ACADEMIC REGULATIONS
COURSE STRUCTURE AND DETAILED SYLLABUS
FOR
ELECTRICAL AND ELECTRONICS ENGINEERING
For B.TECH.FOUR YEAR DEGREE COURSE
Applicable for the batches admitted from 2012-2013
REGULATION : R12

J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(Autonomous)
Yenkapally, Moinabad Mandal, P.O.Himayath Nagar, R.R.Dist, Hyderabad-500 075
Fax&Phone No.910-8413-235753, Tel:08413-235755,201301
Website:www.jbiet.edu.in ; e-mail:principal@jbiet.edu.in
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

Academic Regulations 2012 for B. Tech (Regular)

(Effective for the students admitted into I year from the Academic Year 2012-2013 onwards)

1. **Award of B.Tech. Degree**
 A student will be declared eligible for the award of the B. Tech. Degree if he fulfils the following academic regulations:

 i. **Pursued a course of study for not less than four academic years and not more than eight academic years.**

 ii. **Register for 200 credits and secure 200 credits**

2. Students, who fail to fulfill all the academic requirements for the award of the degree within eight academic years from the year of their admission, shall forfeit their seat in B.Tech course.

3. **Courses of study**
 The following courses of study are offered at present for specialization for the B. Tech. Course:

<table>
<thead>
<tr>
<th>Branch Code</th>
<th>Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>02</td>
<td>Electrical and Electronics Engineering</td>
</tr>
<tr>
<td>03</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>04</td>
<td>Electronics and Communication Engineering.</td>
</tr>
<tr>
<td>05</td>
<td>Computer Science and Engineering</td>
</tr>
<tr>
<td>11</td>
<td>Bio-Medical Engineering</td>
</tr>
<tr>
<td>12</td>
<td>Information Technology</td>
</tr>
<tr>
<td>25</td>
<td>Mining Engineering</td>
</tr>
</tbody>
</table>

 and any other course as approved by the authorities of JBIET from time to time.

4. **Credits**

<table>
<thead>
<tr>
<th>I Year</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Periods / Week</td>
</tr>
<tr>
<td>Theory</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>02</td>
</tr>
<tr>
<td>Practical</td>
<td>03</td>
</tr>
<tr>
<td>Drawing</td>
<td>02T/03D</td>
</tr>
<tr>
<td></td>
<td>06</td>
</tr>
<tr>
<td>Mini Project</td>
<td>--</td>
</tr>
<tr>
<td>Comprehensive Viva</td>
<td>--</td>
</tr>
</tbody>
</table>
5. Distribution and Weightage of Marks

i. The performance of a student in each semester / I year shall be evaluated subject-wise with a maximum of 100 marks for theory and 75 marks for practical subject. In addition, Industry oriented mini-project, seminar and project work shall be evaluated for 50, 50 and 200 marks respectively.

ii. For theory subjects the distribution shall be 25 marks for Internal Evaluation and 75 marks for the End-Examination.

iii. For the subject having design and / or drawing, (such as Engineering Graphics, Engineering Drawing, Machine Drawing) and estimation, the distribution shall be 25 marks for internal evaluation (15 marks for day-to-day work and 10 marks for subjective paper) and 75 marks for end examination. There shall be two internal tests in a Semester.

For theory subjects, the distribution shall be 25 marks for internal evaluation (Midterm exams (20marks) + Assignment (5marks)) and 75 marks for end examination. There shall be altogether four assignments (Each assignment consisting of 6 questions from every two units of syllabus) set by the teacher from the whole syllabus of the subject.

The pattern of question paper shall consist of two parts namely Part-A and Part-B out of which the candidate has to answer Part-A compulsorily and from Part-B, the candidate has to answer three questions out of five questions given. The Part-A i.e. question no.1 consists of sub questions, which are based on fundamentals and concept testing nature. These questions may of the following type:

a. Short answer questions for which answer is two to three sentences
b. Multiple choice questions
c. Fill in the blanks
d. True/False type

Any sub question may carry a maximum of 1 or 2 marks. Altogether candidate has to answer 4 questions out of 6 questions but question no.1 of Part-A is compulsory. The time allocated for the mid term examination is 2 hours. There shall be 2 Mid Term Examinations(1st Mid shall be from 1-4 Units and 2nd Mid shall be from 5-8 Units)

The Internal Evaluation is for 25 marks (20 for Mid term Examination and 5 Marks for Assignment), the average of these two shall be considered as the final marks for Internal Evaluation secured by the candidate.

However, for first year, there shall be 3 mid term examinations (Each for 20 Marks) and 3 Assignments (Each for 5 Marks), [1st mid shall be from 1-2 units, 2nd mid from 3-5 units and 3rd mid shall be from 6-8 units]. There shall be altogether six assignments (Each assignment consisting of 6 questions from every unit of syllabus) set by the teacher from the whole syllabus of the subject.
The Internal Evaluation is for 25 marks (20 for Mid term Examination and 5 Marks for Assignment), the average of these three shall be considered as the final marks for Internal Evaluation secured by the candidate. The question paper shall contain 6 questions, 1 in Part-A and 5 in Part-B. The candidate shall have to answer Part-A compulsorily and shall have to answer any three questions from remaining five questions of Part-B. The Part-A i.e. question no.1 consists of sub questions, which are based on fundamentals and concept testing nature. These questions may of the following type:

a. Short answer questions for which answer is two to three sentences
b. Multiple choice questions
c. Fill in the blanks
d. True/False type

Any sub question may carry a maximum of 1 or 2 marks. Altogether candidate has to answer 4 questions out of 6 questions.

iv. For practical subjects there shall be a continuous evaluation during the semester for 25 sessional marks and 50 end examination marks. Out of the 25 marks for internal, day-to-day work in the laboratory shall be evaluated for 15 marks and internal examination for practical shall be evaluated for 10 marks conducted by the concerned laboratory teacher. The end examination shall be conducted with external examiner and laboratory teacher. The external examiner shall be appointed by the Chief Controller of Examinations.

v. For the subject having design and / or drawing, (such as Engineering Graphics, Engineering Drawing, Machine Drawing) and estimation, the distribution shall be 25 marks for internal evaluation (15 marks for day-to-day work and 10 marks for subjective paper) and 75 marks for end examination. There shall be two internal tests in a Semester and average of the two shall be considered for the award of marks for internal tests. However in the I year class, there shall be three tests and the average of the three mid term examinations will be taken into consideration.

vi. There shall be an industry-oriented mini-Project, in collaboration with an industry of their specialization, to be taken up during the vacation after III year II Semester examination. However, the mini project and its report shall be evaluated with the project work in IV year II Semester. The industry oriented mini project shall be submitted in report form and should be presented before the committee, which shall be evaluated for 50 marks. The committee consists of an external examiner, head of the department, the supervisor of mini project and a senior faculty member of the department. There shall be no internal marks for industry oriented mini project.

vii. There shall be a seminar presentation in IV year II Semester. For the seminar, the student shall collect the information on a specialized topic and prepare a technical report, showing his understanding over the topic, and submit to the department, which shall be evaluated by the Departmental committee consisting of Head of the department, seminar supervisor and a senior faculty member. The seminar report shall be evaluated for 50 marks. There shall be no external examination for seminar.

viii. There shall be a Comprehensive Viva-Voce in IV year II semester. The Comprehensive Viva-Voce will be conducted by a Committee consisting of (i) Head of the Department (ii) two Senior Faculty members of the Department. The Comprehensive Viva-Voce is aimed to assess the students’ understanding in various subjects he / she studied during the B.Tech
course of study. The Comprehensive Viva-Voce is evaluated for 100 marks by the Committee. There are no internal marks for the Comprehensive viva-voce.

ix. Out of a total of 200 marks for the project work, 50 marks shall be for Internal Evaluation and 150 marks for the End Semester Examination. The End Semester Examination (viva-voce) shall be conducted by the same committee appointed for industry oriented mini project. In addition the project supervisor shall also be included in the committee. The topics for industry oriented mini project, seminar and project work shall be different from each other. The evaluation of project work shall be conducted at the end of the IV year. The Internal Evaluation shall be on the basis of two seminars given by each student on the topic of his project.

6. Attendance Requirements:
 i. A student shall be eligible to appear for College End examinations if he acquires a minimum of 75% of attendance in aggregate of all the subjects.
 ii. Shortage of Attendance below 65% in aggregate shall in NO case be condoned.
 iii. Condonation of shortage of attendance in aggregate up to 10% (65% and above and below 75%) in each semester or I year may be granted by the College Academic Committee.
 iv. A student will not be promoted to the next semester unless he satisfies the attendance requirement of the present semester / I year, as applicable. They may seek re-admission for that semester / I year when offered next.
 v. Students whose shortage of attendance is not condoned in any semester / I year are not eligible to take their end examination of that class and their registration shall stand cancelled.
 vi. A stipulated fee shall be payable towards condonation of shortage of attendance.

7. Minimum Academic Requirements:
The following academic requirements have to be satisfied in addition to the attendance requirements mentioned in item no.6
 i. A student shall be deemed to have satisfied the minimum academic requirements and earned the credits allotted to each theory or practical design or drawing subject or project if he secures not less than 35% of marks in the end examination and a minimum of 40% of marks in the sum total of the internal evaluation and end examination taken together.
 ii. A student shall be promoted from II to III year only if he fulfils the academic requirement of 37 credits from one regular and one supplementary examinations of I year, and one regular examination of II year I semester irrespective of whether the candidate takes the examination or not.
 iii. A student shall be promoted from third year to fourth year only if he fulfils the academic requirements of total 62 credits from the following examinations, whether the candidate takes the examinations or not.
 a. Two regular and two supplementary examinations of I year.
 b. Two regular and one supplementary examinations of II year I semester.
 c. One regular and one supplementary examinations of II year II semester.
 d. One regular examination of III year I semester.
 iv. A student shall register and put up minimum attendance in all 200 credits and earn the 200 credits. Marks obtained in all 200 credits shall be considered for the calculation of percentage of marks.
v. Students who fail to earn 200 credits as indicated in the course structure within eight academic years from the year of their admission shall forfeit their seat in B.Tech course and their admission shall stand cancelled.

8. Course pattern:
 i. The entire course of study is of four academic years. The first year shall be on yearly pattern and the second, third and fourth years on semester pattern.
 ii. A student eligible to appear for the end examination in a subject, but absent at it or has failed in the end examination may appear for that subject at the supplementary examination.
 iii. When a student is detained due to lack of credits / shortage of attendance he may be re-admitted when the semester / year is offered after fulfilment of academic regulations, whereas the academic regulations hold good with the regulations he was first admitted.

9. Award of Class:
 After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of B. Tech. Degree he shall be placed in one of the following four classes:

<table>
<thead>
<tr>
<th>Class Awarded</th>
<th>% of marks to be secured</th>
<th>From the aggregate marks secured for the best 200 Credits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class with Distinction</td>
<td>70% and above</td>
<td></td>
</tr>
<tr>
<td>First Class</td>
<td>Below 70% but not less than 60%</td>
<td></td>
</tr>
<tr>
<td>Second Class</td>
<td>Below 60% but not less than 50%</td>
<td></td>
</tr>
<tr>
<td>Pass Class</td>
<td>Below 50% but not less than 40%</td>
<td></td>
</tr>
</tbody>
</table>

(The marks in internal evaluation and end examination shall be shown separately in the marks memorandum)

10. Minimum Instruction Days:
 The minimum instruction days for each semester / I year shall be 90/180 clear instruction days.

11. There shall be no branch transfers after the completion of admission process.

12. General:
 i. Where the words “he”, “him”, “his”, occur in the regulations, they include “she”, “her”, “hers”.
 ii. The academic regulation should be read as a whole for the purpose of any interpretation.
 iii. In the case of any doubt or ambiguity in the interpretation of the above rules, the decision of the JBIET is final.
 iv. The JBIET may change or amend the academic regulations or syllabi at any time and the changes or amendments made shall be applicable to all the students with effect from the dates notified by the JBIET.

*_*_*
Academic Regulations for B. Tech. (Lateral Entry Scheme)

(Effective for the students getting admitted into II year from the Academic Year 2011-2012 and onwards)

1. The Students have to acquire 150 credits from II to IV year of B.Tech. Program (Regular) for the award of the degree. Register for **150** credits and secure **150** credits.

2. Students, who fail to fulfil the requirement for the award of the degree in 6 consecutive academic years from the year of admission, shall forfeit their seat.

3. The same attendance regulations are to be adopted as that of B. Tech. (Regular).

4. **Promotion Rule:**
 - A student shall be promoted from third year to fourth year only if he fulfils the academic requirements of **37 credits from the examinations**.
 a. Two regular and one supplementary examinations of II year I semester.
 b. One regular and one supplementary examinations of II year II semester.
 c. One regular examination of III year I semester.

5. **Award of Class:**
 - After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of B. Tech. Degree he shall be placed in one of the following four classes:

<table>
<thead>
<tr>
<th>Class</th>
<th>Percentage Range</th>
<th>Credits (II to IV year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class with Distinction</td>
<td>70% and above</td>
<td>From the aggregate marks secured for 150 Credits (i.e. II year to IV year)</td>
</tr>
<tr>
<td>First Class</td>
<td>Below 70% but not less than 60%</td>
<td></td>
</tr>
<tr>
<td>Second Class</td>
<td>Below 60% but not less than 50%</td>
<td></td>
</tr>
<tr>
<td>Pass Class</td>
<td>Below 50% but not less than 40%</td>
<td></td>
</tr>
</tbody>
</table>

(The marks in internal evaluation and end examination shall be shown separately in the marks memorandum)

6. All other regulations as applicable for B. Tech. Four-year degree course (Regular) will hold good for B. Tech. (Lateral Entry Scheme)
MALPRACTICES RULES

DISCIPLINARY ACTION FOR / IMPROPER CONDUCT IN EXAMINATIONS

<table>
<thead>
<tr>
<th>Nature of Malpractices/Improper conduct</th>
<th>Punishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (a) Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only.</td>
</tr>
<tr>
<td>(b) Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.</td>
</tr>
<tr>
<td>2. Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that Semester/year. The Hall Ticket of the candidate is to be cancelled and sent to the University.</td>
</tr>
<tr>
<td>3. Impersonates any other candidate in connection with the examination.</td>
<td>The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred and forfeits the seat. The performance of the original candidate who has been impersonated, shall be cancelled in all the subjects of the examination (including practicals and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.</td>
</tr>
<tr>
<td>4. Smuggles in the Answer book or additional sheet</td>
<td>Expulsion from the examination hall and</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.</td>
<td>cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.</td>
</tr>
<tr>
<td>5.</td>
<td>Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.</td>
</tr>
<tr>
<td>6.</td>
<td>Refuses to obey the orders of the Chief Superintendent/Assistant – Superintendent / any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in-charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.</td>
</tr>
<tr>
<td>7.</td>
<td>Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.</td>
</tr>
<tr>
<td>8.</td>
<td>Possess any lethal weapon or firearm in the examination hall.</td>
</tr>
</tbody>
</table>
and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.

9. If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.

Student of the colleges expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.

Person(s) who do not belong to the College will be handed over to police and, a police case will be registered against them.

10. Comes in a drunken condition to the examination hall.

Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year.

11. Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.

Cancellation of the performance in that subject and all other subjects the candidate has appeared including practical examinations and project work of that semester/year examinations.

12. If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the University for further action to award suitable punishment.

