal situations.

3. SYLLABUS:
Listening Skills:
Objectives
1. To enable students to develop their listening skill so that they may appreciate its role in the LSRW skills approach to language and improve their pronunciation
2. To equip students with necessary training in listening so that they can comprehend the speech of people of different backgrounds and regions

Students should be given practice in listening to the sounds of the language to be able to recognise them, to distinguish between them to mark stress and recognise and use the right intonation in sentences.

• Listening for general content
• Listening to fill up information
• Intensive listening
• Listening for specific information

Speaking Skills:
Objectives
1. To make students aware of the role of speaking in English and its contribution to their success.
2. To enable students to express themselves fluently and appropriately in social and professional contexts.

• Oral practice
• Describing objects/situations/people
• Role play – Individual/Group activities (Using exercises from all the nine units of the prescribed text: Learning English: A Communicative Approach.)
• Just A Minute (JAM) Sessions.

Reading Skills:
Objectives
1. To develop an awareness in the students about the significance of silent reading and comprehension.
2. To develop the ability of students to guess the meanings of words from context and grasp the overall message of the text, draw inferences etc.

• Skimming the text
• Understanding the gist of an argument
• Identifying the topic sentence
• Inferring lexical and contextual meaning
• Understanding discourse features
• Recognizing coherence/sequencing of sentences

NOTE: The students will be trained in reading skills using the prescribed text for detailed study. They will be examined in reading and answering questions using ‘unseen’ passages which may be taken from the non-detailed text or other authentic texts, such as magazines/newspaper articles.

Writing Skills:
Objectives
1. To develop an awareness in the students about writing as an exact and formal skill
2. To equip them with the components of different forms of writing, beginning with the lower order ones.

• Writing sentences
• Use of appropriate vocabulary
• Paragraph writing
• Coherence and cohesiveness
• Narration / description
• Note Making
• Formal and informal letter writing
• Editing a passage

4. TEXTBOOKS PRESCRIBED:
In order to improve the proficiency of the student in the acquisition of the four skills mentioned above, the following texts and course content, divided into Eight Units, are prescribed:

For Detailed study

1. First Text book entitled “Enjoying Everyday English”, Published by Sangam Books, Hyderabad

For Non-detailed study
1. Second text book “Inspiring Speeches and Lives”, Published by Maruthi Publications, Guntur

A. STUDY MATERIAL:
UNIT-I
a. Sir C.V. Raman (Detail) A pathbreaker in the saga of Indian Science. (Detail)
b. Leading a team and Work brings Solace (from Wings of Fire)
 --University Press

UNIT-II
a. The Connoisseur (Detail)
b. Mother Theresa (Non-detail)

UNIT-III
a. Kalpana Chawla “Inspiration” (Detail)
b. Sam Pitroda (Non-detail)

UNIT-IV
a. Bubbling Well Road (Detail)
b. I have a dream-Martin Luther king(Non-detail)

UNIT-V
a. The Cuddalore Experience(Detail)
b. Amartya kumar Sen(Non-detail)

UNIT-VI
a. Youth, Awake, Arise- STOP NOT TILL
 Swami Vivekananda Institute of Human Excellence,
b. John F. Kennedy (Non-detail)

UNIT-VII
Exercises on:
Reading & Writing Skills
Reading Comprehension
Letter Writing
Essay Writing
UNIT-VIII

Exercises on Remedial Grammar;
Common errors in English
Subject-Verb agreement
Tense aspect
Vocabulary development-Synonyms, Antonyms, One word substitutes, Prefixes-Suffixes, Idioms, Phrases, Words often confused

REFERENCES:

1. Innovate with English: A Course in English for Engineering Students, edited by T Samson, Foundation Books
2. English Grammar Practice, Raj N Bakshi, Orient Longman.
3. Effective English, edited by E Suresh Kumar, A RamaKrishna Rao, P Sreehari, Published by Pearson
7. Objective English Edgar Thorpe & Showick Thorpe, Pearson Education.
9. Murphy’s English Grammar with CD, Murphy, Cambridge University Press.
10. Everyday Dialogues in English, Robert J. Dixon Prentice Hall India Pvt Ltd.,
12. Basic Vocabulary Edgar Thorpe & Showick Thorpe, Pearson Education.
16. Enrich your English. Thakur K B P Sinha, Vijay Nicole Imprints Pvt Ltd.,
UNIT-I : Sequences - Series
Basic definitions of Sequences and Series – Convergence and divergence – Ratio test – Comparison test – Integral test – Cauchy’s root test – Raabe’s test – Absolute and conditional convergence

UNIT-II : Differential equations of first order and their applications
Overview of differential equations – exact, linear and Bernoulli. Applications to Newton’s Law of cooling, Law natural growth and decay, orthogonal trajectories and geometrical applications.

UNIT-III : Higher Order Linear differential equations and their applications
Linear differential equations of second and higher order with constant coefficients, RHS term of the f(X)=e^{ax}, Cos ax, and x^n, e^{ax} V(x), x^n V(x) method of variation of parameters. Applications bending of beams, Electrical circuits, simple harmonic motion.

UNIT-IV : Laplace transform and its application to Ordinary differential equations

UNIT-V : Function of Single Variable
Rolle’s Theorem – Lagrange’s Mean Value Theorem – Cauchy’s mean value theorem – Generalized mean value theorem (all theorems without proof) Functions of several variables – Functional dependence – Jacobian – Maxima and Minima of functions of two variables with constraints and without constraints.

UNIT-VI : Application of Single variable
Radius, Centre and Circle of Curvature-Evolutes and Envelopes Curve tracing – Cartesian, polar and parametric curves.

UNIT-VII : Integration & its applications
Riemann Sums, integral Representation for lengths, Areas, Volumes and Surface areas in Cartesian and polar coordinates, multiple integrals – double and triple integrals – change of order of integration – change of variable.

UNIT-VIII : Vector Calculus

TEXT BOOKS:
1. Engineering Mathematics by B.V.Ramana
2. Engineering Mathematics-I by T.K.V. Iyanar & B.Krishna Gandhi & Others, S.Chand

REFERENCES:
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

I Year B.Tech.MIE

6751003

L T/P/D C

3 1/- 6

ENGINEERING MECHANICS

UNIT – I
Introduction to Engineering Mechanics – Basic Concepts.

UNIT – II

UNIT – III
Centroid: Centroids of simple figures (from basic principles) – Centroids of Composite Figures
Centre of Gravity: Centre of gravity of simple body (from basic principles), centre of gravity of composite bodies, pappus theorem.

UNIT – IV
Area moment of Inertia: Definition – Polar Moment of Inertia, Transfer Theorem, Moments of Inertia of Composite Figures, Products of Inertia, Transfer Formula for Product of Inertia.
Mass Moment of Inertia: Moment of Inertia of Masses, Transfer Formula for Mass Moments of Inertia, mass moment of inertia of composite bodies.

UNIT – V
Analysis of perfect frames (Analytical Method) – Types of Frames – Assumptions for forces in members of a perfect frame, Method of joints, Method of sections, Force table, Cantilever Trusses, Structures with one end hinged and the other freely supported on rollers carrying horizontal or inclined loads.

UNIT – VI
Kinematics: Rectilinear and Curvilinear motions – Velocity and Acceleration – Motion of Rigid Body – Types and their Analysis in Planar Motion.
Kinetics: Analysis as a Particle and Analysis as a Rigid Body in Translation – Central Force Motion – Equations of Plane Motion – Fixed Axis Rotation – Rolling Bodies.

UNIT – VII

UNIT – VIII
Principle of virtual work: Equilibrium of ideal systems, efficiency of simple machines, stable and unstable equilibriums

TEXT BOOKS:

REFERENCES:
UNIT-III Defects in Crystals & Principles of Quantum Mechanics
6. Defects in Crystals: Point Defects: Vacancies, Substitution, Interstitial, Frenkel and Schottky Defects, Concentration of vacancies at given temperature, concentration of Schottky & Frenkel defects, Qualitative treatment of line (Edge and Screw Dislocations) Defects, Burger’s Vector, Surface Defects and Volume Defects. (Qualitative treatment)

UNIT-IV Band Theory of Solids

UNIT-V Acoustics of Building & Acoustic Quieting and Ultrasonics

Ultrasonics:
Concept of ultrasonics wave generation, Different methods of generation of Ultrasonic’s (Piezostriction and Magnetostricition), concept of NDT & Applications.

UNIT-VI Dielectric and Magnetic Properties
UNIT-VII Lasers and Fiber Optics

UNIT-VIII Nanotechnology

TEXT BOOKS:
7. Engineering Physics – Adeel Ahmad & B S Bellubbi (Florence Publication , Hyd)

REFERENCES:
1.Solid state physics -- M.Arumugam
2.Applied physics – Mani naidu
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

1 Year B.Tech.MIE
6751005

ENGINEERING CHEMISTRY

UNIT I:

UNIT II:

UNIT III:

UNIT IV:

UNIT V:

UNIT VI:

UNIT VII:
Phase rule: Definitions: phase, component, degree of freedom, phase rule equitation. Phase diagrams - one component system: water system. Two component system lead- silver system, heat treatment based on iron-carbon phase diagram, hardening, annealing.

UNIT VIII:

TEXT BOOKS:

REFERENCE BOOKS:
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

I Year B.Tech.MIE 6751006

COMPUTER PROGRAMMING AND DATA STRUCTURES

UNIT - I

UNIT - II
Introduction to C Language – Background, Simple C Programme, Identifiers, Basic data types, Variables, Constants, Input / Output, Operators. Expressions, Precedence and Associativity, Expression Evaluation, Type conversions, Bit wise operators, Statements, Simple C Programming examples. Selection Statements – if and switch statements, Repetition statements – while, for, do-while statements, Loop examples, other statements related to looping – break, continue, goto, Simple C Programming examples.

UNIT - III
Designing Structured Programmes, Functions, basics, user defined functions, inter function communication, Standard functions, Scope, Storage classes-auto, register, static, extern, scope rules, type qualifiers, recursion- recursive functions, Preprocessor commands, example C programmes
Arrays – Concepts, using arrays in C, inter function communication, array applications, two – dimensional arrays, multidimensional arrays, C programme examples.

UNIT - IV
Pointers – Introduction (Basic Concepts), Pointers for inter function communication, pointers to pointers, compatibility, memory allocation functions, array of pointers, programming applications, pointers to void, pointers to functions, command –line arguments. Strings – Concepts, C Strings, String Input / Output functions, arrays of strings, string manipulation functions, string / data conversion, C programme examples.

UNIT - V
Derived types – Structures – Declaration, definition and initialization of structures, accessing structures, nested structures, arrays of structures, structures and functions, pointers to structures, self referential structures, unions, typedef, bit fields, enumerated types, C programming examples.

UNIT - VI
Input and Output – Concept of a file, streams, standard input / output functions, formatted input / output functions, text files and binary files, file input / output operations, file status functions (error handling), C programme examples.

UNIT – VII
Searching and Sorting – Sorting- selection sort, bubble sort, insertion sort, quick sort, merge sort, Searching-linear and binary search methods.

UNIT - VIII
Data Structures – Introduction to Data Structures, abstract data types, Linear list – singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks-Operations, array and linked representations of stacks, stack application-infix to postfix conversion, postfix expression evaluation, recursion implementation, Queues-operations, array and linked representations.

TEXT BOOKS :

REFERENCES:
2. The C Programming Language, B.W. Kernighan and Dennis M.Ritchie, PHI/Pearson Education
7. C Programming & Data Structures, E. Balagurusamy, TMH.
8. C Programming & Data Structures, P. Dey, M Ghosh R Thereja, Oxford University Press
UNIT – I
a) Conic Sections including the Rectangular Hyperbola – General method only.
b) Cycloid, Epicycloid and Hypocycloid
c) Involute.
d) Scales: Different types of Scales, Plain scales comparative scales, scales of chords.

UNIT – II
DRAWING OF PROJECTIONS OR VIEWS ORTHOGRAPHIC PROJECTION IN FIRST ANGLE
PROJECTION: Principles of Orthographic Projections – Conventions – First and Third Angle, Projections of Points and Lines inclined to both planes, True lengths, traces.