Malpractices identified by squad or special invigilators

1. Punishments to the candidates as per the above guidelines.
2. Punishment for institutions : (if the squad reports that the college is also involved in encouraging malpractices)
 (i) A show cause notice shall be issued to the college.
 (ii) Impose a suitable fine on the college.
 (iii) Shifting the examination centre from the college to another college for a specific period of not less than one year.
I YEAR

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6751001</td>
<td>English</td>
<td>2</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>6751002</td>
<td>Mathematics-I</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>6751008</td>
<td>Mathematical Methods</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>6751004</td>
<td>Engineering Physics</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6751005</td>
<td>Engineering Chemistry</td>
<td>2</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>6751006</td>
<td>Computer Programming & Data Structures</td>
<td>3</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>6751007</td>
<td>Engineering Drawing</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6751604</td>
<td>Computer Programming Lab.</td>
<td>-</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6751605</td>
<td>Engineering Physics & Engineering Chemistry Lab.</td>
<td>-</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6751606</td>
<td>English Language Communication Skills Lab.</td>
<td>-</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6751619</td>
<td>IT Workshop/Engineering Workshop</td>
<td>-</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>17</td>
<td>18</td>
<td>50</td>
</tr>
</tbody>
</table>

II YEAR I SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6753007</td>
<td>Mathematics-III</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6753018</td>
<td>Fluid Mechanics & Hydraulic Machinery</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6753009</td>
<td>Electronic Devices & Circuits</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>6753010</td>
<td>Electrical Circuits</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6753011</td>
<td>Electro Magnetic Fields</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6753012</td>
<td>Electrical Machines-I</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6753602</td>
<td>Fluid Mechanics & Hydraulic Machinery Lab.</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6753603</td>
<td>Electronic Devices & Circuits Lab.</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>21</td>
<td>11</td>
<td>25</td>
</tr>
</tbody>
</table>

II YEAR II SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6754007</td>
<td>Managerial Economics & Financial Analysis</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>6754008</td>
<td>Power Systems-I</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6754009</td>
<td>Electronic Circuits</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6754010</td>
<td>Switching Theory and Logic Design</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6754011</td>
<td>Network Theory</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6754012</td>
<td>Electrical Machines-II</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6754602</td>
<td>Electrical Machines Lab-I</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6754603</td>
<td>Electric Circuits and Simulation Lab.</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>21</td>
<td>11</td>
<td>25</td>
</tr>
</tbody>
</table>
III YEAR I SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6755009</td>
<td>IC Applications</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6755010</td>
<td>Management science</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6755011</td>
<td>Power systems – II</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>6755012</td>
<td>Control Systems</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6755013</td>
<td>Power Electronics</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6755014</td>
<td>Electrical Machines-III</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6755602</td>
<td>Electrical Machines Lab-II</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6755603</td>
<td>Control Systems and Simulation Lab.</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>21</td>
<td>11</td>
</tr>
</tbody>
</table>

III YEAR II SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6756009</td>
<td>Electrical Measurement</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>675610</td>
<td>Power Semiconductor Drives</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6756011</td>
<td>Computer Methods in Power Systems</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6756012</td>
<td>Microprocessors and Micro controllers</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Open Elective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6756013</td>
<td>Renewable Energy Sources</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6756008</td>
<td>Intellectual Property Rights</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6756014</td>
<td>Nanotechnology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6756015</td>
<td>Environmental Studies</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6756002</td>
<td>Advance English Communication Skills Lab</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6756003</td>
<td>Power Electronics and Simulation Lab.</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>21</td>
<td>11</td>
</tr>
</tbody>
</table>

IV YEAR I SEMESTER
<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6757012</td>
<td>Switchgear and Protection</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6757013</td>
<td>Utilization of Electrical Energy</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6757014</td>
<td>Instrumentation</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6757015</td>
<td>Power System operation and Control</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>6757016</td>
<td>Elective - I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6757017</td>
<td>High Voltage engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6757018</td>
<td>VLSI Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6757018</td>
<td>Digital Control Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6757019</td>
<td>Elective –II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6757020</td>
<td>Optimization Techniques</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6757021</td>
<td>Electrical Distribution Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6757021</td>
<td>Principles of Digital Signal Processing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6757603</td>
<td>Microprocessors and Microcontrollers Lab</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6757604</td>
<td>Electrical Measurement Lab</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>21</td>
<td>11</td>
<td>25</td>
</tr>
</tbody>
</table>

IV YEAR II SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6758008</td>
<td>HVDC Transmission</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>6758009</td>
<td>Neural Networks and Fuzzy Logic</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6758010</td>
<td>Linear Systems Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6758011</td>
<td>Reliability Engineering and Application to Power Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6758012</td>
<td>Elective-IV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6758013</td>
<td>Advanced Control Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6758014</td>
<td>EHC AC Transmission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6758014</td>
<td>Computer Systems Organization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6758605</td>
<td>Industrial Oriented Mini Project</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>6758606</td>
<td>Seminar</td>
<td>-</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>6758607</td>
<td>Major Project</td>
<td>-</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>6758608</td>
<td>Comprehensive Viva</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>9</td>
<td>23</td>
<td>25</td>
</tr>
</tbody>
</table>

Note: All End Examinations (Theory and Practical) are of three hours duration.

T-Tutorial L – Theory P – Practical/Drawing C – Credits
1. INTRODUCTION:

In view of the growing importance of English as a tool for global communication and the consequent emphasis on training students to acquire communicative competence, the syllabus has been designed to develop linguistic and communicative competence of Engineering students. The prescribed books and the exercises are meant to serve broadly as students’ handbooks. In the English classes, the focus should be on the skills of reading, writing, listening and speaking and for this the teachers should use the text prescribed for detailed study. For example, the students should be encouraged to read the texts/selected paragraphs silently. The teachers can ask comprehension questions to stimulate discussion and based on the discussions students can be made to write short paragraphs/essays etc.

The text for non-detailed study is for extensive reading/reading for pleasure by the students. Hence, it is suggested that they read it on their own with topics selected for discussion in the class. The time should be utilized for working out the exercises given after each section, as also for supplementing the exercises with authentic materials of a similar kind for example, from newspaper articles, advertisements, promotional material etc. However, the stress in this syllabus is on skill development and practice of language skills.

2. OBJECTIVES:

a. To improve the language proficiency of the students in English with emphasis on LSRW skills.

b. To equip the students to study academic subjects with greater facility through the theoretical and practical components of the English syllabus.

c. To develop the study skills and communication skills in formal and informal situations.

3. SYLLABUS:

Listening Skills:
Objectives
1. To enable students to develop their listening skill so that they may appreciate its role in the LSRW skills approach to language and improve their pronunciation
2. To equip students with necessary training in listening so that can comprehend the speech of people of different backgrounds and regions

Students should be given practice in listening to the sounds of the language to be able to recognise them, to distinguish between them to mark stress and recognise and use the right intonation in sentences.

- Listening for general content
- Listening to fill up information
- Intensive listening
- Listening for specific information

Speaking Skills:
Objectives
1. To make students aware of the role of speaking in English and its contribution to their success.
2. To enable students to express themselves fluently and appropriately in social and professional contexts.

- Oral practice
- Describing objects/situations/people
- Role play – Individual/Group activities (Using exercises from all the nine units of the prescribed text: Learning English: A Communicative Approach.)
- Just A Minute(JAM) Sessions.

Reading Skills:
Objectives
1. To develop an awareness in the students about the significance of silent reading and comprehension.
2. To develop the ability of students to guess the meanings of words from context and grasp the overall message of the text, draw inferences etc.

- Skimming the text
- Understanding the gist of an argument
• Identifying the topic sentence
• Inferring lexical and contextual meaning
• Understanding discourse features
• Recognizing coherence/sequencing of sentences

NOTE: The students will be trained in reading skills using the prescribed text for detailed study. They will be examined in reading and answering questions using ‘unseen’ passages which may be taken from the non-detailed text or other authentic texts, such as magazines/newspaper articles.

Writing Skills:
Objectives
1. To develop an awareness in the students about writing as an exact and formal skill
2. To equip them with the components of different forms of writing, beginning with the lower order ones.

• Writing sentences
• Use of appropriate vocabulary
• Paragraph writing
• Coherence and cohesiveness
• Narration / description
• Note Making
• Formal and informal letter writing
• Editing a passage

4. TEXTBOOKS PRESCRIBED:
In order to improve the proficiency of the student in the acquisition of the four skills mentioned above, the following texts and course content, divided into Eight Units, are prescribed:

For Detailed study

1 First Text book entitled “Enjoying Everyday English”, Published by Sangam Books, Hyderabad

For Non-detailed study
1. Second text book “Inspiring Speeches and Lives”, Published by Maruthi Publications, Guntur

A. STUDY MATERIAL:
UNIT-I
a. Sir C.V. Raman (Detail) A pathbreaker in the saga of Indian Science. (Detail)
b. Leading a team and Work brings Solace (from Wings of Fire)
 --University Press

UNIT-II
a. The Connoisseur (Detail)
b. Mother Theresa (Non-detail)

UNIT-III
a. Kalpana Chawla “Inspiration” (Detail)
b. Sam Pitroda (Non-detail)

UNIT-IV
a. Bubbling Well Road (Detail)
b. I have a dream-Martin Luther king(Non-detail)

UNIT-V
a. The Cuddalore Experience(Detail)
b. Amartya kumar Sen(Non-detail)

UNIT-VI
a. Youth, Awake, Arise- STOP NOT TILL
 Swami Vivekananda Institute of Human Excellence,
b. John F. Kennedy (Non-detail)
UNIT-VII
Exercises on:
Reading & Writing Skills
Reading Comprehension
Letter Writing
Essay Writing

UNIT-VIII
Exercises on Remedial Grammar;
Common errors in English
Subject-Verb agreement
Tense aspect
Vocabulary development - Synonyms, Antonyms, One word substitutes, Prefixes-Suffixes, Idioms, Phrases, Words often confused

REFERENCES:
1. Innovate with English: A Course in English for Engineering Students, edited by T Samson, Foundation Books
2. English Grammar Practice, Raj N Bakshi, Orient Longman.
3. Effective English, edited by E Suresh Kumar, A RamaKrishna Rao, P Sreehari, Published by Pearson
6. Technical Communication, Meenakshi Raman, Oxford University Press
7. Objective English Edgar Thorpe & Showick Thorpe, Pearson Education
9. Murphy’s English Grammar with CD, Murphy, Cambridge University Press.
10. Everyday Dialogues in English, Robert J. Dixon, Prentice Hall India Pvt Ltd.,
12. Basic Vocabulary Edgar Thorpe & Showick Thorpe, Pearson Education
16. Enrich your English, Thakur K B P Sinha, Vijay Nicole Imprints Pvt Ltd.,
UNIT-I : Sequences - Series
Basic definitions of Sequences and Series – Convergence and divergence – Ratio test – Comparison test – Integral test – Cauchy’s root test – Raabe’s test – Absolute and conditional convergence

UNIT-II : Differential equations of first order and their applications
Overview of differential equations – exact, linear and Bernoulli. Applications to Newton’s Law of cooling, Law natural growth and decay, orthogonal trajectories and geometrical applications.

UNIT-III : Higher Order Linear differential equations and their applications
Linear differential equations of second and higher order with constant coefficients, RHS term of the f(x)=e^{ax}, Cos ax, and x^n, e^{ax} V(x), x^n V(x) method of variation of parameters. Applications bending of beams, Electrical circuits, simple harmonic motion.

UNIT-IV : Laplace transform and its application to Ordinary differential equations

UNIT-V : Function of Single Variable
Rolle’s Theorem – Lagrange’s Mean Value Theorem – Cauchy’s mean value Theorem – Generalized mean value theorem (all theorems without proof) Functions of several variables – Functional dependence – Jacobian – Maxima and Minima of functions of two variables with constraints and without constraints.

UNIT-VI : Application of Single variable
Radius, Centre and Circle of Curvature-Evolutes and Envelopes Curve tracing – Cartesian, polar and parametric curves.

UNIT-VII : Integration & its applications
Riemann Sums, integral Representation for lengths, Areas, Volumes and Surface areas in Cartesian and polar coordinates, multiple integrals – double and triple integrals – change of order of integration – change of variable.

UNIT-VIII : Vector Calculus

TEXT BOOKS:
1. Engineering Mathematics by B.V.Ramana
2. Engineering Mathematics-I by T.K.V. Iyanar & B.Krishna Gandhi & Others, S.Chand

REFERENCES:
J.B. INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

I Year B.Tech.
6751008

MATHEMATICAL METHODS

UNIT-I: Solution for linear systems

UNIT-II: Eigen values & Eigen Vectors

UNIT-III: Linear Transformations

UNIT-IV: Solution of Non-linear Systems

Interpolation:

UNIT-V: Curve fitting & Numerical Integration

UNIT-VI: Numerical solution of IVP’s in ODE

UNIT-VII: Fourier Series-Fourier Transform

UNIT-VIII: Z-Transform & Partial differential equations
Z-Transform-Properties-Damping rule-shifting rule-Initial & Final value theorems-convolution theorem –solution of difference equation by Z-transform -Introduction and Formation of partial equation by elimination of arbitrary constants and arbitrary functions, solutions of first order linear (Lagrange) equation and nonlinear (Standard type) equations.

TEXT BOOKS:
1. Engineering Mathematics by B.V. Ramana

REFERENCES:
1. Introductory Methods by Numerical Analysis by S.S. Sastry, PHI Learning Pvt. Ltd.
4. A text Book of KREYSZIG’S Mathematical Methods, Dr.A.Ramakrishna Prasad, WILEY Publications.
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

1 Year B.Tech. 6751004
L T/P/D C
2 1/- 4

ENGINEERING PHYSICS

Unit-I Physical Optics:
1. Interference: Types of Interferences, Interference in thin films (reflected light) - Newton's rings.
2. Diffraction: Types of diffraction, Frounhofer’s Diffraction at a single slit, double slit and diffraction grating (N-slits).
3. Polarization: Introduction to polarization, Malus law, double refraction, Nico's prism, Brewster’s law
Applications of Interference, Diffraction & Polarization in industry.

UNIT-II Crystallography –XRD methods

UNIT-III Defects in Crystals & Principles of Quantum Mechanics
6. Defects in Crystals: Point Defects: Vacancies, Substitution, Interstitial, Frenkel and Schottky Defects, Concentration of vacancies at given temperature, concentration of Schottky & Frenkel defects, Qualitative treatment of line (Edge and Screw Dislocations) Defects, Burger’s Vector, Surface Defects and Volume Defects. (Qualitative treatment)

UNIT-IV Band Theory of Solids

UNIT-V Acoustics of Building & Acoustic Quieting and Ultrasonics

Ultrasonics:
Concept of ultrasonics wave generation, Different methods of generation of Ultrasonic’s (Piezostriction and Magnetostriction), concept of NDT & Applications.

UNIT-VI Dielectric and Magnetic Properties
UNIT-VII Lasers and Fiber Optics

UNIT-VIII Nanotechnology

TEXT BOOKS:
7. Engineering Physics – Adeel Ahmad & B S Bellubbi (Florence Publication , Hyd)

REFERENCES:
1. Solid state physics -- M.Arumugam
2. Applied physics – Mani naidu
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

1 Year B.Tech.
6751005

ENGINEERING CHEMISTRY

UNIT I:

UNIT II:

UNIT III:

UNIT IV:

UNIT V:

UNIT VI:

UNIT VII:
Phase rule: Definitions: phase, component, degree of freedom, phase rule equitation. Phase diagrams - one component system: water system. Two component system lead- silver system, heat treatment based on iron-carbon phase diagram, hardening, annealing.

UNIT VIII:

TEXT BOOKS:

REFERENCE BOOKS:
UNIT - I

UNIT - II
Selection Statements – if and switch statements, Repetition statements – while, for, do-while statements, Loop examples, other statements related to looping – break, continue, goto, Simple C Programming examples.

UNIT - III
Designing Structured Programmes, Functions, basics, user defined functions, inter function communication, Standard functions, Scope, Storage classes-auto, register, static, extern, scope rules, type qualifiers, recursion- recursive functions, Preprocessor commands, example C programmes
Arrays – Concepts, using arrays in C, inter function communication, array applications, two – dimensional arrays, multidimensional arrays, C programme examples.

UNIT - IV
Pointers – Introduction (Basic Concepts), Pointers for inter function communication, pointers to pointers, compatibility, memory allocation functions, array of pointers, programming applications, pointers to void, pointers to functions, command –line arguments.
Strings – Concepts, C Strings, String Input / Output functions, arrays of strings, string manipulation functions, string / data conversion, C programme examples.

UNIT - V
Derived types – Structures – Declaration, definition and initialization of structures, accessing structures, nested structures, arrays of structures, structures and functions, pointers to structures, self referential structures, unions, typedef, bit fields, enumerated types, C programming examples.

UNIT - VI
Input and Output – Concept of a file, streams, standard input / output functions, formatted input / output functions, text files and binary files, file input / output operations, file status functions (error handling), C programme examples.

UNIT – VII
Searching and Sorting – Sorting- selection sort, bubble sort, insertion sort, quick sort, merge sort, Searching-linear and binary search methods.

UNIT – VIII
Data Structures – Introduction to Data Structures, abstract data types, Linear list – singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks-Operations, array and linked representations of stacks, stack application-infix to postfix conversion, postfix expression evaluation, recursion implementation, Queues-operations, array and linked representations.

TEXT BOOKS :

REFERENCES:
2. The C Programming Language, B.W. Kernighan and Dennis M.Ritchie, PHI/Pearson Education
7. C Programming & Data Structures, E. Balagurusamy, TMH.
8. C Programming & Data Structures, P. Dey, M Ghosh R Thereja, Oxford University Press
ENGINEERING DRAWING

UNIT – I
- a) Conic Sections including the Rectangular Hyperbola – General method only.
- b) Cycloid, Epicycloid and Hypocycloid
- c) Involute.
- d) Scales: Different types of Scales, Plain scales comparative scales, scales of chords.

UNIT – II
DRAWING OF PROJECTIONS OR VIEWS ORTHOGRAPHIC PROJECTION IN FIRST ANGLE
PROJECTION: Principles of Orthographic Projections – Conventions – First and Third Angle, Projections of Points and Lines inclined to both planes, True lengths, traces.

UNIT – III
PROJECTIONS OF PLANES & SOLIDS: Projections of regular Planes, auxiliary planes and Auxiliary projection inclined to both planes. Projections of Regular Solids inclined to both planes – Auxiliary Views.

UNIT – IV
SECTIONS AND SECTIONAL VIEWS: Right Regular Solids – Prism, Cylinder, Pyramid, Cone – Auxiliary views.

UNIT – V
DEVELOPMENT AND INTERPENETRATION OF SOLIDS: Development of Surfaces of Right, Regular Solids – Prisms, Cylinder, Pyramid Cone and their parts. Interpenetration of Right Regular Solids

UNIT – VI
INTERSECTION OF SOLIDS: Intersection of Cylinder Vs Cylinder, Cylinder Vs Prism, Cylinder Vs Cone.

UNIT – VII

UNIT – VIII
TRANSFORMATION OF PROJECTIONS: Conversion of Isometric Views to Orthographic Views – Conventions, Introduction to perspective projections (Practise not required)

TEXT BOOK:
1. Engineering Drawing, N.D. Bhat / Charotar
3. Engineering Drawing – Basant Agrawal, TMH

REFERENCES:
Objectives:
- To make the student learn a programming language.
- To teach the student to write programs in C to solve the problems.
- To Introduce the student to simple linear data structures such as lists, stacks, queues.

Recommended Systems/Software Requirements:
- Intel based desktop PC
- ANSI C Compiler with Supporting Editors

Week 1.

a) Write a C program to find the sum of individual digits of a positive integer.

b) A Fibonacci Sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence.

c) Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user.

Week 2.

a) Write a C program to calculate the following Sum:
\[S = \frac{1}{2!} - x + \frac{x^4}{4!} + x^6/6! - x^8/8! + \frac{x^{10}}{10!} \]

b) Write a C program to find the roots of a quadratic equation.

Week 3

a) Write C programs that use both recursive and non-recursive functions
 i) To find the factorial of a given integer.
 ii) To find the GCD (greatest common divisor) of two given integers.
 iii) To solve Towers of Hanoi problem.

Week 4

a) The total distance travelled by vehicle in ‘t’ seconds is given by distance \[d = ut + \frac{1}{2}at^2 \] where ‘u’ and ‘a’ are the initial velocity (m/sec.) and acceleration (m/sec^2). Write C program to find the distance travelled at regular intervals of time given the values of ‘u’ and ‘a’. The program should provide the flexibility to the user to select his own time intervals and repeat the calculations for different values of ‘u’ and ‘a’.

b) Write a C program, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +,-,*, /, % and use Switch Statement)

Week 5

a) Write a C program to find both the largest and smallest number in a list of integers.

b) Write a C program that uses functions to perform the following:
 i) Addition of Two Matrices
 ii) Multiplication of Two Matrices

Week 6

a) Write a C program that uses functions to perform the following operations:
 i) To insert a sub-string in to a given main string from a given position.
 ii) To delete n Characters from a given position in a given string.

b) Write a C program to determine if the given string is a palindrome or not

Week 7

a) Write a C program that displays the position or index in the string S where the string T begins, or –1 if S doesn’t contain T.

b) Write a C program to count the lines, words and characters in a given text.
Week 8

a) Write a C program to generate Pascal’s triangle.

b) Write a C program to construct a pyramid of numbers.

Week 9

Write a C program to read in two numbers, x and n, and then compute the sum of this geometric progression:
\[1 + x + x^2 + \ldots + x^n \]

For example: if n is 3 and x is 5, then the program computes 1+5+25+125.

Print x, n, the sum

Perform error checking. For example, the formula does not make sense for negative exponents – if n is less than 0. Have your program print an error message if n<0, then go back and read in the next pair of numbers of without computing the sum. Are any values of x also illegal? If so, test for them too.

Week 10

a) 2’s complement of a number is obtained by scanning it from right to left and complementing all the bits after the first appearance of a 1. Thus 2’s complement of 11100 is 00100. Write a C program to find the 2’s complement of a binary number.

b) Write a C program to convert a Roman numeral to its decimal equivalent.

Week 11

Write a C program that uses functions to perform the following operations:

i) Reading a complex number
ii) Writing a complex number
iii) Addition of two complex numbers
iv) Multiplication of two complex numbers

(Note: represent complex number using a structure.)

Week 12

a) Write a C program which copies one file to another.

b) Write a C program to reverse the first n characters in a file.

(Note: The file name and n are specified on the command line.)

Week 13

a) Write a C programme to display the contents of a file.

b) Write a C programme to merge two files into a third file (i.e., the contents of the first file followed by those of the second are put in the third file)

Week 14

Write a C program that uses functions to perform the following operations on singly linked list:

i) Creation ii) Insertion iii) Deletion iv) Traversal

Week 15

Write C programs that implement stack (its operations) using

i) Arrays ii) Pointers

Week 16

Write C programs that implement Queue (its operations) using

i) Arrays ii) Pointers

Week 17

Write a C program that uses Stack operations to perform the following:

i) Converting infix expression into postfix expression
ii) Evaluating the postfix expression

Week 18

Write a C program that implements the following sorting methods to sort a given list of integers in ascending order

i) Bubble sort
ii) Selection sort

Week 19

Write C programs that use both recursive and non recursive functions to perform the following searching operations for a Key value in a given list of integers:

i) Linear search ii) Binary search
Week 20
Write C program that implements the following sorting method to sort a given list of integers in ascending order:
 i) Quick sort

Week 21
Write C program that implements the following sorting method to sort a given list of integers in ascending order:
 i) Merge sort

Week 22
Write C programs to implement the Lagrange interpolation and Newton-Gregory forward interpolation.

Week 23
Write C programs to implement the linear regression and polynomial regression algorithms.

Week 24
Write C programs to implement Trapezoidal and Simpson methods.

Text Books
4. Practical C Programming, Steve Oualline, O’Reilly, SPD. TMH publications.
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

1 Year B.Tech.
6751605

ENGINEERING PHYSICS / ENGINEERING CHEMISTRY LAB

ENGINEERING PHYSICS LAB
(Any twelve experiments compulsory)

1. Dispersive power of the material of a prism – Spectrometer
4. Meld’s experiment – Transverse and longitudinal modes.
5. Time constant of an R-C circuit.
6. L-C-R circuit.
7. Magnetic field along the axis of current carrying coil – Stewart and Gees method.
8. Study the characteristics of LED and LASER sources.
9. Study the characteristics of p-i-n and avalanche photodiode detectors.
11. Evaluation of numerical aperture of given fibre.
12. Energy gap of a material of p-n junction.
13. Thermo electric effect – Seebeck effect and Peltier effect.
14. Torsional pendulum.

ENGINEERING CHEMISTRY LAB

List of Experiments (Any 12 of the following):

Titrimetry:
 a. Estimation of hardness of water by EDTA method. (or)
 Estimation of calcium in limestone by Permanganometry.

Mineral Analysis:
 2 Determination of percentage of copper in brass
 3 Estimation of manganese dioxide in pyrolusite.

Instrumental Methods:
 4. Colorimetry:
 Determination of ferrous iron in cement by colorimetric method.
 (Or) Estimation of Copper by Colorimetric method.
 5. Conductometry:
 Conductometric titration of strong acid Vs strong base.
 (or) Conductometric titration of mixture of acids Vs strong base.
 6. Potentiometry:
 Titration of strong acid Vs strong base by potentiometry.
 (or) Titration of weak acid Vs strong base by potentiometry.

Physical Properties:
 7. Determination of viscosity of sample oil by redwood/oswald’s viscometer
 8. Determination Surface Tension of lubricants.

Identification and Preparations:
 9. Identification of functional groups present in organic compounds.
 10. Preparation of organic compounds
 Asprin (or) Benzimidazol
Kinetics:

11. To determine the rate constant of hydrolysis of methyl acetate catalysed by an acid and also the energy of activation. (or) To study the kinetics of reaction between K$_2$S$_2$O$_8$ and KI.

12. Demonstration Experiments (Any One of the following):
 a. Determination of dissociation constant of weak acid by pH metry
 b. Preparation of Thiokol rubber
 c. Adsorption on Charcoal
 d. Heat of reaction

TEXT BOOKS:
2. Inorganic quantitative analysis, Vogel.

REFERENCE BOOKS:
1. Text Book of engineering chemistry by R. N. Goyal and Harmanendra Goel.
ENGLISH LANGUAGE COMMUNICATION SKILLS LAB

The Language Lab focuses on the production and practice of sounds of language and familiarises the students with the use of English in everyday situations and contexts.

Objectives:
1. To expose the students to a variety of self-instructional, learner-friendly modes of language learning.
2. To help the students cultivate the habit of reading passages from the computer monitor, thus providing them with the required facility to face computer-based competitive exams such as GRE, TOEFL, GMAT etc.
3. To enable them to learn better pronunciation through stress on word accent, intonation, and rhythm.
4. To train them to use language effectively to face interviews, group discussions, public speaking.
5. To initiate them into greater use of the computer in resume preparation, report writing, format-making etc.

SYLLABUS:
The following course content is prescribed for the English Language Laboratory sessions:
1. Introduction to the Sounds of English - Vowels, Diphthongs & Consonants.
2. Introduction to Stress and Intonation.
3. Situational Dialogues / Role Play.
5. ‘Just A Minute’ Sessions (JAM).
6. Describing Objects / Situations / People.
7. Information Transfer
8. Debate
10. Giving Directions.

Minimum Requirement:
The English Language Lab shall have two parts:
i) The Computer aided Language Lab for 60 students with 60 systems, one master console, LAN facility and English language software for self-study by learners.

ii) The Communication Skills Lab with movable chairs and audio-visual aids with a P.A System, a T.V., a digital stereo -audio & video system and camcorder etc.

System Requirement (Hardware component):
Computer network with Lan with minimum 60 multimedia systems with the following specifications:
i) P – IV Processor
 a) Speed – 2.8 GHZ
 b) RAM – 512 MB Minimum
 c) Hard Disk – 80 GB
ii) Headphones of High quality

Suggested Software:
• Cambridge Advanced Learners’ English Dictionary with CD.
• The Rosetta Stone English Library.
• Clarity Pronunciation Power – Part I.
• Mastering English in Vocabulary, Grammar, Spellings, Composition
• Dorling Kindersley series of Grammar, Punctuation, Composition etc.
• Language in Use, Foundation Books Pvt Ltd with CD.
• Oxford Advanced Learner’s Compass, 7th Edition.
• Learning to Speak English - 4 CDs.
• Vocabulary in Use, Michael McCarthy, Felicity O’Den, Cambridge.
• Murphy’s English Grammar, Cambridge with CD.
• English in Mind, Herbert Puchta and Jeff Stranks with Meredith Levy, Cambridge
Books Suggested for English Language Lab Library (to be located within the lab in addition to the CDs of the text book which are loaded on the systems):

1. A Handbook for English Language Laboratories – Prof. E. Suresh Kumar, P. Sreehari, Foundation Books.
3. English Conversation Practice by Grant Taylor, Tata McGraw Hill.
5. Communicate or Collapse: A Handbook of Effective Public Speaking, Group Discussions and Interviews, by Pushpa Lata & Kumar, Prentice-Hall of India.
7. Spoken English by R. K. Bansal & J. B. Harrison, Orient Longman.
8. English Language Communication: A Reader cum Lab Manual Dr A Ramakrishna Rao, Dr. G. Natanam & Prof. S. A. Sankaranarayanan, Anuradha Publications, Chennai.
12. Spoken English: A foundation Course, Parts 1 & 2, Kamlesh Sadanand and Susheela punitha, Orient Longman

DISTRIBUTION AND WEIGHTAGE OF MARKS

English Language Laboratory Practical Paper:

1. The practical examinations for the English Language Laboratory shall be conducted as per the University norms prescribed for the core engineering practical sessions.
2. For the Language lab sessions, there shall be a continuous evaluation during the year for 25 sessional marks and 50 year-end Examination marks. Of the 25 marks, 15 marks shall be awarded for day-to-day work and 10 marks to be awarded by conducting Internal Lab Test(s). The year-end Examination shall be conducted by an external examiner/ or the teacher concerned with the help of another member of the staff of the same department of the same institution.
Objectives:
The IT Workshop for engineers is a training lab course spread over 54 hours. The modules include training on PC Hardware, Internet & World Wide Web and Productivity tools including Word, Excel and Power Point.

PC Hardware introduces the students to a personal computer and its basic peripherals, the process of assembling a personal computer, installation of system software like MS Windows, Linux and the required device drivers. In addition, hardware and software level troubleshooting process, tips and tricks would be covered. The students should work on working PC to disassemble and assemble to working condition and install Windows and Linux on the same PC. Students are suggested to work similar tasks in the Laptop scenario wherever possible.

Internet & World Wide Web module introduces the different ways of hooking the PC on to the internet from home and workplace and effectively usage of the internet. Usage of web browsers, email, newsgroups and discussion forums would be covered. In addition, awareness of cyber hygiene, i.e., protecting the personal computer from getting infected with the viruses, worms and other cyber attacks would be introduced.

Productivity tools module would enable the students in crafting professional word documents, excel spread sheets and power point presentations using the Microsoft suite of office tools and LaTeX. (Recommended to use Microsoft office 2007 in place of MS Office 2003)

PC Hardware
Week 1 – Task 1: Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral and submit to your instructor.

Week 2 – Task 2: Every student should disassemble and assemble the PC back to working condition. Lab instructors should verify the work and follow it up with a Viva. Also students need to go through the video which shows the process of assembling a PC. A video would be given as part of the course content.

Week 3 – Task 3: Every student should individually install MS windows on the personal computer. Lab instructor should verify the installation and follow it up with a Viva.

Week 4 – Task 4: Every student should install Linux on the computer. This computer should have windows installed. The system should be configured as dual boot with both windows and Linux. Lab instructors should verify the installation and follow it up with a Viva.

Week 5 – Task 5: Hardware Troubleshooting: Students have to be given a PC which does not boot due to improper assembly or defective peripherals. They should identify the problem and fix it to get the computer back to working condition. The work done should be verified by the instructor and followed up with a Viva.

Week 6 – Task 6: Software Troubleshooting: Students have to be given a malfunctioning CPU due to system software problems. They should identify the problem and fix it to get the computer back to working condition. The work done should be verified by the instructor and followed up with a Viva.

Internet & World Wide Web
Week 7 – Task 1: Orientation & Connectivity Boot Camp: Students should get connected to their Local Area Network and access the Internet. In the process they configure the TCP/IP setting. Finally students should demonstrate, to the instructor, how to access the websites and email. If there is no internet connectivity preparations need to be made by the instructors to simulate the WWW on the LAN.

Week 8 – Task 2: Web Browsers, Surfing the Web: Students customize their web browsers with the LAN proxy settings, bookmarks, search toolbars and pop up blockers. Also, plug-ins like Macromedia Flash and JRE for applets should be configured.
Week 9 - Task 3 : Search Engines & Netiquette : Students should know what search engines are and how to use the search engines. A few topics would be given to the students for which they need to search on Google. This should be demonstrated to the instructors by the student.

Week 10 - Task 4 : Cyber Hygiene : Students would be exposed to the various threats on the internet and would be asked to configure their computer to be safe on the internet. They need to first install an anti virus software, configure their personal firewall and windows update on their computer. Then they need to customize their browsers to block pop ups, block active x downloads to avoid viruses and/or worms.

Productivity tools

LaTeX and Word

Week 11 – Word Orientation: The mentor needs to give an overview of LaTeX and Microsoft (MS) office 2007/ equivalent (FOSS) tool word: Importance of LaTeX and MS office 2007/ equivalent (FOSS) tool Word as word Processors, Details of the three tasks and features that would be covered in each, using LaTeX and word – Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter.

Task 1 : Using LaTeX and Word to create project certificate. Features to be covered:- Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in both LaTeX and Word.

Week 12 - Task 2 : Creating project abstract Features to be covered:- Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.

Week 13 - Task 3 : Creating a Newsletter : Features to be covered:- Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphs and Mail Merge in word.

Excel

Week 14 - Excel Orientation: The mentor needs to tell the importance of MS office 2007/ equivalent (FOSS) tool Excel as a Spreadsheet tool, give the details of the two tasks and features that would be covered in each. Using Excel – Accessing, overview of toolbars, saving excel files, Using help and resources.

Task 1: Creating a Scheduler - Features to be covered:- Gridlines, Format Cells, Summation, auto fill, Formatting Text

Week 15 - Task 2 : Calculating GPA - Features to be covered:- Cell Referencing, Formulae in excel – average, std. deviation, Charts, Renaming and Inserting worksheets, Hyper linking, Count function, LOOKUP/VLOOKUP, Sorting, Conditional formatting

LaTeX and MS/equivalent (FOSS) tool Power Point

Week 16 - Task1 : Students will be working on basic power point utilities and tools which help them create basic power point presentation. Topic covered during this week includes :- PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows in both LaTeX and Power point. Students will be given model power point presentation which needs to be replicated (exactly how it’s asked).

Week 17- Task 2 : Second week helps students in making their presentations interactive. Topic covered during this week includes : Hyperlinks, Inserting –Images, Clip Art, Audio, Video, Objects, Tables and Charts

Week 18 - Task 3 : Concentrating on the in and out of Microsoft power point and presentations in LaTeX. Helps them learn best practices in designing and preparing power point presentation. Topic covered during this week includes :- Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes etc), Inserting – Background, textures, Design Templates, Hidden slides.