UNIT – III
PROJECTIONS OF PLANES & SOLIDS: Projections of regular Planes, auxiliary planes and Auxiliary projection inclined to both planes. Projections of Regular Solids inclined to both planes – Auxiliary Views.

UNIT – IV
SECTIONS AND SECTIONAL VIEWS: Right Regular Solids – Prism, Cylinder, Pyramid, Cone – Auxiliary views.

UNIT – V
DEVELOPMENT AND INTERPENETRATION OF SOLIDS: Development of Surfaces of Right, Regular Solids – Prisms, Cylinder, Pyramid, Cone and their parts. Interpenetration of Right Regular Solids

UNIT - VI
INTERSECTION OF SOLIDS: Intersection of Cylinder Vs Cylinder, Cylinder Vs Prism, Cylinder Vs Cone.

UNIT – VII

UNIT – VIII
TRANSFORMATION OF PROJECTIONS: Conversion of Isometric Views to Orthographic Views – Conventions, Introduction to perspective projections (Practice not required)

TEXT BOOK:
1. Engineering Drawing, N.D. Bhat / Charotar
3. Engineering Drawing – Basant Agrawal, TMH

REFERENCES:
COMPUTER PROGRAMMING LAB

Objectives:
- To make the student learn a programming language.
- To teach the student to write programs in C to solve the problems.
- To introduce the student to simple linear data structures such as lists, stacks, queues.

Recommended Systems/Software Requirements:
- Intel based desktop PC
- ANSI C Compiler with Supporting Editors

Week 1.
a) Write a C program to find the sum of individual digits of a positive integer.
b) A Fibonacci Sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence.
c) Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user.

Week 2.
a) Write a C program to calculate the following Sum:
 \[\text{Sum} = 1 \cdot x^1/2! + x^3/4! - x^5/6! + x^7/8! - x^9/10! \]
b) Write a C program to find the roots of a quadratic equation.

Week 3
a) Write C programs that use both recursive and non-recursive functions
 i) To find the factorial of a given integer.
 ii) To find the GCD (greatest common divisor) of two given integers.
 iii) To solve the Towers of Hanoi problem.

Week 4
a) The total distance travelled by vehicle in 't' seconds is given by distance = ut + 1/2at^2 where 'u' and 'a' are the initial velocity (m/sec.) and acceleration (m/sec^2). Write C program to find the distance travelled at regular intervals of time given the values of 'u' and 'a'. The program should provide the flexibility to the user to select his own time intervals and repeat the calculations for different values of 'u' and 'a'.
b) Write a C program which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +, -, *, /, % and use Switch Statement)

Week 5
a) Write a C program to find both the largest and smallest number in a list of integers.
b) Write a C program that uses functions to perform the following:
 i) Addition of Two Matrices
 ii) Multiplication of Two Matrices

Week 6
a) Write a C program that uses functions to perform the following operations:
 i) To insert a sub-string in to a given main string from a given position.
 ii) To delete n characters from a given position in a given string.
b) Write a C program to determine if the given string is a palindrome or not

Week 7
a) Write a C program that displays the position or index in the string S where the string T begins, or -1 if S doesn’t contain T.
b) Write a C program to count the lines, words and characters in a given text.

Week 8
a) Write a C program to generate Pascal's triangle.
b) Write a C program to construct a pyramid of numbers.
Week 9
Write a C program to read in two numbers, x and n, and then compute the sum of this geometric progression:
\[1+x+x^2+\ldots+\ldots+x^n\]
For example: if n is 3 and x is 5, then the program computes 1+5+25+125.
Print x, n, the sum
Perform error checking. For example, the formula does not make sense for negative exponents – if n is less than 0. Have your program print an error message if n<0, then go back and read in the next pair of numbers of without computing the sum. Are any values of x also illegal? If so, test for them too.

Week 10
a) 2’s complement of a number is obtained by scanning it from right to left and complementing all the bits after the first appearance of a 1. Thus 2’s complement of 11100 is 00100. Write a C program to find the 2’s complement of a binary number.
b) Write a C program to convert a Roman numeral to its decimal equivalent.

Week 11
Write a C program that uses functions to perform the following operations:
- i) Reading a complex number
- ii) Writing a complex number
- iii) Addition of two complex numbers
- iv) Multiplication of two complex numbers
(Note: represent complex number using a structure.)

Week 12
a) Write a C program which copies one file to another.
b) Write a C program to reverse the first n characters in a file.
(Note: The file name and n are specified on the command line.)

Week 13
a) Write a C programme to display the contents of a file.
b) Write a C programme to merge two files into a third file (i.e., the contents of the first file followed by those of the second are put in the third file)

Week 14
Write a C program that uses functions to perform the following operations on singly linked list:
- i) Creation
- ii) Insertion
- iii) Deletion
- iv) Traversal

Week 15
Write C programs that implement stack (its operations) using
- i) Arrays
- ii) Pointers

Week 16
Write C programs that implement Queue (its operations) using
- i) Arrays
- ii) Pointers

Week 17
Write a C program that uses Stack operations to perform the following:
- i) Converting infix expression into postfix expression
- ii) Evaluating the postfix expression

Week 18
Write a C program that implements the following sorting methods to sort a given list of integers in ascending order
- i) Bubble sort
- ii) Selection sort

Week 19
Write C programs that use both recursive and non recursive functions to perform the following searching operations for a Key value in a given list of integers:
- i) Linear search
- ii) Binary search

Week 20
Write C program that implements the following sorting method to sort a given list of integers in ascending order:
- i) Quick sort

Week 21
Write C program that implement the following sorting method to sort a given list of integers in ascending order:
- i) Merge sort
Week 22
Write C programs to implement the Lagrange interpolation and Newton-Gregory forward interpolation.

Week 23
Write C programs to implement the linear regression and polynomial regression algorithms.

Week 24
Write C programs to implement Trapezoidal and Simpson methods.

Text Books
4. Practical C Programming, Steve Oualline, O’Reilly, SPD. TMH publications.
1. Dispersive power of the material of a prism – Spectrometer
5. Time constant of an R-C circuit.
6. L-C-R circuit.
7. Magnetic field along the axis of current carrying coil – Stewart and Gees method.
8. Study the characteristics of LED and LASER sources.
9. Study the characteristics of p-i-n and avalanche photodiode detectors.
11. Evaluation of numerical aperture of given fibre.
12. Energy gap of a material of p-n junction.
13. Thermo electric effect – Seebeck effect and Peltier effect.
14. Torsional pendulum.

Titrarnetry:
 a. Estimation of hardness of water by EDTA method. (or) Estimation of calcium in limestone by Permanganometry.

Mineral Analysis:
 2 Determination of percentage of copper in brass
 3 Estimation of manganese dioxide in pyrolusite.

Instrumental Methods:
 (Or) Estimation of Copper by Colorimetric method.
 5. Conductometry:
 Conductometric titration of strong acid Vs strong base.
 (or) Conductometric titration of mixture of acids Vs strong base.
 6. Potentiometry:
 Titrination of strong acid Vs strong base by potentiometry.
 (or) Titrination of weak acid Vs strong base by potentiometry.

Physical Properties:
 7. Determination of viscosity of sample oil by redwood/oswald’s viscometer
 8. Determination Surface Tension of lubricants.

Identification and Preparations:
 9. Identification of functional groups present in organic compounds.
 10. Preparation of organic compounds
 Aspirin (or) Benzimidazole

Kinetics:
 11. To determine the rate constant of hydrolysis of methyl acetate catalysed by an acid and also the energy of activation. (or) To study the kinetics of reaction between $K_2S_2O_8$ and KI.
 12. Demonstration Experiments (Any One of the following):
 a. Determination of dissociation constant of weak acid-by PH metry
 b. Preparation of Thiokol rubber
 c. Adsorption on Charcoal
 d. Heat of reaction

TEXT BOOKS:
2. Inorganic quantitative analysis, Vogel.

REFERENCE BOOKS:
1. Text Book of engineering chemistry by R. N. Goyal and Harmendra Goel.
J.B. INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

I Year B.Tech. MIE
6751674

ENGLISH LANGUAGE COMMUNICATION SKILLS LAB

The Language Lab focuses on the production and practice of sounds of language and familiarises the students with the use of English in everyday situations and contexts.

Objectives:
1. To expose the students to a variety of self-instructional, learner-friendly modes of language learning.
2. To help the students cultivate the habit of reading passages from the computer monitor, thus providing them with the required facility to face computer-based competitive exams such GRE, TOEFL, GMAT etc.
3. To enable them to learn better pronunciation through stress on word accent, intonation, and rhythm.
4. To train them to use language effectively to face interviews, group discussions, public speaking.
5. To initiate them into greater use of the computer in resume preparation, report writing, format-making etc.

SYLLABUS:
The following course content is prescribed for the English Language Laboratory sessions:
1. Introduction to the Sounds of English - Vowels, Diphthongs & Consonants.
2. Introduction to Stress and Intonation.
3. Situational Dialogues / Role Play.
5. ‘Just A Minute’ Sessions (JAM).
6. Describing Objects / Situations / People.
7. Information Transfer
8. Debate
10. Giving Directions.

Minimum Requirement:
The English Language Lab shall have two parts:

i) The Computer aided Language Lab for 60 students with 60 systems, one master console, LAN facility and English language software for self-study by learners.

ii) The Communication Skills Lab with movable chairs and audio-visual aids with a P.A System, a T.V., a digital stereo – audio & video system and camcorder etc.

System Requirement (Hardware component):
Computer network with Lan with minimum 60 multimedia systems with the following specifications:
 i) P – IV Processor
 a) Speed – 2.8 GHZ
 b) RAM – 512 MB Minimum
 c) Hard Disk – 80 GB
 ii) Headphones of High quality

Suggested Software:
• Cambridge Advanced Learners’ English Dictionary with CD.
• The Rosetta Stone English Library.
• Clarity Pronunciation Power – Part I.
• Mastering English in Vocabulary, Grammar, Spellings, Composition
• Dorling Kindersley series of Grammar, Punctuation, Composition etc.
• Language in Use, Foundation Books Pvt Ltd with CD.
• Oxford Advanced Learner’s Compass, 7th Edition.
• Learning to Speak English - 4 CDs.
• Vocabulary in Use, Michael McCarthy, Felicity O’Den, Cambridge.
• Murphy’s English Grammar, Cambridge with CD.
• English in Mind, Herbert Puchta and Jeff Stranks with Meredith Levy, Cambridge

Books Suggested for English Language Lab Library (to be located within the lab in addition to the CDs of the text book which are loaded on the systems):
1. A Handbook for English Language Laboratories – Prof. E. Suresh Kumar, P. Sreehari, Foundation Books.
3. English Conversation Practice by Grant Taylor, Tata McGraw Hill.
5. Communicate or Collapse: A Handbook of Effective Public Speaking, Group Discussions and Interviews. by Pushpa Lata & Kumar, Prentice-Hall of India.
7. **Spoken English** by R. K. Bansal & J. B. Harrison, Orient Longman.
8. **English Language Communication: A Reader cum Lab Manual** Dr A Ramakrishna Rao, Dr. G. Natanam & Prof. S. A. Sankaranarayanan, Anuradha Publications, Chennai.
12. **Spoken English: A foundation Course, Parts 1 & 2**, Kamalesh Sadanand and Susheela punitha, Orient Longman

DISTRIBUTION AND WEIGHTAGE OF MARKS

English Language Laboratory Practical Paper:
1. The practical examinations for the English Language Laboratory shall be conducted as per the University norms prescribed for the core engineering practical sessions.
2. For the Language lab sessions, there shall be a continuous evaluation during the year for 25 sessional marks and 50 year-end Examination marks. Of the 25 marks, 15 marks shall be awarded for day-to-day work and 10 marks to be awarded by conducting Internal Lab Test(s). The year-end Examination shall be conducted by an external examiner/ or the teacher concerned with the help of another member of the staff of the same department of the same institution.
1. TRADES FOR EXERCISES:

At least two exercises from each trade:
1. Carpentry
2. Fitting
3. Tin-Smithy and Development of jobs carried out and soldering.
4. Black Smithy
5. House-wiring
6. Foundry
7. Welding
8. Power tools in construction, wood working, electrical engineering and mechanical Engineering.
9. IT Workshop-I: Computer hardware, identification of parts, Disassembly, Assembly of computer to working condition, Simple diagnostic exercises.
10. IT Workshop-II: Installation of Operating system windows and Linux, simple diagnostic exercises.