REFERENCES :
1. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
2. LaTeX Companion – Leslie Lamport, PHI/Pearson.
3. Introduction to Computers, Peter Norton, 6/e Mc Graw Hill
4. Upgrading and Repairing, PC’s 18th e, Scott Muller QUE, Pearson Education
5. Comdex Information Technology course tool kit Vikas Gupta, WILEY Dreamtech
7. PC Hardware and A+Handbook – Kate J. Chase PHI (Microsoft)

ENGINEERING WORKSHOP

1. TRADES FOR EXERCISES:
 At least two exercises from each trade:
 1. House Wiring
 2. Carpentry
 3. Tin-Smithy and Development of jobs carried out and soldering.
 4. Fitting

2. TRADES FOR DEMONSTRATION & EXPOSURE:
 1. Metal Cutting (Water Plasma)
 2 Power Tools in Construction, wood working, Electrical Engineering and Mechanical Engineering

TEXT BOOK:
2 Workshop Manual by Venkat Reddy
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

II Year B.Tech. EEE-I Sem
6753007

L T/P/D C
3 1/- 3

MATHEMATICS – III

UNIT – I: Special Functions I

UNIT-II: Special Functions II

UNIT-III: Functions of a complex variable

UNIT-IV: Complex integration
Line integral – evaluation along a path and by indefinite integration – Cauchy’s integral theorem – Cauchy’s integral formula – Generalized integral formula.

UNIT-V: Complex power series
Radius of convergence – Expansion in Taylor’s series, Maclaurin’s series and Laurent series. Singular point –Isolated singular point – pole of order m – essential singularity. (Distinction between the real analyticity and complex analyticity)

UNIT-VI: Contour Integration
Residue – Evaluation of residue by formula and by Laurent series - Residue theorem.

UNIT-VII: Evaluation of integrals of the type

(a) Improper real integrals $\int_{-\infty}^{\infty} f(x)dx$
(b) $\int_{0}^{2\pi} f(\cos \theta, \sin \theta)d\theta$
(c) $\int_{-\infty}^{\infty} e^{imx} f(x)dx$
(d) Integrals by indentation.

MATLAB/R introduction

UNIT-VIII: Conformal mapping
Transformation by e^z, Imz, z^n, $z^\frac{1}{n}$ (n positive integer), $\sin z$, $\cos z$, $z + a/z$. Translation, rotation, inversion and bilinear transformation – fixed point – cross ratio – properties – invariance of circles and cross ratio – determination of bilinear transformation mapping 3 given points.

TEXT BOOKS:
3. Introduction to MATLAB by Rudragupta

REFERENCES:
3. Complex Variables by R.V. Churchill.
FLUID MECHANICS AND HYDRAULIC MACHINERY

UNIT I
Fluid statics: Dimensions and units: physical properties of fluids- specific gravity, viscosity surface tension- vapor pressure and their influence on fluid motion- atmospheric gauge and vacuum pressure –measurement of pressure- Piezometer, U-tube and differential manometers.

UNIT II
Fluid kinematics: stream line, path line and streak lines and stream tube, classification of flows-steady & unsteady, uniform, non uniform, laminar, turbulent, rotational, and irrotational flows-equation of continuity for one dimensional flow.
Fluid dynamics: surface and body forces –Euler’s and Bernoulli’s equations for flow along a stream line, momentum equation and its application on force on pipe bend.

UNIT III
Closed conduit flow: Reynold's experiment- Darcy Weisbach equation- Minor losses in pipes- pipes in series and pipes in parallel- total energy line-hydraulic gradient line.

UNIT IV
Basics of turbo machinery: hydrodynamic force of jets on stationary and moving flat, inclined, and curved vanes, jet striking centrally and at tip, velocity diagrams, work don and efficiency, flow over radial vanes.

UNIT V
Hydroelectric power stations: Elements of hydro electric power station-types-concept of pumped storage plants-storage requirements, mass curve (explanation only) estimation of power developed from a given catchment area; heads and efficiencies.

UNIT VI
Hydraulic Turbines: classification of turbines, impulse and reaction turbines, Pelton wheel, Francis turbine and Kaplan turbine-working proportions, work done, efficiencies , hydraulic design –draft tube- theory- functions and efficiency.

UNIT VII
Performance of hydraulic turbines: Geometric similarity, Unit and specific quantities, characteristic curves, governing of turbines, selection of type of turbine, cavitation, surge tank, water hammer.

UNIT-VIII
Centrifugal pumps: classification, working, work done – manomertic head- losses and efficiencies- specific speed- pumps in series and parallel-performance characteristic curves, NPSH.

TEXT BOOKS:
1. Hydraulics, fluid mechanics and Hydraulic machinery MODI and SETH.
2. Fluid Mechanics and Hydraulic Machines by Rajput.

REFERENCE BOOKS:
2. Fluid Mechanics and Machinery by D. Rama Durgaiah, New Age International.
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

II Year B.Tech. EEE-I Sem
6753009

ELECTRONIC DEVICES AND CIRCUITS

Unit- I: p-n Junction Diode
Qualitative Theory of p-n Junction, p-n Junction as a Diode, Diode Equation, Volt-Ampere Characteristics, Temperature dependence of VI characteristic, Ideal versus Practical – Resistance levels (Static and Dynamic), Transition and Diffusion Capacitances, Diode Equivalent Circuits, Load Line Analysis, Breakdown Mechanisms in Semiconductor Diodes, Zener Diode Characteristics.

Unit- II: Rectifiers and Filters
The p-n junction as a Rectifier, Half wave Rectifier, Full wave Rectifier, Bridge Rectifier, Harmonic components in a Rectifier Circuit, Inductor Filters, Capacitor Filters, L-Section Filters, π-Section Filters, Comparision of Filters, Voltage Regulation using Zener Diode.

Unit- III: Bipolar Junction Transistor

Unit- IV: Transistor Biasing and Stabilization
Operating Point, The DC and AC Load lines, Need for Biasing, Fixed Bias, Collector Feedback Bias, Emitter Feedback Bias, Collector - Emitter Feedback Bias, Voltage Divider Bias, Bias Stability, Stabilization Factors, Stabilization against variations in VBE and β, Bias Compensation using Diodes and Transistors, Thermal Runaway, Thermal Stability.

Unit- V: Small Signal Low Frequency BJT Models
BJT Hybrid Model, Determination of h-parameters from Transistor Characteristics, Analysis of a Transistor Amplifier Circuit using h-Parameters, Comparison of CB, CE, and CC Amplifier Configurations.

Unit-VI: Field Effect Transistor

Unit VII: FET Amplifiers
FET Common Source Amplifier, Common Drain Amplifier, Generalized FET Amplifier, Biasing FET, FET as Voltage Variable Resistor, Comparison of BJT and FET.

Unit VIII: INDUSTRIAL ELECTRONIC DEVICES & APPLICATIONS:
Negative resistance Devices, Uni junction Transistor(UJT), UJT Relaxation Oscillator, Programmable UJT(PUT), Silicon Controlled Rectifier(SCR), Transient Effect in SCR, Light Activated SCR(LASCR), SILICON Controlled Switch(PCS), Schottky Barrier Diode, DIAC,TRIAC Diodes & Their characteristics.

Text Books
3. Introduction to Electronic Devices and Circuits - Rober T. Paynter, PE.

References
Objective:
This course introduces the basic concepts of circuit analysis which is the foundation for all subjects of the Electrical Engineering discipline. The emphasis of this course is laid on the basic analysis of circuits which includes single phase circuits, magnetic circuits, theorems, transient analysis and network topology.

UNIT-I Introduction to Electrical Circuits
Circuit concept –R-L-C parameters-Voltage and Current sources- Independent and dependent sources-source transformation-Voltage - Current relationship for passive elements (for different input signals-square, ramp, saw tooth, triangular)

UNIT-II Kirchoff’s laws – network reduction techniques-series, parallel, series parallel, star-to-delta or delta-to-star transformation, Nodal analysis, mesh analysis, super node and super mesh for D.C excitations.

UNIT-III Single Phase A.C Circuits
R.M.S and Average values and form factor for different periodic wave forms, Steady state analysis of R.L and C (in series, parallel and series parallel combinations) with sinusoidal excitation-Concept of Reactance, Impedance, Susceptance and Admittance- Phase and Phase difference – concept of power factor, Real and Reactive powers – J-notation, Complex and Polar forms of representation, Complex power

UNIT-IV Locus diagrams & Resonance
Locus diagrams - series R-L, R-C, R-L-C and parallel combination with variation of various parameters - Resonance-series, parallel circuits, concept of bandwidth and Q factor.

UNIT-V Magnetic Circuits
Magnetic circuits-Faraday’s laws of electromagnetic induction-concept of self and mutual inductance-dot convention-coefficient of coupling-composite magnetic circuit-analysis of series and parallel magnetic circuits

UNIT-VI Network topology
Definitions – Graph – Tree, Basic cutest and Basic Tieset matrices for planar networks – Loop and Nodal methods of analysis of Networks with dependent & independent voltage and current sources – Duality & Dual networks.

UNIT-VII Network theorems (with D.C)
Tellegen’s, Superposition, Reciprocity, Thevenin’s, Norton’s, Maximum Power Transfer, Millman’s and Compensation theorems for D.C excitations.

UNIT-VIII Network theorems (with A.C)
Tellegen’s, Superposition, Reciprocity, Thevenin’s, Norton’s, Maximum Power Transfer, Millman’s and Compensation theorems for d.c excitations.

TEXT BOOKS:
2. Circuits & Networks by A. Sudhakar and Shyammohan S Palli, Tata McGraw- Hill
3. Electric Circuits by A. Chakrabarthy, Dhanipat Rai & Sons

REFERENCE BOOKS:
1. Network Analysis by M.E Van Valkenberg.
2. Linear circuit analysis (time domain phasor and Laplace transform approaches)
4. Basic circuit analysis by D.R. Cunningham & J.A Stuller, Jaico Publications
Objective:
The objective of this course is to introduce the concepts of electric field and magnetic fields and their applications which will be utilized in the development of the theory for power transmission lines and electrical machines.

UNIT – I Electrostatics:
Electrostatic Fields – Coulomb’s Law – Electric Field Intensity (EFI) – EFI due to a line and a surface charge – Work done in moving a point charge in an electrostatic field – Electric Potential – Properties of potential function – Potential gradient – Guass’s law – Application of Guass’s Law – Maxwell’s first law, \(\text{div} (D) = \rho \)

UNIT – II Conductors and dipole:
Laplace’s and Poisson’s equations – Solution of Laplace’s equation in one variable. Electric dipole – Dipole moment – potential and EFI due to an electric dipole – Torque on an electric dipole in an electric field – Behavior of conductors in an electric field – Conductors and Insulators.

UNIT – III Dielectric & Capacitance:
Electric field inside a dielectric material – polarization – Dielectric – Conductor and Dielectric – Dielectric boundary conditions, Capacitance – Capacitance of parallel plate and spherical and co-axial capacitors with composite dielectrics – Energy stored and energy density in a static electric field – Current density – conduction and Convection current densities – Ohm’s law in point form – Equation of continuity

UNIT – IV Magneto Statics:
Static magnetic fields – Biot-Savart’s law – Oesterd’s experiment - Magnetic field intensity (MFI) – MFI due to a straight current carrying filament – MFI due to circular, square and solenoid current – Carrying wire – Relation between magnetic flux, magnetic flux density and MFI – Maxwell’s second Equation, \(\text{div}(B) = 0 \).

UNIT – V Ampere’s circuital law and its applications
Ampere’s circuital law and its applications viz. MFI due to an infinite sheet of current and a long current carrying filament – Point form of Ampere’s circuital law – Maxwell’s third equation, \(\text{Curl} (H) = J_c \), Field due to a circular loop, rectangular and square loops.

UNIT – VI Force in Magnetic fields:
Magnetic force - Moving charges in a Magnetic field – Lorentz force equation – force on a current element in a magnetic field – Force on a straight and a long current carrying conductor in a magnetic field – Force between two straight long and parallel current carrying conductors – Magnetic dipole and dipole moment – a differential current loop as a magnetic dipole – Torque on a current loop placed in a magnetic field

UNIT – VII Magnetic Potential:
Scalar Magnetic potential and its limitations – vector magnetic potential and its properties – vector magnetic potential due to simple configurations – vector Poisson’s equations. Self and Mutual inductance – Neumann’s formulae – determination of self-inductance of a solenoid and toroid and mutual inductance between a straight long wire and a square loop wire in the same plane – energy stored and density in a magnetic field. Introduction to permanent magnets, their characteristics and applications.

UNIT – VIII Time Varying Fields:
Time varying fields – Faraday’s laws of electromagnetic induction – Its integral and point forms – Maxwell’s fourth equation, \(\text{Curl} (E) = \epsilon_0 \frac{\partial B}{\partial t} \) – Statistically and Dynamically induced EMFs – Simple problems -Modification of Maxwell’s equations for time varying fields – Displacement current – Poynting Theorem and Poynting vector.

TEXT BOOKS:
2. “Electro magnetic Fields” by Sadiku, Oxford Publications

REFERENCE BOOKS:
ELECTRICAL MACHINES - I

Objective:
Electrical machines course is one of the important courses of the Electrical discipline. In this course the different types of DC generators and motors which are widely used in industry are covered and their performance aspects will be studied.

UNIT – I Electromechanical Energy Conversion
Electromechanical Energy conversion – forces and torque in magnetic field systems – energy balance – energy and force in a singly excited magnetic field system, determination of magnetic force - co-energy – multi excited magnetic field systems.

UNIT – II D.C. Generators – Construction & Operation

UNIT – III Armature reaction in D.C. Generator

UNIT – IV Types of D.C Generators
Methods of Excitation – separately excited and self excited generators – build-up of E.M.F - critical field resistance and critical speed - causes for failure to self excite and remedial measures.

UNIT – V Load Characteristics of Generators
Load characteristics of shunt, series and compound generators – parallel operation of d.c series generators – use of equalizer bar and cross connection of field windings – load sharing.

UNIT – VI D.C. Motors
D.C Motors – Principle of operation – Back E.M.F. - Torque equation – characteristics and application of shunt, series and compound motors – Armature reaction and commutation.

UNIT – VII Speed control of D.C. Motors

UNIT – VIII Testing of D.C. Machines
Testing of d.c. machines: Losses – Constant & Variable losses – calculation of efficiency – condition for maximum efficiency
Methods of Testing – direct, indirect and regenerative testing – brake test – Swinburne’s test – Hopkinson’s test – Field’s test – Retardation test – separation of stray losses in a d.c. motor test.

TEXT BOOKS:
2. Electrical Machines – P.S. Bimbra., Khanna Publishers

REFERENCE BOOKS:
1. Performance and Design of D.C Machines – by Clayton & Hancock, BPB Publishers
2. Electrical Machines -S.K. Battacharya.
FLUID MECHANICS AND HYDRAULIC MACHINES LAB

1. Impact of jets on Vanes
2. Performance Test on Pelton Wheel.
3. Performance Test on Francis Turbine
4. Performance Test on Kaplan Turbine
5. Performance Test on Single Stage Centrifugal Pump
6. Performance Test on Multi Stage Centrifugal Pump
7. Performance Test on Reciprocating Pump
8. Calibration of Venturimeter
10. Determination of friction factor for a given pipe line.
11. Determination of loss of head due to sudden contraction in a pipeline.
12. Turbine flow meter.

Note: Any 10 of the above 12 experiments are to be conducted.
PART A: (Only for Viva-voce Examination)

ELECTRONIC WORKSHOP PRACTICE (in 3 lab sessions):

1. Identification, Specifications, Testing of R, L, C Components (Color Codes), Potentiometers, Switches (SPDT, DPDT, and DIP), Coils, Gang Condensers, Relays, Bread Boards, PCB’s.
2. Identification, Specifications and Testing of Active Devices, Diodes, BJT’s, Low power JFET’s, MOSFET’s, Power Transistors, LED’s, LCD’s, SCR, UJT.
3. Study and operation of
 • Multimeters (Analog and Digital)
 • Function Generator
 • Regulated Power Supplies
 • CRO.