2. TRADES FOR DEMONSTRATION & EXPOSURE:

1. Plumbing
2. Machine Shop
3. Metal Cutting (Water Plasma)

TEXT BOOK:
2. Workshop Manual by Venkat Reddy
ENVIRONMENTAL STUDIES

UNIT-I: ECOSYSTEMS: Concept of ecosystem, Classification of ecosystem, Functions of ecosystem, Food chains, Food webs and ecological pyramids, Flow of energy, Biogeochemical cycles, Biomagnification, carrying capacity.

UNIT-II: NATURAL RESOURCES: Classification of Resources: Living and Non-Living resources, Renewable and Non-Renewable resources. Water resources: use and over utilization, Land resources, land degradation, Forest resources, Mineral resources uses. Energy resources: growing energy needs, use of alternate energy sources-case studies. Environmental effects due to exploitation of various resources.

UNIT-III: BIODIVERSITY AND BIOTIC RESOURCES: Species, ecosystem diversity, Hotspots, Value of biodiversity, Threats to biodiversity, Conservation of biodiversity: In-Situ and Ex-Situ conservation, Biological disasters, pandemic and epidemics, Biological warfare.

UNIT-IV: ENVIRONMENTAL POLLUTION AND CONTROL: Classification of pollutants and pollutants, causes, effects of water, air, noise pollution. Introduction to control technologies: Water (primary, secondary, tertiary), Air(particulate and gaseous emissions), Soil(conservation and remediation), Noise(controlling devices) Solid waste : types, collection and disposal methods, characteristics of e-waste and its management.

Text Book:

1. TEXT BOOK OF ENVIRONMENTAL Science and Technology by M.Anji Reddy 2007
2. Principles of Environmental Science and Engineering by P.Venugopal Rao
3. Introduction to Environmental Studies by K.Mukkanti

References

1. Tata McgrawHill : Introduction to Environmental Studies by Benny Joseph
2. Environmental studies by Erach Bharucha 2005, University Grants Commission, University Press
II Year B.Tech. Mining Engg. I-Sem
6753014 L T/P/D C
PROBABILITY AND STATISTICS

UNIT-I : Probability:

UNIT-II: Distributions
Binomial , Poisson & normal distributions related properties . Sampling distributions –Sampling distribution of means (σ known and Unknown)

UNIT-III: Testing of Hypothesis I
Tests of hypothesis point estimations – interval estimations Bayesian estimation. Large samples, Null hypothesis – Alternate hypothesis type I, & type II errors – critical region confidential interval for mean testing of single variance. Difference between the mean.

UNIT-IV : Testing of Hypothesis II
Confidential interval for the proportions. Tests of hypothesis for the proportions single and difference between the proportions.

UNIT-V: Small samples

UNIT-VI: Correlation & Regression
Coefficient of correlation – Regression Coefficient – The lines of regression – The rank correlation

UNIT-VII: Queuing Theory
Arrival Theorem - Pure Birth process and Death Process M/M/1 Model . MATLAB/R Introduction.

UNIT-VIII: Stochastic processes

TEXT BOOKS:
3. Introduction to MATLAB by RudraGupta

REFERENCES:
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

II Year B.Tech. Mining Engg. I-Sem

L T/P/D C
6753015 4 1/- 4

ELEMENTS OF ELECTRICAL AND ELECTRONICS ENGINEERING

UNIT - I
ELECTRICAL CIRCUITS: Basic definitions, Types of elements, Ohm’s Law, Resistive networks, Kirchhoff’s Laws, Inductive networks, capacitive networks, Series, Parallel circuits and Star-delta and delta-star transformations.

UNIT - II

UNIT - III
TRANSFORMERS: Principle of operation of single phase transformers – emf equation – losses – efficiency and regulation

UNIT - IV

UNIT - V
INSTRUMENTS: Basic Principle of indicating instruments – permanent magnet moving coil and moving iron instruments.

UNIT - VI
DIODE AND IT’S CHARACTERISTICS: P-n junction diode, symbol, V-I Characteristics, Diode Applications, Rectifiers – Half wave, Full wave and Bridge rectifiers (simple Problems)

UNIT - VII
TRANSISTORS: PNP and NPN Junction transistor, Transistor as an amplifier, SCR characteristics and applications

UNIT - VIII

TEXT BOOKS:
2. Essentials of Electrical and Computer Engineering by David V. Kerns, JR. J. David Irwin/Pearson.
2. Principles of Electrical and Electronics Engineering by V.K.Mehta, S.Chand & Co.

REFERENCE BOOKS:
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

II Year B.Tech. Mining Engg. I-Sem
6753050
L T/P/D C
4 -/- 4
MECHANICAL TECHNOLOGY

Unit-I
CAMS : Definitions of cam and followers – their uses – Types of followers and cams – Terminology – Types of follower motion - Uniform velocity – Simple harmonic motion and uniform acceleration. Maximum velocity and maximum acceleration during outward and return strokes in the above 3 cases.
Analysis of motion of followers : Roller follower – circular cam with straight, concave and convex flanks.

Unit-II
Belt, Rope and Chain Drives : Introduction, Belt and rope drives, selection of belt drive- types of belt drives, V-belts, materials used for belt and rope drives, velocity ratio of belt drives, slip of belt, creep of belt, tensions for flat belt drive, angle of contact, centrifugal tension, maximum tension of belt, Chains- length, angular speed ratio, classification of chains.

Unit-III
Toothed gears : types – law of gearing, condition for constant velocity ratio for transmission of motion, Form of teeth: cycloidal and involute profiles. Velocity of sliding – phenomena of interferences – Methods of interference. Condition for minimum number of teeth to avoid interference, expressions for arc of contact and path of contact – Introduction to Helical, Bevel and worm gearing.

Unit-IV

Unit-V
IC Engines: IC Engine components and basic engine nomenclature, classification of IC Engines, otto cycle, diesel cycle, two stroke and four stoke cycle spark ignition and compression ignition engines.

Unit-VI
Application of IC Engines study of fuel supply systems in SI and CI Engines, study of fuel ignition, cooling and lubrication systems. Simple calculations of indicated power, brake power, mechanical efficiency, thermal efficiency and fuel consumption. Coal diesel, coal water, slurries as alternate fuels. Simple maintenance techniques.

Unit-VII
Compressed air generation and applications. Types of air compressors, reciprocating and rotary compressors like roots blower, vane type, centrifugal, axial flow, screw type, two stage air compressor with inter cooling, simple problems.

Unit-VIII
Distribution of compressed air, application of compressed air, in Mining machinery, maintenance of compressed air, distribution systems.

TEXT BOOKS:
1. Turbomachines – Prof. Yahya.
2. Mining Technology (Vol- I & II) – Prof. D.J. Deshmukh

REFERENCE BOOKS:
1. IC Engines by V. Ganeshan
2. Theory Machines by Rattan.
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

II Year B.Tech. Mining M Engg. I-Sem
6753051

FUNDAMENTALS OF GEOLOGY

Unit-I
General Geology: origin, age, internal structure and composition of Earth.
Landforms: Origin or mode of development, characteristic features and engineering considerations of landforms developed by Rivers, Wind, Glaciers, Oceans and Volcanoes.

Unit-II
Mineralogy: Physical properties, chemical composition and mode of occurrence of important rock-forming and ore-forming minerals.

Unit-III
Petrology: Distinguish characteristic features, mode of formation and mode of occurrence of important igneous, sedimentary and metamorphic rocks.

Unit-IV
Classification of igneous sedimentary and metamorphic rocks on the basis of Texture structure and composition.

Unit-V
Structural Geology: Strike and Dip, Fundamental types, characteristic features and mechanics of folds, faults, joints (fractures) and unconformities. Foliation and Lineation.

Unit-VI

Unit-VII
Groundwater: Hydrological cycle, vertical distribution of groundwater. Types of aquifers, geological formations as aquifers, springs, engineering considerations of groundwater and groundwater exploration.

Unit-VIII
Geology and Mineral Resources of Andhra Pradesh.

REFERENCE BOOKS:
4. Geology of India by M.S.Krishnan,
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

II Year B.Tech. Mining Engg. I-Sem

6753052

L T/P/D C
4 -/-/ 4

DEVELOPMENT OF MINERAL DEPOSITS

UNIT-I
Distribution of mineral deposits in India and other countries, mining contributions to civilization, mining terminology, stages in the life of the mine, introduction to underground and surface mining methods.

UNIT-II
Introduction to drilling and drilling equipment. Fundamentals of Explosive and blasting techniques.

UNIT-III
Objectives and limitations of mine supports, materials used for supports. Friction and hydraulic props, Roof bolts, chock supports

UNIT-IV
Roadway support, face supports, side supports, junction supports, supports in special conditions, setting and withdrawal of supports, systematic supporting

UNIT-V
Modes of entry into deposits for underground mining- shafts, inclines, adits etc – their fields of applications.

UNIT-VI
Drivage of drifts, organization and cycle of operations, modern methods of drifting and tunneling, roadheaders, tunnel boring.

UNIT-VII
Location of shaft, shape and size, incline and vertical shafts. Surface arrangements for sinking shafts, tools and equipments, ordinary methods of sinking, drilling, blasting, removal of debris and water, ventilation and lighting, temporary and permanent lining.

UNIT-VIII

TEXT BOOKS
1. Introductory mining engineering- wiley India (P) Ltd, Howard L.Hartman, Jan M.Mutmansky
2. Elements of mining technology Vol-I - D.J. Deshmukh

REFERENCE BOOKS:
1. Roy Pijush Pal, Blasting in ground excavations and mines, Oxford and IBH, 1st ed 1993
2. C.P. Chugh, Drilling technology handbook, Oxford and IBH, 1st ed, 1977
ELECTRICAL AND ELECTRONICS ENGINEERING LAB

Section A: Electrical Engineering:

The following experiments are required to be conducted as compulsory experiments:

2. OC and SC tests on single phase transformer (Predetermination of efficiency and regulation at given power factors)
3. Brake test on 3-phase Induction motor (Determination of performance characteristics)
4. Regulation of alternator by Synchronous impedance method.
 In addition to the above four experiments, any one of the experiments from the following list is required to be conducted:
5. Speed control of D.C. Shunt motor by
 a) Armature Voltage control b) Field flux control method
6. Brake test on D.C Shunt Motor

Section B: Electronics Engineering:

1. Transistor CE Characteristics (Input and Output)
2. Full wave Rectifier with and without filters.
3. CE Amplifiers.
4. RC Phase Shift Oscillator
5. Class A Power Amplifier
6. Micro Processor
II Year B.Tech. Mining Engg. I-Sem

GEOLOGY LAB

List of Experiments:

1. Identification and physical properties of impartment rock-forming and ore-forming minerals.
2. Identification and distinguish characteristics of important igneous, sedimentary and metamorphic rocks.
3. Determination of strike and dip of planar features by clinometer compass.
4. Study of models pertaining to folds, faults and unconformities.
5. Study and interpretation of Topographic Maps.
7. Study of Geomorphologic Map of India and Tectonic Map of India.
9. Vertical Electrical sounding Survey to determine depth to water table & bed rock.
10. Determination of unconfined compressive strength of important rocks.
UNIT-I: Roots of Non linear equations

UNIT-II: Solution of linear equations:

UNIT-III: Interpolation:

UNIT-IV: Least squares method:
Linear, Non linear and curvilinear curve fitting – Multiple linear regression

UNIT – V: Numerical differentiation and integration
Numerical differentiation and integration Trapezoidal rule, simpson’s 1/3 rule and 3/8th rule.

UNIT – VI : Numerical solution of Initial Value Problems in Ordinary Differential Equations

UNIT-VII: Boundary values & Eigen value problems
Shooting method, Finite difference method and solving eigen values problems, power method.

UNIT-VIII: Solution of partial differential equations

TEXT BOOKS:
2. An Introduction to Numerical Analysis by S.S Sastry – PHI Learning

REFERENCES:
1. Numerical Methods by S. Armugam & Others Scitech.
2. Introduction to Numerical Analysis by K.E. Aitkinson, Wiley Publications.
3. Numerical Analysis by Scarborough, Oxford IVH.
UNIT I
Fluid statics: Dimensions and units: physical properties of fluids- specific gravity, viscosity, surface tension- vapour pressure and their influence on fluid motion- atmospheric, gauge and vacuum pressures – measurement of pressure- Piezometer, U-tube and differential manometers.

UNIT II
Fluid kinematics: Stream line, path line and streak lines and stream tube, classification of flows- steady & unsteady, uniform & non uniform, laminar & turbulent, rotational & irrotational flows-equation of continuity for one dimensional flow and three dimensional flows.
Fluid dynamics: Surface and body forces –Euler’s and Bernoulli’s equations for flow along a stream line, momentum equation and its application on force on pipe bend.

UNIT III
Closed conduit flow: Reynold’s experiment- Darcy Weisbach equation- Minor losses in pipes- pipes in series and pipes in parallel- total energy line-hydraulic gradient line. Measurement of flow: pitot tube, venturimeter, and orifice meter, Flow nozzle

UNIT IV
BOUNDARY LAYER CONCEPTS: Definition, thicknesses, characteristics along thin plate, laminar and turbulent boundary layers (No derivation) boundary layer in transition, separation of boundary layer, submerged objects – drag and lift.

UNIT V
Basics of turbo machinery: Hydrodynamic force of jets on stationary and moving flat, inclined, and curved vanes, jet striking centrally and at tip, velocity diagrams, work done and efficiency, flow over radial vanes.

UNIT VI
Hydraulic Turbines: Classification of turbines, Heads and efficiencies, impulse and reaction turbines, Pelton wheel, Francis turbine and Kaplan turbine-working proportions, work done, efficiencies , hydraulic design –draft tube theory- functions and efficiency.

UNIT VII
Performance of hydraulic turbines: Geometric similarity, Unit and specific quantities, characteristic curves, governing of turbines, selection of type of turbine, cavitation, surge tank, water hammer.

UNIT VIII
Centrifugal pumps: Classification, working, work done – barometric head- losses and efficiencies specific speed- performance characteristic curves, NPSH.
Reciprocating pumps: Working, Discharge, slip, indicator diagrams.

TEXT BOOKS:
1. Hydraulics, fluid mechanics and Hydraulic machinery MODI and SETH.
2. Fluid Mechanics and Hydraulic Machines by Rajput.

REFERENCE BOOKS:
2. Fluid Mechanics and Machinery by D. Rama Durgaiah, New Age International.
MACHINE DRAWING AND COMPUTER AIDED GRAPHICS

Machine Drawing Conventions:
Need for drawing conventions – introduction to IS conventions
Conventional representation of materials, common machine elements and parts such as screws, nuts, bolts, keys, gears, webs, ribs.

I. Drawing of Machine Elements and simple parts
Selection of Views, additional views for the following machine elements and parts with every drawing proportions.
 a) Popular forms of Screw threads, bolts, nuts, stud bolts, tap bolts, set screws.
 b) Keys, cottered joints and knuckle joint.
 c) Rivetted joints for plates
 d) Shaft coupling, spigot and socket pipe joint.
 e) Journal, pivot and collar and foot step bearings.

II. Assembly Drawings:
Drawings of assembled views for the part drawings of the following using conventions and easy drawing proportions.
 a) Engine parts – stuffing boxes, cross heads, Eccentrics, Petrol Engine connecting rod, piston assembly.
 b) Other machine parts - Screws jacks, Machine Vices Plummer block, Tailstock.
 c) Valves : Steam stop valve, spring loaded safety valve, feed check valve and air cock.

III Introduction to Computer Aided Graphics:
Fundamentals of 2D construction- line, circular, polyline, spline, polygon, simple problems, conversion of simple pictorial views into orthographic views.

NOTE : 1). First angle projection to be adopted. The student should be able to provide working drawings of actual parts.
 2). Unit III is only for class work practice, not to be included in the final examination.

TEXT BOOKS :

REFERENCE BOOKS :
MECHANICS OF SOLIDS

UNIT – I

UNIT – II
SHEAR FORCE AND BENDING MOMENT: Definition of beam – Types of beams – Concept of shear force and bending moment – S.F and B.M diagrams for cantilever, simply supported and overhanging beams subjected to point loads, u.d.l., uniformly varying loads and combination of these loads – Point of contra flexure – Relation between S.F., B.M and rate of loading at a section of a beam.

UNIT – III

UNIT – IV
SHEAR STRESSES: Derivation of formula – Shear stress distribution across various beams sections like rectangular, circular, triangular, I, T angle sections.

UNIT – V
ANALYSIS OF PIN-JOINTED PLANE FRAMES: Determination of Forces in members of plane, pin jointed, perfect trusses by (i) method of joints and (ii) method of sections. Analysis of various types of cantilever & simply-supported trusses-by method of joints, method of sections & tension coefficient methods.

UNIT – VI
DEFLECTION OF BEAMS: Bending into a circular arc – slope, deflection and radius of curvature – Differential equation for the elastic line of a beam – Double integration and Macaulay’s methods – Determination of slope and deflection for cantilever and simply supported beams subjected to point loads, - U.D.L uniformly varying load. Mohr’s theorems – Moment area method – application to simple cases including overhanging beams.

UNIT – VII

UNIT – VIII
Thick cylinders – lave’s equation – cylinders subjected to inside & out side pressures – compound cylinders.

TEXT BOOKS:
2. Solid Mechanics, by Popov

REFERENCE BOOKS:
4. Strength of Materials by S.Timshenko
MINING GEOLOGY

Unit-I

Unit-II
Genesis of Mineral Deposits: Definition of ore, gangue, tenor and grade of ore, processes and formation of ore deposits including coal, petroleum and atomic minerals.

Unit-III
Mineral Resources of India: Major and Minor mineral resources of India, origin, environment and distribution of mineral deposits of India.

Unit-IV

Unit-V
Mineral Reserves: Estimation and determination of mineral reserves by different methods.

Unit-VI
Rock and Soil slopes: modes of slope failures, causes and effects of slope failures, methods of slope stabilizations. Engineering Geology in mining: water problems, ground movement, subsidence and Rock – Bursts (stresses in rocks at depth)

Unit-VII
Geology of Tunnels: Engineering geological investigations to drive tunnels in soft ground and hard ground, stand up time and geology of some well known Indian Tunnels, Gases in tunnels.

Unit-VIII
Geology of Bore-hole drilling and Excavation: Ease of drillability, importance of geology in drilling soft rocks, hard and deformed rocks. Ease of excavation of different earth materials and rocks.

REFERENCE BOOKS:
1. Mining Geology by Arogya Swamy.
3. Mining Geology by Mckinstry.
4. Engineering Geology & Geotechnics by Krynine and Judd.
5. Economic Mineral Deposits by Jensen M.L & Bateman A.M.
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

II Year B.Tech. Mining Engg. II-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1/-</td>
<td>4</td>
</tr>
</tbody>
</table>

DRILLING AND BLASTING

Unit-I
Exploratory Drilling: Drilling for exploration and other purposes; various types of drilling equipment – their merits, demerits and limitations; core recovery – single and double tube core barrels, wire line drilling; directional drilling, fishing tools; borehole surveying; borehole logging; novel and special drilling techniques, Horizontal and directional drilling.

Unit-II
Production Drilling: Production drilling; Various methods of drilling – percussive, rotary, rotary percussive.

Unit-III
Drillability: Factors affecting drilling - thrust, r.p.m., flushing, etc.; mechanics of drilling; drillability and drilling index; micro-bit drilling; physico-mechanical properties affecting drillability; design and selection of drills; bit wear; reconditioning of drill bits; drill hole economics; case studies.

Unit-IV
Explosives: Types of explosives – small diameter, large diameter. Permitted, bulk slurry, SMS, EMS, ANFO, HANFO, LOX, boosters, blasting agents. mechanics of blasting, alternatives to explosives.

Unit-V
Accessories and Tools: Accessories-detonators, safety fuses, detonating cords, relays, NONEL, exploders, sequential blasting machines and other shot firing tools, testing of explosives, storage, transportation and handling of explosives.

Unit-VI
Underground Blasting: Drill patterns for underground excavations, shafts, blast patterns designs, smooth blasting, induced blasting, charge ratios, rock fragmentation, dangers associated with underground blasting, blasting economics, gallery blasting, statutory requirement, computer design of underground blast, precautionary measures, misfires, solid blasting.

Unit-VII
Open Pit Blasting: Methods of blasting in opencast mines, blast design, primary and secondary blasting, fragmentation studies, accidents due to blast in opencast and preventive measures, environmental impact due to blasting, ground vibrations, fly rocks, dust, fumes, water pollution, dimensional stone blasting, controlled blasting, statutory requirements, computer design of opencast blast.

Unit-VIII
Blasting for Civil Constructions and Trenches: Blasting for road constructions, trench cutting in soft and hard rocks, demolition of building etc., underwater blasting

TEXT BOOKS:
1. Roy Pijush Pal, Blasting in ground excavations and mines, Oxford and IBH, 1st ed 1993
2. C.P. Chugh, Drilling technology handbook, Oxford and IBH, 1st ed, 1977

REFERENCE BOOKS:
1. Roy Pijush Pal, Rock blasting effect and operation, A.A. Balkema, 1st ed, 2005
5. S.K.Das, Explosive and blasting practices in mines, Lovely prakashan, 1st ed, 1993
MECHANICS OF FLUIDS AND HYDRAULIC MACHINES LAB

1. Impact of jets on Vanes.
2. Performance Test on Pelton Wheel.
3. Performance Test on Francis Turbine.
4. Performance Test on Kaplan Turbine.
5. Performance Test on Single Stage Centrifugal Pump.
6. Performance Test on Multi Stage Centrifugal Pump.
7. Performance Test on Reciprocating Pump.
10. Determination of friction factor for a given pipe line.
11. Determination of loss of head due to sudden contraction in a pipeline.
12. Verification of Bernoulli’s Theorems

Note: Any 10 of the above 12 experiments are to be conducted.
MECHANICS OF SOLIDS LAB

1. Tension test
2. Bending test on (Steel / Wood) Cantilever beam.
3. Bending test on simple support beam.
4. Torsion test
5. Hardness test
6. Spring test
7. Compression test on wood or concrete
8. Impact test
9. Shear test
10. Verification of Maxwell’s Reciprocal theorem on beams.
11. Use of electrical resistance strain gauges
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

III Year B.Tech. Mining Engg. I-Sem

6755015

MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS

Unit II Elasticity of Demand: Definition, Types, Measurement and Significance of Elasticity of Demand. Demand Forecasting, Factors governing demand forecasting, methods of demand forecasting (survey methods, statistical methods, expert opinion method, test marketing, controlled experiments, judgmental approach to demand forecasting).

Cost Analysis: Cost concepts, Opportunity cost, Fixed vs. Variable costs, Explicit costs Vs. Implicit costs, Out of pocket costs vs. Imputed costs. Break-even Analysis (BEA)-Determination of Break-Even Point (simple problems)- Managerial Significance and limitations of BEA.

Unit VI Capital and Capital Budgeting: Capital and its significance, Types of Capital, Estimation of Fixed and Working capital requirements, Methods and sources of raising finance.

Nature and scope of capital budgeting, features of capital budgeting proposals, Methods of Capital Budgeting: Payback Method, Accounting Rate of Return (ARR) and Net Present Value Method (simple problems)

Unit VIII Financial Analysis through ratios: Computation, Analysis and Interpretation of Liquidity Ratios (Current Ratio and quick ratio), Activity Ratios (Inventory turnover ratio and Debtor Turnover ratio), Capital structure Ratios (Debt- Equity ratio, Interest Coverage ratio), and Profitability ratios (Gross Profit Ratio, Net Profit ratio, Operating Profit Ratio, P/E Ratio and EPS).