PART B: (For Laboratory Examination – Minimum of 10 experiments)

1. Forward & Reverse Bias Characteristics of PN Junction Diode.
2. Zener diode characteristics and Zener as voltage Regulator.
3. Input & Output Characteristics of Transistor in CB Configuration.
4. Input & Output Characteristics of Transistor in CE Configuration.
5. Half Wave Rectifier with & without filters
6. Full Wave Rectifier with & without filters
7. FET characteristics
8. Measurement of h parameters of transistor in CB, CE, CC configurations
10. Frequency Response of Common Source FET amplifier
11. SCR characteristics.
12. UJT Characteristics
13. Triac Characteristics

PART C:

Equipment required for Laboratories:

1. Regulated Power supplies (RPS) - 0-30 V
2. CRO’s - 0-20 MHz.
3. Function Generators - 0-1 MHz.
4. Multimeters
5. Decade Resistance Boxes/Rheostats
6. Decade Capacitance Boxes
7. Ammeters (Analog or Digital) - 0-20 µA, 0-50µA, 0-100µA, 0-200µA, 0-10 mA.
8. Voltmeters (Analog or Digital) - 0-50V, 0-100V, 0-250V
9. Electronic Components - Resistors, Capacitors, BJTs, LCDs, SCRs, UJTs, FETs, LEDs, MOSFETs, diodes Ge& Si type, Transistors – npn, pnp type)
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

II Year B.Tech. EEE-II Sem

6754007

L T/P/D C
4 -/- 4

MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS

Unit I Introduction to Managerial Economics:

Unit II Elasticity of Demand: Definition, Types, Measurement and Significance of Elasticity of Demand. Demand Forecasting, Factors governing demand forecasting, methods of demand forecasting (survey methods, statistical methods, expert opinion method, test marketing, controlled experiments, judgmental approach to demand forecasting)

Cost Analysis: Cost concepts, Opportunity cost, Fixed vs. Variable costs, Explicit costs Vs. Implicit costs, Out of pocket costs vs. Imputed costs. Break-even Analysis (BEA)-Determination of Break-Even Point (simple problems)- Managerial Significance and limitations of BEA.

Unit IV Introduction to Markets & Pricing Policies:
Market structures: Types of competition, Features of Perfect competition, Monopoly and Monopolistic Competition. Price-Output Determination in case of Perfect Competition and Monopoly.

Unit VI Capital and Capital Budgeting: Capital and its significance, Types of Capital, Estimation of Fixed and Working capital requirements, Methods and sources of raising finance.
Nature and scope of capital budgeting, features of capital budgeting proposals, Methods of Capital Budgeting: Payback Method, Accounting Rate of Return (ARR) and Net Present Value Method (simple problems)

Unit VIII Financial Analysis through ratios: Computation, Analysis and Interpretation of Liquidity Ratios (Current Ratio and quick ratio), Activity Ratios (Inventory turnover ratio and Debtor Turnover ratio), Capital structure Ratios (Debt- Equity ratio, Interest Coverage ratio), and Profitability ratios (Gross Profit Ratio, Net Profit ratio, Operating Profit Ratio, P/E Ratio and EPS).

TEXT BOOKS:

REFERENCES:

Prerequisites: Nil
Objective: To explain the basic principles of managerial economics, accounting and current business environment underlying business decision making.

Codes/Tables: Present Value Tables need to be permitted into the examinations Hall.

Question Paper Pattern: 5 Questions to be answered out of 8 questions.
Each question should not have more than 3 bits.
Objective:
Electrical Power plays significant role in day to day life of entire mankind. This course concerns the generation and distribution of power along with the economic aspects.

UNIT-1 Thermal Power Stations
Line diagram of Thermal Power Station (TPS) showing paths of coal, steam, water, air, ash and flue gasses. Brief description of TPS components: Economizers, Boilers, Super heaters, Turbines, Condensers, Chimney and Cooling towers.

UNIT-2 Gas and Nuclear Power Stations

UNIT-3 General Aspects of Distribution Systems and D.C. Distribution Systems
Classification of Distribution Systems - Comparison of DC vs AC and Under-Ground vs Over - Head Distribution Systems. Requirements and Design features of Distribution Systems. Voltage Drop Calculations (Numerical Problems) in D.C. Distributors for the following cases: Radial D.C. Distributor fed one end and at the both the ends (equal/unequal Voltages) and Ring Main Distributor.

UNIT-4 A.C. Distribution Systems
Voltage Drop Calculations (Numerical Problems) in A.C. Distributors for the following cases: Power Factors referred to receiving end voltage and with respect to respective load voltages.

UNIT-5 Substations.
Classification of substations: Air insulated substations - Indoor & Outdoor substations: Substations layout showing the location of all the substation equipment. Bus bar arrangements in the Sub- Stations: Simple arrangements like single bus bar, sectionalized single bus bar, main and transfer bus bar system with relevant diagrams.

Gas insulated substations (GIS) – Advantages of Gas insulated substations, different types of gas insulated substations, single line diagram of gas insulated substations, bus bar, construction aspects of GIS, Installation and maintenance of GIS, Comparison of Air insulated substations and Gas insulated substations.

UNIT-6 Power factor and Voltage Control

UNIT-7 Economic Aspects of Power Generation
Load curve, load duration and integrated load duration curves-load, demand, diversity, capacity, utilization and plant use factors- Numerical Problems.

UNIT-8 Tariff Methods
Costs of Generation and their division into Fixed, Semi-fixed and Running Costs. Desirable Characteristics of a Tariff Method. Tariff Methods: Flat Rate, Block-Rate, two-part, three –part, and power factor tariff methods and Numerical Problems

TEXT BOOKS

REFERENCE BOOKS
1. Elements of Power Station design and practice by M.V. Deshpande, Wheeler Publishing.
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

II Year B.Tech. EEE-II Sem

6754009

ELECTRONIC CIRCUITS

UNIT-I SINGLE STAGE AMPLIFIERS DESIGN AND ANALYSIS

UNIT-II BJT & FET FREQUENCY RESPONSE
Logarithms-Decibels-General frequency consideration-Low frequency analysis-Low frequency response of BJT amplifiers-Low frequency response of FET amplifier-Miller effect capacitance-High frequency response of BJT amplifier-Square wave testing

UNIT-III FEEDBACK AMPLIFIERS
Concept of feedback, Classification of feedback amplifiers, General characteristics of negative feedback amplifiers, Effect of Feedback on Amplifier characteristics-Voltage series-Voltage shunt, Current series and Current shunt Feedback configurations-Simple problems.

UNIT-IV OSCILLATORS

UNIT-V LARGE SIGNAL AMPLIFIERS:

UNIT-V LINEAR WAVESHAPING
High pass, low pass RC circuits, their response for sinusoidal, step, pulse, square and ramp inputs.

UNIT VI CLIPPERS AND CLAMPERS
Diode clippers, Transistor clippers, clipping at two independent levels, Transfer characteristics of clippers, Emitter coupled clipper, Comparators, applications of voltage comparators, clamping operation, clamping circuits using diode with different inputs, Clamping circuit theorem, practical clamping circuits, effect of diode characteristics on clamping voltage, Transfer characteristics of clampers.

UNIT VII SWITCHING CHARACTERISTICS OF DEVICES
Diode as a switch, piecewise linear diode characteristics, Transistor as a switch, Break down voltage consideration of transistor, saturation parameters of Transistor and their variation with temperature, Design of transistor switch, transistor-switching times.

UNIT VIII MULTIVIBRATORS
Analysis and Design of Bistable, Monostable, Astable Multivibrators and Schmitt trigger using transistors.

TEXT BOOKS:

REFERENCES:
SWITCHING THEORY AND LOGIC DESIGN

UNIT I
Number Systems & Codes: Philosophy of Number Systems, Complement Representation of Negative Numbers, Binary Arithmetic, Binary Codes, Error Detecting & Error Correcting Codes, Hamming codes.

UNIT II

UNIT III

UNIT IV
Combinational Logic Design
Design using conventional logic gates, Encoder, Decoder, Multiplexer, De-Multiplexer, Modular design using IC chips, MUX Realization of switching functions Parity bit generator, Code converters, Hazards and Hazard free Realizations.

UNIT V
Programmable Logic Devices & Threshold Logic: Basic PLD’s- ROM, PROM, PLA, PAL, Realization of Switching functions using PLD’s, Capabilities and Limitations of Threshold gate, Synthesis of Threshold functions, Multigate Synthesis.

UNIT VI
Sequential Circuits I: Classification of sequential circuits (Synchronous, Asynchronous, Pulse mode, Level mode with examples), Basic Flip-Flops, Triggering and Excitation tables, Steps in Synchronous Sequential Circuit Design, Design of modulo-N Ring & Shift counters, Serial binary adder, Sequence detector.

UNIT VII
Sequential Circuits II: Finite State Machine-Capabilities and Limitations, Mealy and Moore models, Minimization of Completely Sspecified and Incompletely Specified Sequential Machines, Partition Techniques and Merger chart methods, Concept of Minimal cover table.

UNIT VIII
Algorithmic State Machines: Salient features of the ASM chart, Simple examples, System design using data path and control subsystems, Control implementations, Examples of Weighing Machine and Binary multiplier.

TEXTBOOKS:

REFERENCES:
1. An Engineering Approach to Digital Design – Fletcher, PHI.
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

II Year B.Tech. EEE-II Sem
6754011

NETWORK THEORY

UNIT-I Three phase circuits
Three phase circuits: Phase sequence- Star and delta connection-Relation between line and phase voltages and currents in balanced systems-Analysis of balanced and unbalanced 3 phase circuits-Measurement of active and reactive power.

UNIT-II D.C Transient Analysis
Transient response of R-L, R-C, R-L-C circuits (Series and parallel combination) for D.C excitation-Initial conditions-solution method using differential equation and laplace transforms

UNIT-III A.C Transient Analysis
Transient response of R-L, R-C, R-L-C circuits (Series and parallel combination) for sinusoidal excitations-Initial conditions-Solution method using differential equation and laplace transforms

UNIT-IV Network Functions
The concept of Complex Frequency, Physical Interpretation of Complex Frequency, Transform Impedance and Transform Circuits, Series and parallel Combination of Elements, Terminal Pairs or Ports, Networks Functions for the One-port and Two-port, Poles and Zeros of Network Functions, Significance of poles and Zeros, Properties of Driving Point Functions, Properties of Transfer Functions, Necessary Conditions for Driving Point Functions, Necessary Conditions for Transfer Functions, Time Domain Response from Pole Zero Plot

UNIT-V Network Parameters I
Two port network parameters – Z, Y, ABCD and hybrid parameters and their relations.

UNIT-VI Network Parameters-II
Cascaded networks, concept of transformed network - 2port network parameters using transformed variables.

UNIT-VII Filters-I
Low pass, High pass, Band pass, Band elimination, Prototype filter design

UNIT-VIII Fourier analysis of A.C Circuits
The Fourier theorem, consideration of symmetry, exponential form of Fourier series, line spectra and phase angle spectra, Fourier integrals and Fourier transforms, properties of Fourier transforms.

TEXT BOOKS:
1. Electric circuits by A.Chakrabarthy, Dhanipat Rai & Sons
2. Circuits & Networks by A. Sudhakar and Shyammohan S Palli, Tata McGraw- Hill
3. Electric circuit analysis by B. Subrahmanyam, I.K international

REFERENCE BOOKS:
1. Network Analysis by M.E Van Valkenberg.
2. Electric circuit Analysis by C.L. Wadhwa, New Age international
3. Electric circuits by David A. Bell, Oxford University press
4. Basic circuit analysis by D.R. Cunningham & J.A Stuller, Jaico Publications
Objective:
As an extension of Electrical machines I course this subject facilitates to study of the performance of Transformers and Induction motors which are the major part of industrial drives and agricultural pump sets.

UNIT-I Single Phase Transformers – Construction & Operation
Single phase transformers-types - constructional details-minimization of hysteresis and eddy current losses-emf equation - operation on no load and on load - phasor diagrams

UNIT-II Single Phase Transformers - Performance
Equivalent circuit - losses and efficiency-regulation. All day efficiency - effect of variations of frequency & supply voltage on iron losses.

UNIT-III Testing of Single Phase Transformer and Autotransformer
OC and SC tests - Sumpner’s test - predetermination of efficiency and regulation-separation of losses test-parallel operation with equal and unequal voltage ratios - auto transformers-equivalent circuit - comparison with two winding transformers.

UNIT-IV Polyphase Transformers
Polyphase transformers - Polyphase connections - Y/Y, Y/Δ, Δ/Y, Δ/Δ and open Δ. Third harmonics in phase voltages-three winding transformers-tertiary windings-determination of Zp, Zs and Zt transients in switching - off load and on load tap changing; Scott connection.

UNIT-V Polyphase Induction Motors
Polyphase induction motors-construction details of cage and wound rotor machines-production of a rotating magnetic field - principle of operation - rotor emf and rotor frequency - rotor reactance, rotor current and pf at standstill and during operation.

UNIT-VI Characteristics of Induction Motors
Rotor power input, rotor copper loss and mechanical power developed and their inter relation-torque equation-deduction from torque equation - expressions for maximum torque and starting torque - torque slip characteristic - double cage and deep bar rotors - equivalent circuit - phasor diagram - crawling and cogging

UNIT-VII Circle Diagram of Induction Motors
Circle diagram-no load and blocked rotor tests-predetermination of performance-methods of starting and starting current and torque calculations

UNIT-VIII Speed Control Methods
Speed control-change of frequency; change of poles and methods of consequent poles; cascade connection. injection of an emf into rotor circuit (qualitative treatment only)-induction generator-principle of operation.

TEXT BOOKS:

REFERENCE BOOKS:
1. Performance and Design of AC Machines by MG.Say, BPB Publishers
ELECTRICAL MACHINES LAB – I

The following experiments are required to be conducted compulsory experiments:

1. Magnetization characteristics of DC shunt generator. Determination of critical field resistance and critical speed.
2. Load test on DC shunt generator. Determination of characteristics.
3. Load test on DC series generator. Determination of characteristics.
4. Load test on DC compound generator. Determination of characteristics.
5. Hopkinson’s test on DC shunt machines. Predetermination of efficiency.
7. Swinburne’s test and speed control of DC shunt motor. Predetermination of efficiencies.

In addition to the above eight experiments, at least any two of the experiments from the following list are required to be conducted:

Reference:

PART-A: ELECTRICAL CIRCUITS

1) Thevenin’s, Norton’s and Maximum Power Transfer Theorems
2) Superposition theorem and RMS value of complex wave
3) Verification of Compensation Theorem
4) Reciprocity, Millmann’s Theorems
5) Locus Diagrams of RL and RC Series Circuits
6) Series and Parallel Resonance
7) Determination of Self, Mutual Inductances and Coefficient of coupling
8) Z and Y Parameters
9) Transmission and hybrid parameters
10) Measurement of Active Power for Star and Delta connected balanced loads
11) Measurement of Reactive Power for Star and Delta connected balanced loads
12) Measurement of 3-phase Power by two Wattmeter Method for unbalanced loads

PART-B: PSPICE SIMULATION

1) Simulation of DC Circuits
2) DC Transient response
3) Mesh Analysis
4) Nodal Analysis

NOTE:

- PSPICE Software Package is necessary.
- Eight experiments are to be conducted from PART-A and any Two from PART-B
IC APPLICATIONS

Part 1 LINEAR INTEGRATED CIRCUITS

UNIT I INTEGRATED CIRCUITS
Classification, chip size and circuit complexity, ideal and practical Op-amp, internal circuits, Op-amp characteristics, DC and AC characteristics, 741 op-amp and its features, concept of virtual ground, modes of operation-inverting, non-inverting, differential.

UNIT II OP-AMP APPLICATIONS
Basic application of Op-amp, instrumentation amplifier, ac amplifier, V to I and I to V converters, sample & hold circuits, Differentiators and Integrators, Comparators, Schmitt trigger, Multivibrators, introduction to voltage regulators, features of 723.

UNIT III ACTIVE FILTERS & OSCILLATORS
Introduction, 1st order LPF, HPF filters. Band pass, Band reject and all pass filters. Oscillator types and principle of operation – RC, Wien and quadrature type, waveform generators – triangular, sawtooth, square wave and VCO.

UNIT IV TIMERS & PHASE LOCKED LOOPS
Introduction to 555 timer, functional diagram, monostable and astable operations and applications, Schmitt Trigger. PLL - introduction, block schematic, principles and description of individual blocks of 565.

Part 2 DATA CONVERTER INTEGRATED CIRCUIT IC's

UNIT V D-A AND A-D CONVERTERS
Introduction, basic DAC techniques, weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, and IC 1408 DAC. Different types of ADCs - parallel comparator type ADC, counter type ADC, successive approximation ADC and dual slope ADC. DAC and ADC specifications.

Part 3 DIGITAL INTEGRATED CIRCUITS

UNIT VI INTRODUCTION
Classification of Integrated circuits, comparison of various logic families, standard TTL NAND Gate. Analysis & characteristics, TTL open collector O/Ps, Tristate TTL, MOS & CMOS open drain and tristate outputs, CMOS transmission gate, IC interfacing-TTL driving CMOS & CMOS driving TTL.

UNIT VII COMBINATIONAL CIRCUIT IC's
Design using TTL-74XX & CMOS 40XX series, code converters, decoders, Demultiplexers, Encoder, priority Encoder, multiplexers & their applications, priority generators circuits. arithmetic circuits-parallel binary adder/subtractor circuits using 2’s, Complement system. Digital comparator circuits.

UNIT VIII SEQUENTIAL CIRCUIT IC's
Flip-flops & their conversions. Synchronous and asynchronous counters. Decade counter, shift registers & applications, familiarities with commonly available 74XX & CMOS 40XX series of IC counters.