TEXT BOOKS:

REFERENCES:

Prerequisites: Nil

Objective: To explain the basic principles of managerial economics, accounting and current business environment underlying business decision making.

Codes/Tables: Present Value Tables need to be permitted into the examinations Hall.

Question Paper Pattern: 5 Questions to be answered out of 8 questions .Out of eight questions 4 questions will be theory questions and 4 questions should be problems.

Each question should not have more than 3 bits.
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

III Year B.Tech. Mining Engg. I-Sem
6755081

MINE SURVEYING – I

Unit – I
Introduction: overview of Plane Surveying (Chain, compass, and plane table), Objectives, Principles and classifications, use of Field Books.

Unit-II
Distance and Directions: Distance measurements conventions and methods. Use of chain and compass, electronic distance measurements, meridians, Azimuths and Bearings, declination, computation of angles.

Unit-III

Unit-IV
Computation of Areas and Volumes: Areas from field notes, computation of Areas along irregular boundaries and regular boundaries. Embankments and cuttings, determination of capacity of reservoir, volume of borrow pits.

Unit-V

Unit-VI

Unit-VII
Traversing: Principles of Traversing, open traverse and closed traverse using chain /compass / theodolite, Bowditch correction.

Unit-VIII
Triangulation: Principles of triangulation survey, triangulation using chain, campus and theodolite.

TEXT BOOKS:
4. Surveying (Vol 1 & 2) - Kanitkar

REFERENCE BOOKS:
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

III Year B.Tech. Mining Engg. I-Sem

6755082

<table>
<thead>
<tr>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1/-/</td>
<td>3</td>
</tr>
</tbody>
</table>

MINE ENVIRONMENTAL ENGINEERING – 1

Unit-I
Atmospheric air – its composition, mine air – its composition and variation, origin, occurrence, physical, chemical and physiological properties and monitoring of mine gases, various types of damps. Sampling and analysis of mine air. Methane drainage and methane layering of gases.

Unit-II
Heat and humidity: Sources of heat in mines, effect of heat and humidity, psychometric, kata thermometer, methods of improving of cooling power of mine air. Air conditioning basic vapour cycle, representative layout.

Unit-III
Air flow through mine openings: Laws of air flow, resistance of airways, equivalent orifice, distribution of air, flow control devices.

Unit-IV
Natural Ventilation: Calculation of NVP from air density, artificial aids to natural ventilation.

Unit-V
Mechanical ventilation: Principal types of mine fans and their suitability, merits, limitation, efficiency and characteristics. Selection of mine fan, fan testing, output control in fans, series and parallel operation of mine fans.

Unit-VI
Auxiliary fan, duct, matching of fan to the duct system. Reversal of air current. Fan drift, evasee, diffuser, booster fans, Face Ventilation.

Unit-VII
Ventilation planning: Standard of ventilation including permissible air velocities. Ascensional, descensional, homotropal, anti-tropical ventilation. Central and boundary ventilation – layouts and comparison.

Unit-VIII

Suggested Text Books:
2. Mine Ventilation and Air Condition – HL Hearlman

Reference Books:
SURFACE MINING TECHNOLOGY

Unit-I
Basic concept of Surface Mining: Status of surface mining in India. Selection between surface mining and underground mining, Preliminary evaluation of surface mining prospects; stripping ratio – concepts and significance, mine life.

Unit-II
Opening up of deposits with Box Cut: Factors affecting selection of site of box-cut, Production benches – formation parameters and factors affecting their selection.

Unit-III

Unit-IV
Excavation and Transportation: Cyclic methods—shovel-dumper, pay-loader, dragline. Continuous methods—bucket wheel excavator, bucket chain excavator, continuous surface miner, conveyors. Principle and operation of these machines, their advantages and limitations capacity calculations, maintenance.

Unit-V
Other equipments—dozer, grader, loader, scraper, dumper, maintenance of open pit equipment crusher.

Unit-VI
Design and organization: Basic design principle of large opencast mines and their organizational structure. Mechanical quarries over underground developed zones.

Unit-VII
Placer Mining and Sea bed Mining: Ground sluicing, Hydra licking and Dredging Exploitation systems of ocean mineral resources.

Unit-VIII
Relevant provisions of coal mines and metalliferous mines regulation; Environmental problems due to surface mining and their remedial measures. Recent developments in the deployment of heavy earth moving machineries in the surface mines.

Text Books:
1. Surface Mining Technology S K Das.
2. Surface Mining – GB Misra
3. Introductionary Mining Technology – HL HearlMan

Reference Books:
1. Singh R.D. – Principles and Practices & Modern Coal Ming
Unit-I
Introduction to Mine Planning; Size of mining property, reserves and production capacity.
Opening of Deposits; Developments of mine for in-seam mining and horizon mining (including shaft pillar and their comparison, advantages and disadvantages), division into levels and districts.

Unit-II
Development: General principle of Bord & Pillar Development, their choice, suitability, advantages and disadvantages, layout of Bord & Pillar panel, size of panel, statutory provisions, manual and mechanized system of development; conditions suitable for application of mechanized loader and continuous miners; factor affecting the selection of equipment.

Unit-III
Pillar Extraction: preparatory arrangement for depillaring operation, statutory provision for depillaring, principle and designing of pillar extraction, size of a district.

Unit-IV
factor, affecting choice of pillar extraction, depillaring with caving, stowing, mechanized depillaring operation, organization and safety.

Unit-V
Layout for required outputs, types of machines, personnel and working of thick seams and blasting gallery method.

Unit-VI
Longwall mining: Longwall methods of working, their choice, suitability, advantages and disadvantages.

Unit-VII
Layout of the workings for the required output, length and orientation of longwall faces, Shape & size of development roadways and gate roads and their maintenance. Mechanized longwall face organization.

Unit-VIII
Mechanized extraction of longwall panel with shearer and plough trepanner; support systems of longwall face and gate roads.

Text Books
3. Das S.K. – Modern Coal Mining Technology, Lovely Prakasan publication.

Reference Books
MINE MECHANISATION-I

Unit-I
Prime Mover for Mining Machinery: O.C. engine, hydraulic power, pneumatic power, elements of mechanical power transmission – gear, belt, chain, coupling, clutch and brake.

Unit-II
Rope haulage: Construction of the wire ropes, rope haulages – gravity, direct, balanced direct, main & tail, endless, reversible endless. Suitability of these haulages and their limitations.

Unit-III
Dimension of ropes, drums and pulleys, care and maintenance of ropes, changing of haulage ropes, rope splicing, safety appliances in haulage road, signaling, Statutory requirements of haulages.

Unit-IV
Track Laying: Rail, joints, crossings, plates, turn tables an curves, track extension

Unit-V
Aerial Ropeways: Types, construction, Application and operation.

Unit-VI
Mine Locomotives: Types, constructional features of compressed air, diesel, battery and electric trolley-wire locomotives, comparison of various locomotive haulages. Comparison of rope and locomotive haulages.

Unit-VII
Conveyors: Principle types and their operations, installation, shifting, maintenance and applicability, shuttle cars, stage loaders, bridge conveyors, capacity.

Unit-VIII
Drills for Coal an Stone: Various types, their construction and maintenance, Jumbo drills.

Text Books
1. Elements of Mining Technology Vol. III, D.J. Deshmukh
2. Mason Coal Mining Services Vol. 1 & II
3. Mine Transport – Karelin

Reference Books:
2. Introduction to Mining Engineers – Hartman. H.L.
MINE SURVEYING LAB

1. Ranging a line, measuring the distance between two points, pacing.
2. Chain triangulation, booking, calculation of areas and plotting.
3. Traversing with compass.
4. Introduction to levels.
5. Fly leveling & Reduction of level.
6. Profile leveling and plotting the section.
7. Contouring
10. Theodolite traversing
11. Finding distance between two inaccessible points.

MINE ENVIRONMENTAL ENGINEERING LAB

1. Detection of mine gases
2. Orsat/Haldane apparatus for gas analysis.
5. Constructional features of centrifugal and axial flow fans.
6. Characteristic curves for fans.
7. Operation of fans in series and parallel.
9. Reversal of Ventilation system.
12. Study and analysis ventilation network circuit.
13. Study of mine air-conditioning plant.
14. Constructional features of a flame safety lamp and cap lamp.
15. Layout of lamp room.
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

III Year B.Tech. Mining Engg. II-Sem
6756016

INDUSTRIAL MANAGEMENT

Unit I

Unit II

Unit III
Operations Management: Principles and Types of Plant Layout-Methods of production (Job, batch and Mass Production), Work Study -Basic procedure involved in Method Study and Work Measurement-Statistical Quality Control: \overline{X} chart, R chart, c chart, p chart,

Unit IV

Unit V
A) Materials Management: Objectives, Need for Inventory control, EOQ, ABC Analysis, VED Analysis, FSN Analysis, Purchase Procedure, Stores Management - Logistics and basics of supply Chain Management.

Unit VI

Unit VII

Unit VIII

REFERENCE BOOKS:
1. Aryasri: Management Science, TMH, New Delhi, 2009
2. Stoner, Management, Pearson, 2009

Pre-requisites: Managerial Economics

Objective: To familiarize with the process of management and to provide basic insights into select contemporary management practices.

Codes/Tables: Normal Distribution Function Table need to be permitted into the examination Hall.

Question Paper Pattern: 5 Questions to be answered out of 8 questions. The question paper should contain atleast 2 practical problems, one each from units -III & IV

Each question should not have more than 3 bits.

Unit VIII will have only short questions, not essay questions.
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

III Year B.Tech. Mining Engg. II-Sem
6756086

L T/P/D C
3 1/- 3

MINE SURVEYING – II

Unit-I
TACHEOMETRIC SURVEYING: Use of the Theodolite for tacheometric Surveying – Principles, Stadia and tangential methods, measurements of heights and distances by tacheometry, Distance and Elevation formulae for Staff vertical position.

Unit-II
SETTING OUT CURVES: types of curves, curve ranging, design and setting out, simple and compound curves, surface and underground curves.

Unit-III

Unit-IV

Unit-V
MINE SURVEYS: Verticality of shafts, measurement of depth of shafts, Surveys for connecting national grid, survey of installations of mine structures.

Unit-VI
GLOBAL POSITIONING SYSTEMS: Introduction to Global Information system (GIS), Remote Sensing – basic Principles, Integration of RS and GIS.

Unit-VII
TOTAL STATION: Description, users, Types of Surveys by Total station, Mapping of sites by Total Station Surveys – Elementary exercises only.

Unit-VIII

Text Book:

REFERENCES:
Unit-I
Development: Mine development for working veins, lodes and tabular deposits, shape, size and position of the development working in relation to the ore body.

Unit-II
Layout of the drifts, cross-cut, raises and winze in ore body.

Unit-III
Different types of raising methods and their merits and demerits.

Unit-IV
Classification of stoping methods, factors influencing the choice of stoping method.
Stoping Methods:
- Room & Pillar
- Sublevel Open Stopping
- Shrinkage method of Stoping
- Cut & Fill method of Stoping

Unit-V
- Sublevel Caving
- Block Caving

Unit-VI
- Special methods of working of thin deposits

Unit-VII
Applicability of methods, stope layout, stope layout, stope development, ground breaking, mucking, ventilation, support, haulage and dumping.

Unit-VIII

Text Books:
1. Woooorof S.C. Methods of working Coal & Metal Mines Vol-III
2. Peele – mining Engineers handbook Vol.I & II

Reference Books:
1. Underground Mining Methods handbook
2. Underground Mining Methods and Technology – Elsevier Science publication.
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

III Year B.Tech. Mining Engg. II-Sem
6756088

L T/P/D C
3 2/-/ 3

MINE ENVIRONMENTAL ENGINEERING-II

Unit-I
Spontaneous Combustion: Various theories, factors, various indices for determination of susceptible of coal to spontaneous heating, control measures.
Mine Fires: Survey of various causes of mine fires with statistical data of Indian mines, various methods adopted to combat fires and their advantages and disadvantages.