TEXT BOOKS

REFERENCES:
1. Op Amps & linear integrated circuits- concepts and applications James M. Fiore cengage learning 2009
J.B. INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

III Year B.Tech EEE I-Sem
6755010

MANAGEMENT SCIENCE

Unit I

Unit II

Unit III
Operations Management: Principles and Types of Plant Layout-Methods of production (Job, batch and Mass Production), Work Study -Basic procedure involved in Method Study and Work Measurement-Statistical Quality Control: X chart, R chart, c chart, p chart,

Unit IV

Unit V
A) Materials Management: Objectives, Need for Inventory control, EOQ, ABC Analysis, VED Analysis, FSN Analysis, Purchase Procedure, Stores Management - Logistics and basics of supply Chain Management.

Unit VI

Unit VII

Unit VIII

REFERENCE BOOKS:
1. Aryasri: Management Science, TMH, New Delhi, 2009
2. Stoner, Management, Pearson, 2009

Pre-requisites: Managerial Economics
Objective: To familiarize with the process of management and to provide basic insights into select contemporary management practices.
Codes/Tables: Normal Distribution Function Table need to be permitted into the examination Hall.
Question Paper Pattern: 5 Questions to be answered out of 8 questions. The question paper should contain atleast 2 practical problems, one each from units –III & IV
Each question should not have more than 3 bits.
Unit VIII will have only short questions, not essay questions.
Objective:
This course is an extension of Power systems-I course. It deals with basic theory of transmission lines modeling and their performance analysis. Also this course gives emphasis on mechanical design of transmission lines, cables and insulators.

UNIT-I Transmission Line Parameters
Types of conductors - calculation of resistance for solid conductors - Calculation of inductance for single phase and three phase, single and double circuit lines, concept of GMR & GMD, symmetrical and asymmetrical conductor configuration with and without transposition, Numerical Problems.
Calculation of capacitance for 2 wire and 3 wire systems, effect of ground on capacitance, capacitance calculations for symmetrical and asymmetrical single and three phase, single and double circuit lines, Numerical Problems.

UNIT-II Performance of Short and Medium Length Transmission Lines
Classification of Transmission Lines - Short, medium and long line and their model representations - Nominal-T, Nominal-Pie and A, B, C, D Constants for symmetrical & Asymmetrical Networks, Numerical Problems.
Mathematical Solutions to estimate regulation and efficiency of all types of lines - Numerical Problems.

UNIT-III Performance of Long Transmission Lines

UNIT – IV Power System Transients
Types of System Transients - Travelling or Propagation of Surges - Attenuation, Distortion, Reflection and Refraction Coefficients - Termination of lines with different types of conditions - Open Circuited Line, Short Circuited Line, T-Junction, Lumped Reactive Junctions (Numerical Problems). Bewley’s Lattice Diagrams (for all the cases mentioned with numerical examples).

UNIT-V Various Factors Governing the Performance of Transmission line
Skin and Proximity effects - Description and effect on Resistance of Solid Conductors - Ferranti effect - Charging Current - Effect on Regulation of the Transmission Line. Corona - Description of the phenomenon, factors affecting corona, critical voltages and power loss, Radio Interference.

UNIT-VI Overhead Line Insulators
Types of Insulators, String efficiency and Methods for improvement, Numerical Problems - voltage distribution, calculation of string efficiency, Capacitance grading and Static Shielding.

UNIT-VII Sag and Tension Calculations
Sag and Tension Calculations with equal and unequal heights of towers, Effect of Wind and Ice on weight of Conductor, Numerical Problems - Stringing chart and sag template and its applications.

UNIT-VIII Underground Cables

TEXT BOOKS:

REFERENCE BOOKS:
2. Power System Analysis, Operation and control by Abhijit Chakrpabarti, Sunitha Halder , PHI, 3/e, 2010
CONTROL SYSTEMS

Objective:
In this course it is aimed to introduce to the students the principles and applications of control systems in everyday life. The basic concepts of block diagram reduction, time domain analysis solutions to time invariant systems and also deals with the different aspects of stability analysis of systems in frequency domain and time domain.

UNIT – I INTRODUCTION
Concepts of Control Systems - Open Loop and closed loop control systems and their differences - Different examples of control systems - Classification of control systems, Feed-Back Characteristics, Effects of feedback.
Mathematical models – Differential equations, Impulse Response and transfer functions - Translational and Rotational mechanical systems

UNIT II TRANSFER FUNCTION REPRESENTATION
Transfer Function of DC Servo motor - AC Servo motor- Synchro transmitter and Receiver, Block diagram representation of systems considering electrical systems as examples - Block diagram algebra – Representation by Signal flow graph - Reduction using Mason’s gain formula.

UNIT-III TIME RESPONSE ANALYSIS

UNIT – IV STABILITY ANALYSIS IN S-DOMAIN
The concept of stability – Routh’s stability criterion – Qualitative stability and conditional stability – Limitations of Routh’s stability
Root Locus Technique:
The root locus concept - Construction of root loci-effects of adding poles and zeros to G(s)H(s) on the root loci.

UNIT – V FREQUENCY RESPONSE ANALYSIS
Introduction, Frequency domain specifications-Bode diagrams-Determination of Frequency domain specifications and transfer function from the Bode Diagram-Phase margin and Gain margin-Stability Analysis from Bode Plots.

UNIT – VI STABILITY ANALYSIS IN FREQUENCY DOMAIN
Polar Plots-Nyquist Plots-Stability Analysis.

UNIT – VII CLASSICAL CONTROL DESIGN TECHNIQUES
Compensation techniques – Lag, Lead, Lead-Lag Controllers design in frequency Domain, PID Controllers.

UNIT – VIII State Space Analysis of Continuous Systems
Concepts of state, state variables and state model, derivation of state models from block diagrams, Diagonalization- Solving the Time invariant state Equations- State Transition Matrix and it’s Properties – Concepts of Controllability and Observability

TEXT BOOKS:

REFERENCE BOOKS:
Objective:

With the advent of semiconductor devices, revolution is taking place in the power transmission distribution and utilization. This course introduces the basic concepts of power semiconductor devices, converters and choppers and their analysis.

UNIT – I
POWER SEMI CONDUCTOR DEVICES
Thyrists – Silicon Controlled Rectifiers (SCR’s) – BJT – Power MOSFET – Power IGBT and their characteristics and other thyristors – Basic theory of operation of SCR – Static characteristics – Turn on and turn off methods- Dynamic characteristics of SCR - Turn on and Turn off times -Salient points

UNIT – II
DEVICES AND COMMUTATION CIRCUITS

UNIT – III
SINGLE PHASE HALF CONTROLLED CONVERTERS
Phase control technique – Single phase Line commutated converters – Mid point and Bridge connections – Half controlled converters with Resistive, RL loads and RLE load– Derivation of average load voltage and current -Active and Reactive power inputs to the converters without and with Free wheeling Diode –Numerical problems

UNIT – IV
SINGLE PHASE FULLY CONTROLLED CONVERTERS
Fully controlled converters, Mid point and Bridge connections with Resistive, RL loads and RLE load- Derivation of average load voltage and current – Line commutated inverters -Active and Reactive power inputs to the converters without and with Free wheeling Diode, Effect of source inductance – Derivation of load voltage and current – Numerical problems.

UNIT – V
THREE PHASE LINE COMMUTATED CONVERTERS
Three phase converters – Three pulse and six pulse converters – Mid point and bridge connections average load voltage With R and RL loads – Effect of Source inductance–Dual converters (both single phase and three phase) - Waveforms –Numerical Problems.

UNIT – VI
AC VOLTAGE CONTROLLERS & CYCLO CONVERTERS
AC voltage controllers – Single phase two SCR’s in anti parallel – With R and RL loads – modes of operation of Triac – Triac with R and RL loads – Derivation of RMS load voltage, current and power factor wave forms – Firing circuits -Numerical problems -Cyclo converters – Single phase mid point cyclo converters with Resistive and inductive load (Principle of operation only) – Bridge configuration of single phase cyclo converter (Principle of operation only) – Waveforms

UNIT – VII
CHOPPERS
Choppers – Time ratio control and Current limit control strategies – Step down choppers Derivation of load voltage and currents with R, RL and RLE loads- Step up Chopper – load voltage expression
Morgan’s chopper – Jones chopper and Oscillation chopper (Principle of operation only) Waveforms — AC Chopper – Problems.

UNIT – VIII
INVERTERS

TEXT BOOKS :

REFERENCE BOOKS :
Objective:
This subject is an extension of previous machines courses. It deals with the detailed analysis of Synchronous generators and motors which are the prime source of electrical power generation and its utilities. Also concerns about the different types of single phase motors which are having significant applications in household appliances and control systems.

UNIT – I Construction and Principle of operation of synchronous machines
Constructional Features of round rotor and salient pole machines – Armature windings – Integral slot and fractional slot windings; Distributed and concentrated windings – Distribution, pitch and winding factors – E.M.F Equation.

UNIT-II Synchronous Generator Characteristics
Harmonics in generated e.m.f. – Suppression of harmonics – Armature reaction - leakage reactance – Synchronous reactance and impedance – Experimental determination – phasor diagram – load characteristics.

UNIT – III Regulation of Synchronous Generator

UNIT – IV Parallel Operation of Synchronous Generator

UNIT – V Synchronous Motors – Principle of Operation
Theory of operation – Phasor diagram – Variation of current and power factor with excitation – Synchronous condenser – Mathematical analysis for power developed.

UNIT – VI Power Circles
Excitation and power circles – Hunting and its suppression – Methods of starting – Synchronous induction motor.

UNIT – VII Single Phase Motors

UNIT – VIII Special Motors
Principles of A.C. Series motor-Universal motor, Stepper motor shaded pole motor, (Qualitative Treatment only).

TEXT BOOKS

REFERENCE BOOKS:
1. Electrical Machines by Milukutla S. Sarma, Mukesh K. pathak, Cengage Learning, 2009
3. Electromachanics-III (Synchronous and Single phase machines), S.Kamakashiah, Right Publishers
ELECTRICAL MACHINES LAB – II

The following experiments are required to be conducted as compulsory experiments:

1. O.C. & S.C. Tests on Single phase Transformer
2. Sumpner’s test on a pair of single phase transformers
3. Brake test on three phase Induction Motor
4. No-load & Blocked rotor tests on three phase Induction motor
5. Regulation of a three –phase alternator by synchronous impedance & m.m.f. methods
7. Equivalent Circuit of a single phase induction motor
8. Determination of Xd and Xq of a salient pole synchronous machine

In addition to the above eight experiments, atleast any two of the following experiments are required to be conducted from the following list:

1. Parallel operation of Single phase Transformers
2. Separation of core losses of a single phase transformer
3. Scott connection of transformers
4. Regulation of three-phase alternator by Z.P.F. and A.S.A methods
5. Efficiency of a three-phase alternator
6. Heat run test on a bank of 3 Nos. of single phase Delta connected transformers

Reference

Any Eight of the following experiments are to be conducted:

1. Time response of Second order system
2. Characteristics of Synchros
3. Programmable logic controller – Study and verification of truth tables of logic gates, simple Boolean expressions and application of speed control of motor.
4. Effect of feedback on DC servo motor
5. Transfer function of DC motor
6. Effect of P, PD, PI, PID Controller on a second order systems
7. Lag and lead compensation – Magnitude and phase plot
8. Transfer function of DC generator
9. Temperature controller using PID
10. Characteristics of magnetic amplifiers
11. Characteristics of AC servo motor

Any two simulation experiments are to be conducted:-

1. PSPICE simulation of Op-Amp based Integrator and Differentiator circuits.
2. Linear system analysis (Time domain analysis, Error analysis) using MATLAB.
3. Stability analysis (Bode, Root Locus, Nyquist) of Linear Time Invariant system using MATLAB
4. State space model for classical transfer function using MATLAB – Verification.

REFERENCE BOOKS:
1. Simulation of Electrical and electronics Circuits using PSPICE – by M.H.Rashid, M/s PHI Publications.
2. PSPICE A/D user’s manual – Microsim, USA.
3. PSPICE reference guide – Microsim, USA.
4. MATLAB and its Tool Books user’s manual and – Mathworks, USA.
OBJECTIVE:
Electrical measurements course introduces the basic principles of all measuring instruments. It also deals with the measurement of RLC parameters voltage, current, Power factor, power, energy and magnetic measurements.

UNIT I Measuring Instruments
Classification – deflecting, control and damping torques – Ammeters and Voltmeters – PMMC, moving iron type instruments – expression for the deflecting torque and control torque – Errors and compensations, extension of range using shunts and series resistance. Electrostatic Voltmeters-electrometer type and attracted disc type – Extension of range of E.S. Voltmeters.

UNIT II Instrument transformers
CT and PT – Ratio and phase angle errors – design considerations Type of P.F. Meters – dynamometer and moving iron type – 1-ph and 3-ph meters – Frequency meters – resonance type and Weston type – synchroscopes.

UNIT III Measurement of Power
Single phase dynamometer wattmeter, LPF and UPF, Double element and three element dynamometer wattmeter, expression for deflecting and control torques – Extension of range of wattmeter using instrument transformers – Measurement of active and reactive powers in balanced and unbalanced systems.

UNIT IV Measurement of Energy

UNIT V Potentiometers

UNIT VI Resistance Measurements
Method of measuring low, medium and high resistance – sensitivity of Wheatstone’s bridge – Carey Foster’s bridge, Kelvin’s double bridge for measuring low resistance, measurement of high resistance – loss of charge method.

UNIT VII A.C. Bridges

UNIT V III Magnetic Measurements:
Ballistic galvanometer – equation of motion – flux meter – constructional details, comparison with ballistic galvanometer.

TEXT BOOK:

REFERENCE BOOKS:
1. Electrical Measurements – by Buckingham and Price, Prentice – Hall
2. Electrical Measurements by Harris.
Objective:
This course is an extension of Power Electronics applications to AC and DC drives. Control of DC motor drives with single phase and three phase converters and choppers are given in detail. The control of AC motor drives with variable frequency converters and variable voltage are presented.

UNIT – I: Control of DC motors by Single phase Converters
Introduction to Thyristor controlled Drives, Single Phase semi and Fully controlled converters connected to d.c separately excited and d.c series motors – continuous current operation – output voltage and current waveforms – Speed and Torque expressions – Speed – Torque Characteristics- Problems on Converter fed d.c motors.

UNIT-II: Control of DC motors by Three phase Converters
Three phase semi and fully controlled converters connected to d.c separately excited and d.c series motors – output voltage and current waveforms – Speed and Torque expressions – Speed – Torque characteristics – Problems.

UNIT – III: Four Quadrant operation of DC Drives
Introduction to Four quadrant operation – Motoring operations, Electric Braking – Plugging, Dynamic and Regenerative Braking operations. Four quadrant operation of D.C motors by dual converters – Closed loop operation of DC motor (Block Diagram Only)

UNIT-IV: Control of DC motors by Choppers
Single quadrant, Two –quadrant and four quadrant chopper fed d.c separately excited and series excited motors – Continuous current operation – Output voltage and current wave forms – Speed torque expressions – speed torque characteristics – Problems on Chopper fed d.c Motors – Closed Loop operation (Block Diagram Only)

UNIT – V: Control of Induction Motor through Stator voltage
Variable voltage characteristics-Control of Induction Motor by Ac Voltage Controllers – Waveforms – speed torque characteristics.

UNIT – VI: Control of Induction Motor through Stator Frequency
Variable frequency characteristics-Variable frequency control of induction motor by Voltage source and current source inverter and cyclo converters- PWM control – Comparison of VSI and CSI operations – Speed torque characteristics – numerical problems on induction motor drives – Closed loop operation of induction motor drives (Block Diagram Only)

UNIT – VII: Control of Induction motor of Rotor side
Static rotor resistance control – Slip power recovery – Static Scherbius drive – Static Kramer Drive – their performance and speed torque characteristics – advantages applications – problems

UNIT – VIII: Control of Synchronous Motors

TEXT BOOKS:
2. Power Electronic Circuits, Devices and applications by M.H.Rashid, PHI.

REFERENCE BOOKS:
2. Modern Power Electronics and AC Drives by B.K.Bose, PHI.
Objective:
This course introduces formation of Z bus of a transmission line, power flow studies by various methods. It also deals with short circuit analysis and analysis of power system for steady state and transient stability.

UNIT - I Power System Network Matrices - I
Graph Theory: Definitions, Bus Incidence Matrix, Y_{bus} formation by Direct and Singular Transformation Methods, Numerical Problems.

UNIT - II Power System Network Matrices - II
Formation of Z_{bus}: Partial network, Algorithm for the Modification of Z_{bus} Matrix for addition element for the following cases: Addition of element from a new bus to reference, Addition of element from a new bus to an old bus, Addition of element between an old bus to reference and Addition of element between two old busses (Derivations and Numerical Problems). Modification of Z_{bus} for the changes in network (Problems).

UNIT – III Power flow Studies - I

UNIT – IV Power flow Studies - II
Newton Raphson Method in Rectangular and Polar Co-Ordinates Form: Load Flow solution with or without PV Busses - Derivation of Jacobian Elements, Algorithm and Flowchart.