Unit-II
Advances in fire fighting techniques and equipments, rescue operations in fire zones. Reopening of Selected off areas; Factors to be considered, methods, precautions.

Unit-III
Reopening of sealed-off areas: Factors to be considered, methods, precautions. Mine Explosions: Causes of firedamp explosion with statistical data of Indian mines, preventive measures against firedamp explosion.

Unit-IV
Production, assessment and control of mine dust and associated hazards. Causes of coal dust explosion with statistical data of Indian mines, preventive measures against coal dust explosion.

Unit-V
Mine Inundation: Causes of inundation with statistical data of Indian mines. Precaution to be taken while approaching old workings, preventive measures of inundation.

Unit-VI
Noise and Vibrations: Causes and measurement of noise levels. Precautions, prevention and reduction of noise levels. Environmental aspects of blast induced vibration and noise.

Unit-VII
Mine illumination: Its effects on safety and efficiency, illumination standard, common types of flame safety lamps, their use and limitations, electric-hand and cap lamp, their maintenance and examination, lamp room design and organization. Illumination arrangement of opencast and underground working.

Unit-VIII
Rescue and recovery work, equipment, short distance apparatus. Self contained oxygen-breathing apparatus. Rescue stations, principles of risk management.

Text / Reference Books:
2. Fires in Coal Mines – Kaku
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

III Year B.Tech. Mining Engg. II-Sem
6756089

MINE MECHANISATION-II

L T/P/D C
3 1/- 4

Unit-I
Mine Winders: Koepe and Drum winders and their applications, head gear, head gear pulley, shaft fitting – Keps, rope guides, shaft sinking and bells, capping and recapping, cage and suspension gear.

Unit-II
Winding Drum-types and construction, Safety devices in winders-over speed and over wind preventers, slow breaking, depth indicator, Methods of counter balancing rope. Duty cycle. Mechanical and electrical braking. Winding from different levels in shaft.

Unit-III
Man riding system in underground mines.

Unit-IV
Face Machinery: SDL & LHD – their applications, capacity, operation, fitting, control and maintenance.

Unit-V
Cutter loaders – Shearers, Coal plough and Continuous Miners – their constructional features, applications, capacity and maintenance.

Unit-VI
Layout of faces with Power loader working under varied condition, Shuttle cars.

Unit-VII
Pumps: Types, Construction, operation, characteristics and application, Calculation of size, efficiencies and capacities. Layout of drainage system.

Unit-VIII
Opencast Machinery: Blast Hole Drill, Ripper, Shovel, Dragline, Dumper, Bucket Wheel Excavator, Continuous Miners – their basic construction, applications and operation.

Text Books
1. Deshmukh D.J., Vol. I & II Elements of Mining Technology
2. Cherkasky B.M., Pumps Focus Compressors Walkar wending & Transport

Reference Books
2. Mason – Coal Mining Series
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

III Year B.Tech. Mining Engg. II-Sem
6756090
L T/P/D C
3 1/- 3
MINERAL ECONOMICS

Unit-I
The Mineral Industry: Economic characteristics of the mineral industry in India and world, the place of minerals in the national and international economy.

Unit-II
Brief survey of India’s mineral resources in the world setting with special reference to its need and deficiencies.

Unit-III
Mining companies and mine Accounts: Structure, formation and capitalization, principles of book keeping as applied to the mining industry presentation of accounts, balance sheets and profit and loss accounts, Depreciation DCF, IRR.

Unit-IV
Mine Valuation: Mineral reserves mining reserve and profit examination and report on mines.

Unit-V
Mining property planning valuation of mines, Mine properties, mine investments. Project planning and project evaluation.

Unit-VI
Sampling: Principles of sampling off prospect sampling methods classification and description, statistical and geo statistical techniques in mine sampling, sampling and grading of coal.

Unit-VII
Assaying: Five methods of assaying for gold and silver cupellation Scarification, etc. wet assaying, theory, principle methods of wet assaying of copper aluminum, lead, zinc, Iron Manganese and Chromium ores. Insitu assay.

Unit-VIII
Preparation of Assay Plans: Longitudinal section, calculation or ore reserve.

Text books/References:
2. Chatterjee KK “Mineral Economics” Willey Estern.
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

III Year B.Tech. Mining Engg. II-Sem

6756643

L T/P/D C
0 -/3/- 2

MINE SURVEYING – II LAB

1. Correlation by two shaft methods S/T
2. Correlation by two shaft methods U/T
3. Correlation by two shaft co-plantation methods
4. Correlation by single shaft weisbatch methods.
5. Correlation by single shaft weiss quadrilateral methods
6. Curve ranging offsets from long chord
7. Curve ranging Ranking methods
8. Curve Tacheometric methods
9. Curve ranging Tacheometric method
10. Finding the height of an inaccessible object
11. Reading mine plans
12. Finding Horizontal & Vertical distance by Techometry

Suggested Text Books/Reference Books

1. Punimia “Surveying” Vol. II and III
2. Baska “Surveying and Levelling”
3. Ghatak “Mine Surveying an Levelling”
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

III Year B.Tech. Mining Engg. II-Sem
6756644 0 -/3/- 2

ADVANCED ENGLISH COMMUNICATION SKILLS LAB

1. Introduction
The introduction of the English Language Lab is considered essential at 3rd year level. At this stage the students need to prepare themselves for their careers which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalised context.

The proposed course should be an integrated theory and lab course to enable students to use ‘good’ English and perform the following:
- Gather ideas and information, to organise ideas relevantly and coherently.
- Engage in debates.
- Participate in group discussions.
- Face interviews.
- Write project/research reports/technical reports.
- Make oral presentations.
- Write formal letters.
- Transfer information from non-verbal to verbal texts and vice versa.
- To take part in social and professional communication.

2. Objectives:
This Lab focuses on using computer-aided multimedia instruction for language development to meet the following targets:
- To improve the students' fluency in English, through a well-developed vocabulary and enable them to listen to English spoken at normal conversational speed by educated English speakers and respond appropriately in different socio-cultural and professional contexts.
- Further, they would be required to communicate their ideas relevantly and coherently in writing.

3. Syllabus:
The following course content is prescribed for the Advanced Communication Skills Lab:
- **Functional English** - starting a conversation – responding appropriately and relevantly – using the right body language – role play in different situations.
- **Vocabulary Building** – synonyms and antonyms, word roots, one-word substitutes, prefixes and suffixes, study of word origin, analogy, idioms and phrases.
- **Reading Comprehension** – reading for facts, guessing meanings from context, scanning, skimming, inferring meaning, Critical reading.
- **Writing Skills** – structure and presentation of different types of writing – Resume writing / e-correspondence/Technical report writing/Portfolio writing – planning for writing – research abilities/data collection/organizing data/tools/analysis – improving one’s writing.
- **Group Discussion** – dynamics of group discussion, intervention, summarizing, modulation of voice, body language, relevance, fluency and coherence.
- **Presentation Skills** – Oral presentations (individual and group) through JAM sessions/seminars and written presentations through posters/projects/reports/PPTs/e-mails/assignments etc.
- **Interview Skills** – concept and process, pre-interview planning, opening strategies, answering strategies, interview through tele and video-conferencing.

4. Minimum Requirement:
The English Language Lab shall have two parts:
 i) **The Computer aided Language Lab** for 60 students with 60 systems, one master console, LAN facility and English language software for self-study by learners.
 ii) **The Communication Skills Lab** with movable chairs and audio-visual aids with a P.A System, a T.V., a digital stereo –audio & video system and camcorder etc.

System Requirement (Hardware component):
Computer network with Lan with minimum 60 multimedia systems with the following specifications:
 iii) **P – IV Processor**
 a. Speed – 2.8 GHZ
 b. RAM – 512 MB Minimum
 c. Hard Disk – 80 GB
 iv) **Headphones of High quality**

5. Suggested Software:
The software consisting of the prescribed topics elaborated above should be procured and used.

Suggested Software:
- Clarity Pronunciation Power – part II
- Oxford Advanced Learner’s Compass, 7th Edition
- DELTA’s key to the Next Generation TOEFL Test: Advanced Skill Practice.
• **Lingua TOEFL CBT Insider**, by Dreamtech
• **TOEFL & GRE** (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)
• The following software from ‘train2success.com’
  Preparing for being Interviewed,
  Positive Thinking,
  Interviewing Skills,
  Telephone Skills,
  Time Management
  Team Building,
  Decision making
• **English in Mind**, Herbert Puchta and Jeff Stranks with Meredith Levy, Cambridge

6. Books Recommended:

DISTRIBUTION AND WEIGHTAGE OF MARKS:

Advanced Communication Skills Lab Practicals:
1. The practical examinations for the English Language Laboratory practice shall be conducted as per the University norms prescribed for the core engineering practical sessions.
2. For the English Language lab sessions, there shall be a continuous evaluation during the year for 25 sessional marks and 50 End Examination marks. Of the 25 marks, 15 marks shall be awarded for day-to-day work and 10 marks to be awarded by conducting Internal Lab Test(s). The End Examination shall be conducted by the teacher concerned with the help of another member of the staff of the same department of the same institution.
Unit-I
Introduction: Scope, objectives and limitations of mineral processing, liberation and beneficiation characteristics of minerals and coal.

Unit-II
Comminution: Theory and practics of crushing and grinding; different types of crushing an grinding equipments – their applications and limitations.

Unit-III
Size Separation: Laboratory size analysis and interpretation; settling of solids in fluids; industrial screens, mechanical classifiers and hydro cyclones.

Unit-IV
Gravity Concentration Methods: Jigging, Heavy media separation, flowing film concentrators – theory, applications and limitations.

Unit-V
Froth Floatation: Physico-chemical principles, reagents, machines, floatation of sulphides, oxides and coal.

Unit-VI
Electrical Methods of Concentration: Principles, fields of applications and limitations.

Unit-VII
Flow Sheets: Simplified flow sheets for coal, zinc, iron, and manganese ores.

Unit-VIII
Magnetic methods of concentration Principles, Fields of Application and Limitation.

Text Books:
1. Introduction to Mineral Processing – V. Malleswar Rao
2. Mineral Processing – Wills
IV Year B.Tech. Mining Engg. I-Sem
6757144

ROCK MECHANICS

Unit-I
Physico-mechanical properties of rocks, Elastic and time dependent behavior, Rock mass classification.

Unit-II
Theories of rock failure, Stress analysis, In situ stress and stress distribution around mine openings.

Unit-III
Ground failure and pressure on supports, Stability of wide openings, Design of supports in mine workings.

Unit-IV
Subsidence: Causes and impacts of subsidence, Mechanics of surface subsidence, discontinuous and continuous subsidence.

Unit-V
Monitoring, prediction, control and management of subsidence.

Unit-VI
Mechanics of rock burst and bumps, Stability of slopes.

Unit-VII
Instrumentation and measurement of in situ stresses and rock strength, Photolasticity and scale model studies.

Unit-VIII
Basics of numerical methods in geomechanics with applications.

Text / Reference Books:
1. Coal Mining ground Control by Peng.
2. Rock Mechanics by Jumikis
UNIT – I

UNIT – II

UNIT – III

UNIT – IV
CPM: Importance and application of CPM, Networks, early and latest start times of activities. Critical path and critical activities, Project duration, crashing of networks.

UNIT – V

UNIT – VI
Inventory: Introduction – Single item – Deterministic models – Purchase inventory models with one price break and multiple price breaks – shortages are not allowed – Stochastic models – demand may be discrete variable or continuous variable – Instantaneous production. Instantaneous demand and continuous demand and no set up cost- Single period model.

UNIT – VII

UNIT – VIII
Simulation: Definition – Types of simulation models – phases of simulation– applications of simulation – Inventory and Queuing problems – Advantages and Disadvantages – Brief Introduction of Simulation Languages.