Decoupled and Fast Decoupled Methods. - Comparison of Different Methods – DC load Flow

UNIT – V Short Circuit Analysis - I

UNIT – VI Short Circuit Analysis - II

UNIT – VII Power System Steady State Stability Analysis

UNIT – VIII Power System Transient State Stability Analysis

TEXT BOOKS:

REFERENCE BOOKS:
3. Computer techniques and models in power systems, By K.Uma rao, I.K.International
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

III Year B.Tech EEE II-Sem
6756012

MICROPROCESSORS AND MICROCONTROLLERS

Unit –I 8086 ARCHITECTURE
Introduction to 8085 Microprocessor, 8086 Architecture-Functional diagram, Register Organization, Memory Segmentation, Programming Model, Memory addresses, Physical memory organization, Architecture of 8086, signal descriptions of 8086- common function signals, Minimum and Maximum mode signals, Timing diagrams, Interrupts of 8086.

UNIT-II INSTRUCTION SET AND ASSEMBLY LANGUAGE PROGRAMMING OF 8086
Instruction formats, addressing modes, instruction set, assembler directives, macros, simple programs involving logical branch and cell instructions, sorting, evaluating arithmetic expressions, string manipulations.

UNIT-III I/O INTERFACE
8255 PPI, Various modes of operations and interfacing to 8086, interfacing keyboard, display, stepper motor interfacing, A/D, D/A Converter Interfacing.

UNIT-IV INTERFACING WITH ADVANCED DEVICES.
Memory interfacing to 8086 interrupt structure of 8086. Vector interrupt table, interrupt service routine, Introduction to DOS and BIOS interrupts, interfacing interrupt controller 8259 DMA controller 8257 to 8086.

UNIT-V COMMUNICATION INTERFACE

UNIT-VI INTRODUCTION TO MICRO CONTROLLERS
Overview of 8051 Micro Controller, Architecture, I/O ports and Memory Organization, Addressing modes and Instruction set of 8051, Simple Programs.

UNIT-VII 8051 REAL TIME CONTROL:
Interrupts, Timer/Counter and Serial Communication, Programming Timer Interrupts, Programming External hardware interrupts, Programming the serial communication interrupts, Programming 8051 Timers, Counters.

UNIT- VIII THE RISC ARCHITECTURE
Introduction, Family architecture, Register File, The ALU, Memory access and Instruction execution, I/O memory. EEPROM, I/O ports, Timers, UART, Interrupt Structure

TEXT BOOKS:

REFERENCE BOOKS:
1. Advanced microprocessors and peripherals A.K. Ray and K M Bhuruchandani TMH
2. The 8051 micro controllers architecture and programming and applications K uma rao Andhe pallavi pearson 2009.
5. Microprocessing and interfacing Ramesh Goenkar
Objective:
It introduces solar energy its radiation, collection, storage and application. It also introduces the Wind energy, Biomass energy, Geothermal energy and ocean energy as alternative energy sources.

UNIT – I
PRINCIPLES OF SOLAR RADIATION: Role and potential of new and renewable source, the solar energy option, Environmental impact of solar power, physics of the sun, the solar constant, extraterrestrial and terrestrial solar radiation, solar radiation on tilted surface, instruments for measuring solar radiation and sun shine, solar radiation data.

UNIT-II
SOLAR ENERGY COLLECTION: Flat plate and concentrating collectors, classification of concentrating collectors, orientation and thermal analysis, advanced collectors.

UNIT-III

UNIT-IV
WIND ENERGY: Sources and potentials, horizontal and vertical axis windmills, performance characteristics, Betz criteria

UNIT-V

UNIT-VI
GEOTHERMAL ENERGY: Resources, types of wells, methods of harnessing the energy, potential in India.

UNIT-VII
OCEAN ENERGY: OTEC, Principles utilization, setting of OTEC plants, thermodynamic cycles. Tidal and wave energy: Potential and conversion techniques, mini-hydel power plants, and their economics.

UNIT-VIII
DIRECT ENERGY CONVERSION: Need for DEC, Carnot cycle, limitations, principles of DEC.

TEXT BOOKS:

REFERENCE BOOKS:
1. Renewable energy resources/ Tiwari and Ghosal/ Narosa.
2. Renewable Energy Technologies /Ramesh & Kumar /Narosa
INTELLECTUAL PROPERTY RIGHTS

UNIT – I
Introduction to Intellectual property: Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights.

UNIT – II
Trade Marks: Purpose and function of trade marks, acquisition of trade mark rights, protectable matter, selecting and evaluating trade mark, trade mark registration processes.

UNIT – III
Law of copy rights: Fundamental of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law.

UNIT – IV
Law of patents: Foundation of patent law, patent searching process, ownership rights and transfer

UNIT – V
Trade Secrets: Trade secrete law, determination of trade secrete status, liability for misappropriations of trade secrets, protection for submission, trade secrete litigation.

UNIT – VI
Unfair competition: Misappropriation right of publicity, False advertising.

UNIT – VII
New development of intellectual property: new developments in trade mark law; copy right law, patent law, intellectual property audits.

UNIT – VIII
International overview on intellectual property, international – trade mark law, copy right law, international patent law, international development in trade secrets law.

References & Text Books
1. Intellectual property right, Deborah. E. Bouchoux, cengage learning.

J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

<table>
<thead>
<tr>
<th>III Year B.Tech EEE II-Sem</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6756008</td>
<td>3</td>
<td>1/-/-</td>
<td>3</td>
</tr>
</tbody>
</table>

UNIT – I

UNIT – II

UNIT – III

UNIT – IV

UNIT – V

UNIT – VI

UNIT – VII

UNIT – VIII

References & Text Books:
1. Intellectual property right, Deborah. E. Bouchoux, cengage learning.
Unit-I:
Introduction to nanotechnology:
Importance of nanoscale, Nanostructure types, electronic, magnetic, optical Properties of Nanomaterials, top-down and bottom-up approach to nanostructures.

Unit-II:
Quantum Mechanical phenomenon in nanostructures:
Quantum confinement of electrons in semiconductor Nano structures, one dimensional confinement (Quantum wires), two dimensional confinements (Quantum Wells), three dimensional confinements (Quantum dots).

Unit-III
Carbon Nano Structures:
Carbon nanotubes (CNTs), Fullerenes, C60, C80 and C240 Nanostructures, Properties (mechanical, optical and electrical) and applications.

Unit-IV
Fabrication of Nanomaterials:
Physical Methods: Inert gas condensation, Arc discharge, RFplasma, Plasma arc technique, Ion sputtering, Laser ablation, Laser pyrolysis, Molecular beam epitaxy, Chemical vapour deposition method.

Unit-V
Nano scale characterization techniques:
Scanning probe techniques (AFM, MFM, STM, SEM, TEM), XRD

Unit-VI
Nanodevices and Nanomedicine:
Lab on chip for bioanalysis, Core/shell Nanoparticles in drug delivery systems (site specific and targeted drug delivery), cancer treatment, and bone tissue treatment.

Unit-VII
Nano and molecular electronics:
Resonant-Tunneling structures, single electron tunneling, Single Electron transistors, coulomb blockade, giant magneto resistance, tunneling magneto resistance.

Unit-VIII
nanolithography and nanomanipulation:

TEXT BOOKS:
1. Charles.p.pode, Introduction to nanotechnology, springer publications
2. Springer Handbook of Nanotechnology - Bharat Bhusan
3. Phani kumar, principles of nanotechnology, scitech publications

REFERENCES BOOKS:
4. Encyclopedia of Nanotechnology- Hari Singh Nalwa
ENVIROMENTAL STUDIES

UNIT-I: ECOSYSTEMS: Definition, Scope and Importance of ecosystem, Concept of ecosystem, Classification of ecosystems, Structure and Structural Components of an ecosystem, Functions of ecosystem, Food chains, food webs and ecological pyramids. Flow of energy, Biogeochemical cycles, Homeostasis / Cybernetics, Food chain concentration, Biomagnification, ecosystems value, services and carrying capacity.

UNIT-II: NATURAL RESOURCES: Classification of Resources: Living and Non-Living resources, Renewable and non-renewable resources. Water resources: use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. Mineral resources: use and exploitation, environmental effects of extracting and using mineral resources – case studies. Energy resources: growing energy needs, renewable and non renewable energy sources, use of alternate energy sources – case studies. Land resources: land as a resource, land degradation, man induced landslides and land use / land cover mapping.

SUGGESTED TEXT BOOKS:
1. Environmental studies, From crisis to cure by R.Rajagopalan, 2005

REFERENCE BOOKS:
1. Environmental Science: towards a sustainable future by Richard T.Wright.
2. Environmental Engineering and science by Gilbert M.Masters and Wendell P. Ela.
1. Introduction
The introduction of the English Language Lab is considered essential at 3rd year level. At this stage the students need to prepare themselves for their careers which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalised context.

The proposed course should be an integrated theory and lab course to enable students to use ‘good’ English and perform the following:

- Gather ideas and information, to organise ideas relevantly and coherently.
- Engage in debates.
- Participate in group discussions.
- Face interviews.
- Write project/research reports/technical reports.
- Make oral presentations.
- Write formal letters.
- Transfer information from non-verbal to verbal texts and vice versa.
- To take part in social and professional communication.

2. Objectives:
This Lab focuses on using computer-aided multimedia instruction for language development to meet the following targets:

- To improve the students’ fluency in English, through a well-developed vocabulary and enable them to listen to English spoken at normal conversational speed by educated English speakers and respond appropriately in different socio-cultural and professional contexts.

3. Syllabus:
The following course content is prescribed for the Advanced Communication Skills Lab:

- **Functional English** - starting a conversation – responding appropriately and relevantly – using the right body language – role play in different situations.
- **Vocabulary Building** – synonyms and antonyms, word roots, one-word substitutes, prefixes and suffixes, study of word origin, analogy, idioms and phrases.
- **Reading Comprehension** – reading for facts, guessing meanings from context, scanning, skimming, inferring meaning, Critical reading.
- **Writing Skills** – structure and presentation of different types of writing – Resume writing / e-correspondence/Technical report writing/Portfolio writing – planning for writing – research abilities/data collection/organizing data/tools/analysis – improving one’s writing.
- **Group Discussion** – dynamics of group discussion, intervention, summarizing, modulation of voice, body language, relevance, fluency and coherence.
- **Presentation Skills** – Oral presentations (individual and group) through JAM sessions/seminars and written presentations through posters/projects/reports/PPTs/e-mails/assignments etc.
- **Interview Skills** – concept and process, pre-interview planning, opening strategies, answering strategies, interview through tele and video-conferencing.

4. Minimum Requirement:
The English Language Lab shall have two parts:

i) **The Computer aided Language Lab** for 60 students with 60 systems, one master console, LAN facility and English language software for self-study by learners.

ii) **The Communication Skills Lab** with movable chairs and audio-visual aids with a P.A System, a T. V., a digital stereo –audio & video system and camcorder etc.

System Requirement (Hardware component):

- **P – IV Processor**
 - Speed – 2.8 GHZ
 - RAM – 512 MB Minimum
 - Hard Disk – 80 GB

- **Headphones of High quality**

5. Suggested Software:
The software consisting of the prescribed topics elaborated above should be procured and used.

Suggested Software:
- **Clarity Pronunciation Power** – part II
- **Oxford Advanced Learner’s Compass**, 7th Edition
• DELTA’s key to the Next Generation TOEFL Test: Advanced Skill Practice.
• Lingua TOEFL CBT Insider, by Dreamtech
• TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)
• The following software from ‘train2success.com’
 ➢ Preparing for being Interviewed,
 ➢ Positive Thinking,
 ➢ Interviewing Skills,
 ➢ Telephone Skills,
 ➢ Time Management
 ➢ Team Building,
 ➢ Decision making
• English in Mind, Herbert Puchta and Jeff Stranks with Meredith Levy, Cambridge

6. Books Recommended:

DISTRIBUTION AND WEIGHTAGE OF MARKS:
Advanced Communication Skills Lab Practicals:
1. The practical examinations for the English Language Laboratory practice shall be conducted as per the University norms prescribed for the core engineering practical sessions.
2. For the English Language lab sessions, there shall be a continuous evaluation during the year for 25 sessional marks and 50 End Examination marks. Of the 25 marks, 15 marks shall be awarded for day-to-day work and 10 marks to be awarded by conducting Internal Lab Test(s). The End Examination shall be conducted by the teacher concerned with the help of another member of the staff of the same department of the same institution.
Any Eight of the Experiments in Power Electronics Lab

1. Study of Characteristics of SCR, MOSFET & IGBT
2. Gate firing circuits for SCR’s
3. Single Phase AC Voltage Controller with R and RL Loads
4. Single Phase fully controlled bridge converter with R and RL loads
5. Forced Commutation circuits (Class A, Class B, Class C, Class D & Class E)
6. DC Jones chopper with R and RL Loads
7. Single Phase Parallel, inverter with R and RL loads
8. Single Phase Cycloconverter with R and RL loads
9. Single Phase Half controlled converter with R load
10. Three Phase half controlled bridge converter with R-load
11. Single Phase series inverter with R and RL loads
12. Single Phase Bridge converter with R and RL loads
13. Single Phase dual converter with RL loads

Any two simulation experiments with PSPICE/PSIM

PSPICE simulation of single-phase full converter using RLE loads and single-phase AC voltage controller using RLE loads.

PSPICE simulation of resonant pulse commutation circuit and Buck chopper.

PSPICE simulation of single phase Inverter with PWM control.

REFERENCES BOOKS:
2. PSPICE A/D user’s manual – Microsim, USA.
3. PSPICE reference guide – Microsim, USA.
4. MATLAB and its Tool Books user’s manual and – Mathworks, USA.
5. Spice for power electronics and electric power by Rashid, CRC Press
Objective:
This course introduces all varieties of Circuit Breakers and Relays for protection of Generators, Transformers and feeder bus bars from over voltages and other hazards. It emphasis on Neutral grounding for overall protection.

UNIT – I Circuit Breakers-1

UNIT – II Circuit Breakers-2
Description and Operation of following types of circuit breakers: Minimum Oil Circuit breakers, Air Blast Circuit Breakers, Vacuum and SF6 circuit breakers.

UNIT – III Electromagnetic and Static Relays
Principle of Operation and Construction of Attracted armature, Balanced Beam, induction Disc and Induction Cup relays.
Relays Classification: Instantaneous, DMT and IDMT types.
Universal torque equation, Distance relays: Impedance, Reactance and Mho and Off-Set Mho relays, Characteristics of Distance Relays and Comparison.
Static Relays: Static Relays verses Electromagnetic Relays.

UNIT – IV Generator Protection
Protection of generators against Stator faults, Rotor faults, and Abnormal Conditions. Restricted Earth fault and Inter-turn fault Protection. Numerical Problems on % Winding Unprotected.

UNIT – V Transformer Protection

UNIT – VI Feeder and Bus-Bar Protection

UNIT – VII Neutral Grounding

UNIT – VIII Protection against over voltages

TEXT BOOKS:
2. Power System Protection and Switchgear by Badari Ram , D.N Viswakarma, TMH Publications

REFERENCE BOOKS:
Objective:
This subject deals with the fundamentals of illumination and its classification and the electric heating and welding. It gives the detailed study of all varieties of Electric drives and their application to electrical traction systems.

UNIT – I ELECTRIC DRIVES
Type of electric drives, choice of motor, starting and running characteristics, speed control, temperature rise, particular applications of electric drives, types of industrial loads, continuous, intermittent and variable loads, load quantization.

UNIT – II ELECTRIC HEATING
Advantages and methods of electric heating, resistance heating induction heating and dielectric heating.

UNIT – III ELECTRIC WELDING
Electric welding, resistance and arc welding, electric welding equipment, comparison between A.C. and D.C. Welding.

UNIT – IV ILLUMINATION FUNDAMENTALS
Introduction, terms used in illumination, laws of illumination, polar curves, photometry, integrating sphere, sources of light.

UNIT – V VARIOUS ILLUMINATION METHODS
Discharge lamps, MV and SV lamps – comparison between tungsten filament lamps and fluorescent tubes, Basic principles of light control, Types and design of lighting and flood lighting.

UNIT – VI ELECTRIC TRACTION – I
System of electric traction and track electrification. Review of existing electric traction systems in India. Special features of traction motor, methods of electric braking-plugging rheostatic braking and regenerative braking.

UNIT – VII ELECTRIC TRACTION – II
Mechanics of train movement. Speed-time curves for different services – trapezoidal and quadrilateral speed time curves.

UNIT – VIII ELECTRIC TRACTION-III
Calculations of tractive effort, power, specific energy consumption for given run, effect of varying acceleration and braking retardation, adhesive weight and braking retardation adhesive weight and coefficient of adhesion.

TEXT BOOK:

REFERENCE BOOKS:
Objective:
Instrumentation is essential in monitoring and analyzing any Physical system and its control. This course deals with different types of transducers, digital voltmeters, oscilloscopes and measurement of non-electrical quantities.