TEXT BOOKS:
1. Operations Research /J.K.Sharma 4e. /MacMilan

REFERENCES:
2. Operations Research: Methods & Problems / Maurice Saseini, Arhur Yaspan & Lawrence Friedman
3. Introduction to O.R /Taha 8e/PHI
5. Operations Research /S.D.Sharma-Kedarnath
6. O.R/Wayne L.Winston/Thomson Brooks/cole
7. Introduction to O.R/Hiller & Libermann (TMH).
Unit-I

Unit-II
Coal and metalliferous mines regulations, Bye-laws, Circulars, and standing orders,

Unit-III

Unit-IV

Unit-V
Safety organization; role of management, supervisors and workers; pit safety committees; workmen’s inspector; role of safety officers.

Unit-VI
Classification of Accidents; Statistics, causes and prevention of accidents. Accidents rate in Indian mines. Accident enquiries and reports, health of workmen. Occupational disease in mining.

Unit-VII
Mineral Conservation & Development Rules
Portions of other non-mining statutes applicable to mining from Land acquisition act, Environment protection act, Forest conservation act.
Sustainable development in mines.
Social Impact of mining and its management.
Satellite imaging, Electronic monitoring demarcation of mining lease and Geo referencing

Unit-VIII
Development of safety consciousness; interest, publicity and propaganda for safety, audio-visual aids, safety drives campaigns.

Text Books
1. Principle Acts & Rules CMR and MMR

Reference Books:
1. Intent and Content of Mine Legislation – Prasad.
IV Year B.Tech. Mining Engg. I-Sem

ROCK SLOPE ENGINEERING
(Elective-I)

Unit-I
Introduction: economic implications, geological investigation, data interpretation for slope stability analysis.

Unit-II
Basic Mechanism of Slope Failure: Planer, wedge, rotational shear, toppling, buckling and rock fall.

Unit-III
Mechanism of failure of jointed rock mass. Determination of shear strength of discontinuities.

Unit-IV
Influence of ground water on slopes and techniques of depressurization, remedial and corrective measures. Remedial measures for slope stabilization.

Unit-V
Monitoring and instrumentation techniques of rock slopes.

Unit-VI
Investigations of failed slopes.

Unit-VII
Numerical analysis of slopes.

Unit-VIII
Use of FLAC Software.

Text Books:
3. Rock Mechanics by Brounden
4. Chowdary R.N. – Slope Analysis

Reference Books:
Unit-I
INTRODUCTION
Strata movement at the mining horizon, convergence in mine working, factors influencing convergence in mine working.

Unit-II
SUBSIDENCE MECHANISM
Zones of movement in the overlaying beds, vertical and horizontal movement, subsidence trough, angle of draw, angle of break, sub-surface subsidence.

Unit-III
SUBSIDENCE PREDICTION
Different methods of surface subsidence prediction – graphical, analytical, profile function, empirical and theoretical models.

Unit-IV
TIME INFLUENCE AND IMPACT ON STRUCTURES
Influence of time on subsidence, example from long wall and bord and pillar working. Calculation of ground movement over time.

Unit-V
Types of stress on structures, stress-strain behaviour of soils, mining damage to buildings, industrial installations, railway lines, pipes, canals, etc.,

Unit-VI
SUBSIDENCE CONTROL, GOVERNING LAWS AND STANDARDS
Measures to reduce mining damage, mining methods to minimise damage.

Unit-VII
Laws governing mining damage, different standards suggested for mining and building ground in respect of subsidence.

Unit-VIII
Case studies of mine subsidence

Text / Reference Book:
1. Whiltaker B.N. Reddish D.J. - Subsidence occurrence prediction and control
2. B. Singh – Mine Subsidence
3. Peng S. – Surface subsidence Engineering
ROCK EXCAVATION ENGINEERING
(Elective-I)

Unit-I
Scope and importance, Rock excavation engineering in mining and construction industries;

Unit-II
Physico-mechanical and geotechnical properties of rocks Vis-à-vis excavation method; selection of excavation method.

Unit-III
Drilling: Mechanics of rock drilling, design and operating parameters of surface and underground drilling, evaluation of drill performance, drill ability of rocks, mechanism of bit Wear, bit selection, problems of drilling, economics of drilling.

Unit-IV
Blasting: mechanics of rock fragmentation by explosives, advances in explosives and their selection criteria for rock excavation, blast design for surface excavations and optimization.

Unit-V
Advanced blast initiation systems, blast performance evaluation, cast blasting, technoeconomic and safety aspects of surface and underground blasting.

Unit-VI
Advances in blast design for underground excavations, contour blasting, computer aided blast designs, review of tunnel blasting techniques in recent advances.

Unit-VII
Rock Cutting: Theories of rock tool interaction for surface excavation machinery – rippers, bucket wheel excavators, continuous surface miners; theories of rock tool interaction for underground excavation machinery- Ploughs, Shearers, road headers, continuous miners

Unit-VIII
Tunnel boring machines, selection criteria for cutting tools; advanced rock cutting techniques – high pressure water jet assisted cutting.

Text / Reference Books
IV Year B. Tech. Mining Engg. I-Sem
6757150

Unit-I
General theory of rock cutting, selection of cutting tools for optimum penetration and wear characteristics.

Unit-II
Mechanics of rotary, percussive an rotary-percussive drilling, short and long hole drilling equipment, different types of bits, bit wear, drilling in difficult formations, drillibility of rocks, drilling performance and costs.

Unit-III
Mechanism of rock breaking machines, Pneumatic and Hydraulic rock hammers. Mechanics of rock fragmentation and fracture by explosive action, explosive.

Unit-IV
Blasting accessories, blasting parameters, design of blasting rounds for opencast and underground mines, Blastability of rocks, blasting efficiency, mean fragment size.

Unit-V
Computational models of blasting, transient ground motion, misfires, blown out shots, incomplete detonation – their cases and remedial measures.

Unit-VI
Controlled blasting techniques, perimeter blasting, safety precautions, ground vibrations and air over pressure from blasting.

Unit-VII
Instrumentation in blasting, Borehole pressure transducer, V.O.D probe, vibration monitor, high speed video camera.

Unit-VIII
Impact of ground vibration and sound on the neighboring structures and communities, and mitigative measures.

Text / Reference Books:
2. Sastry V.R. – ‘Advacne in Drilling & Blasting’
UNIT-I
Introduction to structure terminology and peripherals, algorithms, flow charts, programs, dedicated systems.

UNIT-II
Application in mining, Exploration, rock topographic models, bore hole compositing, ore reserve calculation, interpolation and geostatistical models.

UNIT-III
Open pit design, Ultimate pit design, introductory process control, underground mine design, production scheduling.

UNIT-IV
Operational Simulation, Introduction, Simulation overview, objective, understand the role of modeling, Understanding the basic concept in simulation.

UNIT-V
Example of simulation in mining aspects, Simulation of machine repair problems, concepts of variability and prediction, example with dumping time problem, fitting distribution with chi-square test.

UNIT-VI
Random number generation, properties of random number, pseudorandom number, random variates generation, Methods of random variates generation, inverse transformed method, acceptance rejection method, composition method, empirical method and rectangular approximation.

UNIT-VII
Simulation languages, GPSS and SLAM, Logical flow diagram of different mining activities.

UNIT-VIII
Coding with GPSS and SLAM of different mining problems, Computer control, Remote Control, automatic Control, application an limitations of control.

Text Books:

Reference Book:
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

IV Year B.Tech. Mining Engg. I-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1/-/-</td>
<td>3</td>
</tr>
</tbody>
</table>

MINE CONSTRUCTION ENGINEERING
(Elective-II)

Unit-I
Size of mine Environment and ecology, selection criteria for site of the openings geological investigation.

Unit-II
Underground mine shaft sinking methods through alluvium, soft and hard rock, Mechanization, consolidation of loose ground shaft lining, ground pressure, thickness of lining.

Unit-III
Design and procedure of laying the lining, construction of shaft collar heapstead.

Unit-IV
Design and construction of insets, shaft bottom, excavation for mechanized decking of cages, skip loading, pit bottom lay outs, installation of main haulages.

Unit-V
Main sump size, construction under ground substation, first aid room and office.

Unit-VI
Surface inclines, drivage through soft and hard rock, construction and lining of inclines, lateral and vertical and vertical pressures. Under ground development, drivage of roads in stone and coal, mechanization support systems opening of faces.

Unit-VII
Surface layouts pit top circuits and coal handling and coal preparation plant, railway sifting and weigh bridges, surface and underground coal bunkers winding house substation, lamp room. Pit head bath, crèche dispensary: office, work-shop, material handling stowing installations, bunker, water tanks, mixing chamber.

Unit-VIII
Open pit mines opening out trenches, haul roads, construction of benches. Assembling and transporting of draglines, shovels etc. Scheduling for mine constructions PERT/CPM

Suggested text book/Reference:
1. Pazdziora J. “design of Underground hard coal mine”
2. Popov “working of Mineral Deposits”
3. Bokey “Mining”
4. Rzhevsky Unit operations in open cast mines.
IV Year B.Tech. Mining Engg. I-Sem

6757153

TUNNELING ENGINEERING
(Elective-II)

UNIT-I
Introduction to tunneling: geological concept of tunneling.

UNIT-II
Influence of geological aspects on design & construction of tunnels.

UNIT-III
Tunneling Methods: Conventional and special Drill & blast roadway drivage machines, tunnel boring machines (TBM)

UNIT-IV
Stresses and displacements associated with excavating tunnels, Ground control or treatment in tunneling and drivages.

UNIT-V
Design of Supports of Tunnels; Steel supports, rock enforcements, new Australian tunneling methods (NATM)

UNIT-VI
Design of Tunnels: Rock conditions, RMR, Q-system, RSR, rock mass behaviour, stress strain behaviour, and stress analysis of tunnels.

UNIT-VII
Maintenance: Dewatering, ventilation and illumination drivages tunnels.

UNIT-VIII
Numerical techniques: Introductory use of FLAC, PLAXIS etc.

Text Books:
1. Richards E. Bullock – Tunnelling and Underground Construction Techniques

Reference Books
1. R.V. Proctor – Rock Tunneling with Steel Supports
IV Year B.Tech. Mining Engg. I-Sem

STRATA CONTROL TECHNOLOGY
(Elective-II)

Unit-I
Geo mining conditions: Geological factors contributing to strata control problems in mines, Geo mechanics classification of rocks.

Unit-II
Safety status: Status of safety in coal mines vis-à-vis strata control problems, Assessing the risk from the hazards of roof & side falls.

Unit-III
Design of support system: Design of support system for development and depillaring workings.

Unit-IV
Design of support system for long wall workings, application of modeling techniques to strata control problems.

Unit-V
Strata behaviour studies: Instrumentation for evaluation of strata condition in coal mines, Strata control techniques and its application to coal mining industry.

Unit-VI
Case studies on geotechnical instrumentation and strata control in coal mines.

Unit-VII
Demonstration of geotechnical instrumentation and computer softwares.

Unit-VIII
Organization of strata control cell: strata control cell in mines, Training needs of the first line supervisors for effective implementation of the latest strata control technologies.

Text Books:

Reference Books:
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)
IV Year B.Tech. Mining Engg. I-Sem

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6757637</td>
<td>0</td>
<td>-/3/-</td>
<td>2</td>
</tr>
</tbody>
</table>

MINERAL PROCESSING LABORATORY

1. Study of grab sampling and different sample division techniques like coning and quartering, riffle sampling techniques, etc.
2. Determination of crushing characteristics of a given mineral sample using jaw crusher
3. Determination of the grinding characteristics of a given mineral sample using ball mill
4. Sieve analysis of a given sample and to calculate (a) percentage sample retained on screens (b) average size of ample material and (c) to plot sizing curves
5. Concentration of a given mineral sample using mineralizer
6. Concentration of a given mineral using Wilfley table
7. Concentration of a given mineral using froth flotation cell
8. Concentration of a given mineral using magnetic separator
9. Study of wash ability characteristic of a coal sample using float and sink test.
10. Study of sedimentation characteristics of a given sample

ROCK MECHANICS LABORATORY

1. Determination of RQD of rocks.
2. Determination of Protodyaknov index of a given rock sample
3. Determination of point load index strength of a given rock sample
4. Determination of porosity of rocks.
5. Determination of hardness of rocks
6. Determination of uniaxial compressive strength of a given rock sample
7. Determination of tensile strength of a given rock sample using Brazilian method
8. Determination of shear strength of rocks
10. Determination of triaxial strength of rock and drawing of Mohr’s envelope
11. Determination of slake durability of rocks
12. Study of time dependent properties of rocks.
13. Study of drillability index of rocks.
14. Study of different types of supports used in mines
15. Study of stress and fracture patterns around underground model opening
16. Study of design of mine pillars.
17. Prediction of Subsidence.
18. Study of measurement of in situ stresses and strengths.
19. Determination of rock anchorage capacity of a rock bolt
20. Study of different types of roof convergence and other ground control instruments.
Unit-I
Definition and concept of ground control in Mines.

Unit-II
Ground control practice in Mines. Constraints on ground control design; characteristics of coal measure strata.

Unit-III
Modern concept of strata pressure redistribution. Manifestation of strata pressure, convergence, load on prop, creep, heave, roof fall and facture systems due to mining. In situ stress measurement, instrumentation.

Unit-IV
Roof support: Timber and steel supports, friction and hydraulic prop Arches, shotcrete, roof truss, roof bolts.

Unit-V
Powered supports stowing caving strip packing pump packing rock reinforcement.

Unit-VI
Design of structures in rock; design of underground openings. Design of pillars, design of openpit slopes, waste dumps and embankments. Design of stopes.

Unit-VII
Subsidence: Theories of subsidence, factors affecting subsidence, prediction and measurement of subsidence. Damage and prevention of damage due to subsidence.

Unit-VIII
Bumps and rock bursts-causes, occurrence and control.

Text / Reference Books:
1. Obert & Duvall “Rock Mechanics and Design of structures in rock”
2. Jaeger and cook “Fundamental of Rock Mechanics”
3. V. Singh & B.P. Khare “Rock Mechanics and Ground Control”
4. Richard “Rock Mechanics”
5. Peng “Coal Mining Ground Control”
J.B. INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

IV Year B. Tech. Mining Engg. II-Sem
6758109

<table>
<thead>
<tr>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-/-</td>
<td>3</td>
</tr>
</tbody>
</table>

PLANNING OF SURFACE MINING PROJECT
(Effective-III)

Unit-I
Mining industry in comparison with other industries, Principles of Planning, Mater Plan, Feasibility Report.

Unit-II
Estimation, optimal Production, Life, requirement of surface equipment, selection of mining equipment

Unit-III
Haul roads maintenance and dust control measures

Unit-IV
Surface facilities provision of dump yards, material handling plants

Unit-V
Surface Workshops, Mine lighting, occupational diseases remedial measures

Unit-VI
Surface environment management planning, EIA, load reclamation methods.

Unit-VII
Issues and challenges of Mine planning in future, mine closure planning.

Unit-VIII
Blast designing, applications of SME, Nonel limitation transport of Block explosive, electronic detonators.

Text / Reference Books:
2. Das S.K. – Surface mining Technology
3. G.B. Misra – Surface Mining
4. haertman H.L. – Introduction to Mining Engineering.
J.B. INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

IV Year B.Tech. Mining Engg. II-Sem
67S8110

L T/P/D C
3 -/- 3

PLANNING OF UNDERGROUND COAL MINING PROJECT
(Elective –III)

Unit-I
Mining industry in comparison with other industries, Principles of Planning, Features and Mine Planning, Master Plan, Feasibility Report.

Unit-II
Geological factors replacing Mine Planning, Estimation of optional prediction Life. Coal extraction, different methods applicability advantages and disadvantages

Unit-III
Pillar extraction by continuous miner

Unit-IV
Pillar extraction by Blasting Gallery Methods.

Unit-V
Pillar extraction by deploying LHDS/SDLS

Unit-VI
Economics of different methods extraction.

Unit-VII
Gate Road devices and supports and extraction by longwall Advancing and retreating Methods.

Unit-VIII
Surface subsidence, measures for subsidence control, subsidence monitoring, Roof convergence measurements.

Text/Reference Books:
1. Peng SS – Longwall Mining.
2. R.D. Singh – Principles and Practices of Modern Coal Mining.
3. Mathur S.P. – Coal Mining in India.
4. Das S.K. Modern Coal Mining Technology.
5. BB Dhar, Singh T.N. – Thick Séance Mining Problems and Issues.
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

IV Year B.Tech. Mining Engg. II-Sem L T/P/D C
6758111 3 /-/- 3

PLANNING OF UNDERGROUND METAL MINING PROJECT
(Elective -III)

Unit-I
Introduction: Status of Metalliferous Mining Industry in India, Scope and limitations of Underground Mining.

Unit-II
Development: Classification and choice of stopping methods, Choice of level interval and block length- shape, size, position.

Unit-III
Excavation and equipping of shaft station, grizzly, ore/waste bin, main ore pass system, underground crushing and loading stations, underground chambers, sump and other subsidiary excavations, arrangements for dumping into main ore pass.

Unit-VI
Methods: Techno-economic analysis on choice of stopping methods, high productivity methods, blast hole stopping vertical retreat method of mining, block caving raise stopping, underground bench blasting.

Unit-V
Stope design and production planning in the various methods of stopping Stop layouts access development, shift/hosting haulages cross cuts, inclined developments.

Unit-VI
Stope and development support, mining cycles, shift times, efficiency, utilization and estimating equipments requirements.

Unit-VII
Division of Mining Area: Division of the mining area into working units on district and level pattern. Dimensions of panels and blocks.

Unit-VIII
Production and Cycle time estimates, Production Planning and Scheduling

Text / Reference Books:
5. Introductory Mining Engineering, Howard L. Hatman.
IV Year B.Tech. Mining Engg. II-Sem
6758112

L T/P/D C
3 -/- 3

MINE ELECTRICAL ENGINEERING
(Elective-III)

Unit-I
Types of electrical power supply systems for underground coal mines – solidly earthed, restricted neutral and insulated – neutral systems of electrical power supply; their comparisons.

Unit-II
Earth fault protection techniques for above mine power supply systems, sensitive and fail-safe earth fault relays. On-line insulation monitoring for insulated-neutral electrical distribution system.

Unit-III
Mining type circuit breakers – Air circuit breaker, vacuum and Hexa Sulfa Flouride (Sf₆) circuit breakers, Field switch, Transwitch Unit, Gate End Box, Drill Panel.

Unit-IV
Electrical power planning for mechanized longwall faces – general scheme of electrical power distribution, voltage drop problems and remedial measurers; Inbye substation capacity selection. General scheme of electrical power distribution in opencast projects, Quarry substation capacity selection. Choice of restricted-neutral and insulated-neutral systems in open cast mines.

Unit-V
Illumination planning for mines – underground roadway lighting system; intrinsically-safe lighting system for longwall faces, opencast mine lighting.

Unit-VI
Earthing practice in mines – earth pits, earthing of mobile electrical equipment in mines. Mining cables – types, constructional details; layout of cables through shaft and other locations.

Unit-VII

Unit-VIII
Indian electricity rules as applied to mines.

Text Books:
4. Indian Electricity Rules.

Reference Books:
1. Universal Mining School Series (UK)
2. Coal Mining Practice- J.C. F Statharm Vol III, Heart Series.
GEOLOGICAL & TECHNOLOGICAL FACTORS OF COAL GASIFICATION CBM, SHALE GAB
(Elective –IV)

Unit-I
Underground Coal Gasification (UCG) Concept; Chemistry, conditions suitable for UCG, Principles of UCG.

Unit-II
UCG Process Component factors: Technology of UCG, opening up of coal seam for UCG.

Unit-III
Mining methods of UCG: Chamber method, Stream method, Borehole procedure method, Blind bore hole method.

Unit-IV
Non-Mining methods of UCG: Level seams, Inclined seams.

Unit-V
Linkage Techniques : Precolation linkage, Electro linkage, Boring linkage, compressed-air-linkage, Hydraulic fracture linkage.

Unit-VI

Unit-VII
Underground Coal Gasification at Great Depth, Merits and Demerits of Underground coal gasification.

Unit-VIII

Text / Reference Books:
1. Principles and Practices of Modern Coal Mining – R.D. SINGH
2. Underground Coal Mining Methods – J.G. SINGH
Unit-I

Unit-II
Causes of Accidents, accident report, accident analysis and control, cost of accidents, statistical and economical analysis of accident data.

Unit-III
System Engineering approach to safety, Techniques used in safety analysis, Generic approach to loss control with in mining operations.

Unit-IV
Safety management and organization, Risk management, Risk identification, Risk estimation and evaluation, Risk minimization techniques in mines. Risk analysis using FTA, HAZOP, ETA etc; Risk analysis softwares; health risk assessment and epidemiological studied.

Unit-V

Unit-VI
Emergency organization for disaster management.

Unit-VII
Accidents in opencast mines: Common causes and measures for prevention
Accidents due to ground movement: Falls of roof and sides in underground coal mines
Accidents due to rope haulage: Common causes and measures for prevention.

Unit-VIII
Accidents due to explosives: Common causes and measures for prevention.
Accidents due to electricity: Common causes and measures for prevention.
Inundations: Dangers from surface and underground water

Text / Reference Books:
4. DGMS CIRCULARS: MINES ACT
5. occupational Safety and Health in Industries and Mines by C.P. Singh
Unit - I

Unit-II

Unit-III

Unit-IV

Unit-V

Unit-VI
Component reliability and hazard models: Introduction, Component reliability from test data, Mean time to failure, Time – dependent hazard models, Stress- Dependent hazard models , Derivation of reliability function using Markov, Treatment of field data.

Unit-VII

Unit-VIII
Reliability management: Reliability programming - Management policies and decision - Reliability management by objectives - Reliability group - Reliability data : Acquisition and analysis - Managing people for reliability

TEXT BOOKS :
1. Reliability, Maintenance and Safety Engineering - Dr. A.K. Gupta/ Laxmi Publications
2. Industrial Safety Engineering – by L.M. Deshmukh/TMH
3. Reliability Engineering – Balaguruswamy- TMH
4. Reliability Engineering- L.S.Srinath

REFERENCE BOOKS:
1. Maintenance Engineering & Management – RC Misra/ PHI
2. Reliability Engineering by Elsayed/Pearson.
4. Reliability Engineering- Patrick DTO-Wiley Conor-India.
5. Reliability Engineering and life testing –Naikan PHI
UNIT-I
Exploration: Modern Exploration Techniques to Identify the Complex Coal Deposits

UNIT-II
Classification: Classification of Coal Deposits Lying under Typical Geo-mining conditions.

UNIT-III
Challenges: Challenges to improve production and productivity from Deep Seated Deposits.

UNIT-IV
Challenges in Liquidation of Locked-up Pillars

UNIT-V
Design and Development of Deep Seated Deposits.

UNIT-VI

UNIT-VII
Use of Modern Instruments for Strata Control of deep seated deposits.

UNIT-VIII
In-situ Gasification and Mineral Biotechnology for Complex Coal Deposits.

Text Books:
1. R.D. Singh, Principles & Practices of Modern Coal Mining, New age international New Delhi, 1997
2. T.N. Singh, Underground winning of Coal, Oxford and IBH New Delhi, 1992

Reference Books:
2. S.K. Das, Modern Coal Mining Technology, Lovely prakashan Dhanbad, 1992
4. S.P. Mathur, Coal Mining in India, M.S. Enterprises Bilaspur, 1999
<table>
<thead>
<tr>
<th>Course Type</th>
<th>Code</th>
<th>Lab</th>
<th>Theory</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDUSTRIAL TRAINING</td>
<td>6758673</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>SEMINAR</td>
<td>6758674</td>
<td>0</td>
<td>-/-</td>
<td>2</td>
</tr>
<tr>
<td>PROJECT WORK</td>
<td>6758675</td>
<td>0</td>
<td>-/-</td>
<td>10</td>
</tr>
<tr>
<td>COMPREHENSIVE VIVA</td>
<td>6758676</td>
<td>0</td>
<td>-/-</td>
<td>2</td>
</tr>
</tbody>
</table>