UNIT-I Characteristics of Signals

UNIT-II Signals and their representation
Signal and their representation: Standard Test, periodic, aperiodic, modulated signal, sampled data, pulse modulation and pulse code modulation

UNIT-III Oscilloscope
Cathode ray oscilloscope-Cathode ray tube-time base generator-horizontal and vertical amplifiers-CRO probes-applications of CRO-Measurement of phase and frequency-lissajous patterns-Sampling oscilloscope-analog and digital type

UNIT-IV Digital Voltmeters
Digital voltmeters- Successive approximation, ramp, dual-Slope integration continuous balance type-Micro processor based ramp type DVM digital frequency meter-digital phase angle meter-

UNIT-V Signal Analyzers
Wave Analyzers- Frequency selective analyzers, Heterodyne, Application of Wave analyzers- Harmonic Analyzers, Total Harmonic distortion, spectrum analyzers, Basic spectrum analyzers, spectral displays, vector impedance meter, Q meter. Peak reading and RMS voltmeters

UNIT-VI Transducers
Definition of transducers, Classification of transducers, Advantages of Electrical transducers, Characteristics and choice of transducers; Principle of operation of resistor, inductor, LVDT and capacitor transducers; LVDT Applications, Strain gauge and its principle of operation, gauge factor, Thermistors, Thermocouples, Synchros, Piezo electric transducers, photovoltaic, photo conductive cells, photo diodes.

UNIT-VII Measurement of Non-Electrical Quantities-I

UNIT-VIII Measurement of Non-Electrical Quantities-II
Measurement of Temperature, Pressure, Vacuum, Flow, Liquid level.

TEXT BOOKS:
1. Transducers and Instrumentation by D.V.S Murthy, Prentice Hall of India

REFERENCE BOOKS:
1. Measurements Systems, Applications and Design – by D O Doeblin, TMH Publications
3. Principles of Measurement and Instrumentation – by A.S Morris, Pearson /Prentice Hall of India
Objective :
This subject deals with Economic operation of Power Systems, Hydrothermal schedulings and modeling of turbines, generators and automatic controllers. It emphasizes on single area and two area load frequency control and reactive power control.

UNIT – I Economic Operation of Power Systems-1

UNIT – II Economic Operation of Power Systems-2
Optimum generation allocation including the effect of transmission line losses – Loss Coefficients, General transmission line loss formula.

UNIT – III Hydrothermal Scheduling

UNIT – IV Modeling of Turbine, and Automatic Controllers

UNIT – V Single Area Load Frequency Control

UNIT – VI Two-Area Load Frequency Control
Load frequency control of 2-area system – uncontrolled case and controlled case, tie-line bias control

UNIT-VII Load Frequency Controllers
Proportional plus Integral control of single area and its block diagram representation, steady state response – Load Frequency Control and Economic dispatch control.

UNIT – VIII Reactive Power Control
Overview of Reactive Power control – Reactive Power compensation in transmission systems – advantages and disadvantages of different types of compensating equipment for transmission systems; load compensation – Specifications of load compensator, Uncompensated and compensated transmission lines: shunt and Series Compensation.(qualitative treatment)

TEXT BOOKS:
2. Power Systems Analysis, operation and control by Abhijit Chakrabarti, Sunitha Halder, PHI 3/e , 2010

REFERENCE BOOKS:
Objective:
This subject deals with the detailed analysis of Breakdown occurring in gaseous, liquids and solid dielectrics. Information about generation and measurement of High voltage and current. In addition High voltage testing methods are also discussed.

UNIT I INTRODUCTION TO HIGH VOLTAGE TECHNOLOGY AND APPLICATIONS
Electric Field Stresses, Gas / Vacuum as Insulator, Liquid Dielectrics, Solids and Composites, Estimation and Control of Electric Stress, Numerical methods for electric field computation, Surge voltages, their distribution and control, Applications of insulating materials in transformers, rotating machines, circuit breakers, cable power capacitors and bushings.

UNIT II BREAK DOWN IN GASEOUS AND LIQUID DIELECTRICS
Gases as insulating media, collision process, Ionization process, Townsend’s criteria of breakdown in gases, Paschen’s law. Liquid as Insulator, pure and commercial liquids, breakdown in pure and commercial liquids.

UNIT III BREAK DOWN IN SOLID DIELECTRICS
Intrinsic breakdown, electromechanical breakdown, thermal breakdown, breakdown of solid dielectrics in practice, Breakdown in composite dielectrics, solid dielectrics used in practice.

UNIT IV GENERATION OF HIGH VOLTAGES AND CURRENTS
Generation of High Direct Current Voltages, Generation of High alternating voltages, Generation of Impulse Voltages, Generation of Impulse currents, Tripping and control of impulse generators.

UNIT V MEASUREMENT OF HIGH VOLTAGES AND CURRENTS

UNIT VI OVER VOLTAGE PHENOMENON AND INSULATION CO-ORDINATION
Natural causes for over voltages – Lightning phenomenon, Overvoltage due to switching surges, system faults and other abnormal conditions, Principles of Insulation Coordination on High voltage and Extra High Voltage power systems.

UNIT VII NON-DISTRIBUTIVE TESTING OF MATERIAL AND ELECTRICAL APPARATUS
Measurement of D.C Resistivity, Measurement of Dielectric Constant and loss factor, Partial discharge measurements.

UNIT VIII HIGH VOLTAGE TESTING OF ELECTRICAL APPARATUS

TEXT BOOKS:

REFERENCE BOOKS:
UNIT I
INTRODUCTION : Introduction to IC Technology – MOS, PMOS, NMOS, CMOS & BiCMOS technologies- Oxidation, Lithography, Diffusion, Ion implantation, Metallisation, Encapsulation, Probe testing, Integrated Resistors and Capacitors, CMOS Nanotechnology.

UNIT II
BASIC ELECTRICAL PROPERTIES : Basic Electrical Properties of MOS and BiCMOS Circuits: Ids-Vds relationships, MOS transistor threshold Voltage, gm, gds, figure of merit “wo”; Pass transistor, NMOS Inverter, Various pull ups, CMOS Inverter analysis and design, BiCMOS Inverters.

UNIT III

UNIT IV
GATE LEVEL DESIGN : Logic Gates and Other complex gates, Switch logic, Alternate gate circuits, Time delays, Driving large capacitive loads, Wiring Capacitances, Fan-in and fan-out, Choice of layers.

UNIT V
DATA PATH SUBSYSTEMS : Subsystem Design, Shifters, Adders, ALUs, Multipliers, Parity generators, Comparators, Zero/One Detectors, Counters.

UNIT VI
ARRAY SUBSYSTEMS: SRAM, DRAM, ROM Serial access memories, content addressable memory.

UNIT VII
SEMICONDUCTOR INTEGRATED CIRCUIT DESIGN : VHDL SYNTHESIS : PLAs FPGAs, CPLDs, standard cells, programmable array logic, design approach parameters influencing low power design.

UNIT VIII

TEXTBOOKS:
2. VLSI Designing K. Lal kishore VSV prabhakar IK international 2009

REFERENCES:
4. Introduction to VLSI Mead & Convey BS publications 2010.
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

IV Year B.Tech EEE I-Sem
6757018

DIGITAL CONTROL SYSTEMS
(ELECTIVE-I)

UNIT – I
SAMPLING AND RECONSTRUCTION
Introduction, Examples of Data control systems – Digital to Analog conversion and Analog to Digital conversion, sample and hold operations.

UNIT- II
THE Z – TRANSFORMS
Introduction, Linear difference equations, pulse response, Z – transforms, Theorems of Z – Transforms, the inverse Z – transforms, Modified Z-Transforms

UNIT-III
Z-PLANE ANALYSIS OF DISCRETE-TIME CONTROL SYSTEM
Z-Transform method for solving difference equations; Pulse transforms function, block diagram analysis of sampled – data systems, mapping between s-plane and z-plane.

UNIT – IV
STATE SPACE ANALYSIS
State Space Representation of discrete time systems, Pulse Transfer Function Matrix solving discrete time state space equations, State transition matrix and it’s Properties, Methods for Computation of State Transition Matrix, Discretization of continuous time state – space equations

UNIT – V
CONTROLLABILITY AND OBSERVABILITY
Concepts of Controllability and Observability, Tests for controllability and Observability, Duality between Controllability and Observability, Controllability and Observability conditions for Pulse Transfer Function

UNIT – VI
STABILITY ANALYSIS

UNIT – VII
DESIGN OF DISCRETE TIME CONTROL SYSTEM BY CONVENTIONAL METHODS

UNIT – VIII
STATE FEEDBACK CONTROLLERS AND OBSERVERS
Design of state feedback controller through pole placement – Necessary and sufficient conditions, Ackerman’s formula. State Observers – Full order and Reduced order observers.

TEXT BOOK:

REFERENCE BOOKS:
2. Digital Control and State Variable Methods by M.Gopal, TMH
J.B. INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)

IV Year B.Tech EEE I-Sem

6757019

OPTIMIZATION TECHNIQUES
(ELECTIVE-II)

UNIT – I Introduction and Classical Optimization Techniques:

UNIT – II Classical Optimization Techniques

UNIT – III Linear Programming

UNIT – IV Transportation Problem
Finding initial basic feasible solution by north – west corner rule, least cost method and Vogel’s approximation method – testing for optimality of balanced transportation problems.

UNIT – V Unconstrained Nonlinear Programming:
One – dimensional minimization methods: Classification, Fibonacci method and Quadratic interpolation method

UNIT – VI Unconstrained Optimization Techniques
Univariate method, Powell’s method and steepest descent method.

UNIT – VII Constrained Nonlinear Programming:
Characteristics of a constrained problem, Classification, Basic approach of Penalty Function method; Basic approaches of Interior and Exterior penalty function methods. Introduction to convex Programming Problem.

UNIT – VIII Dynamic Programming:

TEXT BOOKS:

REFERENCE BOOKS:
4. Linear Programming – by G. Hadley
5. Power system optimization, D.P.Kothari and J.S.Dhillon, 2nd Edn, PHI, 2010
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

IV Year B.Tech EEE I-Sem

ELECTRICAL DISTRIBUTION SYSTEMS
(ELECTIVE-II)

UNIT – I GENERAL CONCEPTS
Introduction to distribution systems, Load modelling and characteristics. Coincidence factor, contribution factor, loss factor - Relationship between the load factor and loss factor. Classification of loads (Residential, commercial, Agricultural and Industrial) and their characteristics.

UNIT – II DISTRIBUTION FEEDERS
Design Considerations of Distribution Feeders: Radial and loop types of primary feeders, voltage levels, feeder loading; basic design practice of the secondary distribution system.

UNIT – III SUBSTATIONS
Location of Substations: Rating of distribution substation, service area within primary feeders. Benefits derived through optimal location of substations.

UNIT – IV SYSTEM ANALYSIS
Voltage drop and power-loss calculations: Derivation for voltage drop and power loss in lines, manual methods of solution for radial networks, three phase balanced primary lines.

UNIT – V PROTECTION

UNIT – VI COORDINATION
Coordination of Protective Devices: General coordination procedure.

UNIT – VII COMPENSATION FOR POWER FACTOR IMPROVEMENT
Capacitive compensation for power-factor control.
Different types of power capacitors, shunt and series capacitors, effect of shunt capacitors (Fixed and switched),
Power factor correction, capacitor allocation - Economic justification - Procedure to determine the best capacitor location.

UNIT – VIII VOLTAGE CONTROL
Voltage Control: Equipment for voltage control, effect of series capacitors, effect of AVB/AVR, line drop compensation.

TEXT BOOK:
2. Electrical Power Distribution Systems by V.Kamaraju , TMH, 2/e, 2010

REFERENCE BOOK:
UNIT I
Signal Analysis: Analogy between vectors and signals, Classification of signals with examples, classification of systems with examples
Fourier series: Trigonometric Fourier series, Exponential Fourier series, Line spectrum, Properties of Fourier series, Dirchlet’s conditions, Problems.

UNIT II
SIGNAL TRANSMISSION THROUGH LINEAR SYSTEM: Linear system, Impulse response, Response of a linear system, Linear time invariant (LTI), Transfer function of a LTI system, Filter characteristics of linear systems, Distortion less transmission through a system, Physical Realizability of LTI systems, Ideal LPF, HPF and BPF characteristics, Relation between rise time and band width of a system, Relation between input and output Power Spectral Densities, Sampling Theorem and Signal Reconstruction, Aliasing, Problems

UNIT III
LAPLACE AND Z-TRANSFORMS:

UNIT IV
INTRODUCTION TO DSP:

UNIT V
DISCRETE FOURIER REPRESENTATION
Discrete Fourier series (DFS): DFS representation of periodic sequences, Properties, Problems
Discrete Fourier Transform (DFT): Discrete Fourier Transform, Properties of DFT, Linear convolution of sequence using DFT, Computation of DFT, Relation between DTFT, DFS, Z.T and DFT, Problems

UNIT VI
Fast Fourier Transforms: Fast fourier transforms (FFT) – Radix -2 Decimation – in- time (DIT) and Decimation – in- frequency (DIF) FFT Algorithms, Comparison of DIT FFT, Inverse FFT, and FFT for composite N, problems

UNIT VII
IIR Digital Filters: Analog filter approximations – Butterworth and Chebyshev, Design of IIR Digital filter from Analog filter- Step Invariance , impulse invariance and bilinear transformation techniques, design examples, realization of IIR filters direct, canonic, cascade, and parallel forms.

UNIT VIII
FIR digital filters: characteristics of FIR digital filters, frequency response, design of FIR digital filters-fourier method, window techniques, frequency sampling technique, comparison of IIR and FIR filters, realization of FIR filters direct, canonic, cascade, and parallel forms.

TEXT BOOKS:
1. Signals, systems and communications B.P. lathi B.S. publications 2009

REFERENCE BOOKS:
4. Digital Signal Processing - fundamentals applications LiTan Elsevier 2008
5. Digital Signal Processing A practical approach, Emmanuel C . IFEACHOR and Barie Jervis 2/e pearson 2009
MICROPROCESSORS AND MICROCONTROLLERS LAB

The following programs are to be written for assembler and execute the same with 8086 and 8051 kits

1. Programs for 16 bit arithmetic operations for 8086 (using various addressing modes)
2. Program for sorting an array for 8086.
3. Program for searching for a number or character in a string for 8086.
4. Program for string manipulations for 8086.
5. Program for digital clock design using 8086.
6. Interfacing ADC and DAC to 8086.
7. Parallel communication between two microprocessor kits using 8255.
8. Serial communication between two microprocessor kits using 8251.
9. Interfacing to 8086 and programming to control stepper motor.
10. Program and verify Timer/Counter in 8051.
11. Program and verify interrupt handling in 8051.
12. UART operation in 8051.
13. Communication between 8051 kit and PC.
15. Interfacing Matrix/keyboard to 8051.
16. Data Transfer from peripheral to memory through DMA controller 8237/8257.
17. Touch screen interface to ARM Processor.
18. Temperature control soldering session-ARM Processor based

Note: Minimum of 12 experiments to be conducted.
ELECTRICAL MEASUREMENTS LAB

The following experiments are required to be conducted as compulsory experiments:

1. Calibration and Testing of single phase energy Meter
2. Calibration of dynamometer power factor meter
3. Crompton D.C. Potentiometer – Calibration of PMMC ammeter and PMMC voltmeter
5. Dielectric oil testing using H.T. testing Kit
7. Measurement of 3 phase reactive power with single-phase wattmeter.

In addition to the above eight experiments, atleast any two of the experiments from the following list are required to be conducted:

9. Calibration LPF wattmeter – by Phantom testing
10. Measurement of 3 phase power with single watt meter and 2 No’s of C.T.
12. P.T. testing by comparison – V.G. as Null detector – Measurement of % ratio error and phase angle of the given P.T.
13. LVDT and capacitance pickup – characteristics and Calibration
14. Resistance strain gauge – strain measurements and Calibration
15. Transformer turns ratio measurement using a.c. bridge
Objective:
This subject deals with the importance of HVDC transmission, analysis of HVDC converters, Faults and protections, Harmonics and Filters. It also deals with Reactive power control and Power factor improvements of the system.

UNIT – IBASIC CONCEPTS

UNIT – II ANALYSIS OF HVDC CONVERTERS

UNIT – III CONVERTER & HVDC SYSTEM CONTROL
Principal of DC Link Control – Converters Control Characteristics – Firing angle control – Current and extinction angle control – Effect of source inductance on the system; Starting and stopping of DC link; Power Control.

UNIT-IV REACTIVE POWER CONTROL IN HVDC
Reactive Power Requirements in steady state- Conventional control strategies- Alternate control strategies- sources of reactive power- AC Filters – shunt capacitors-synchronous condensers.

UNIT –VPOWER FLOW ANALYSIS IN AC/DC SYSTEMS

UNIT-VI CONVERTER FAULT & PROTECTION
Converter faults – protection against over current and over voltage in converter station – surge arresters – smoothing reactors – DC breakers – Audible noise- space charge field-corona effects on DC lines- Radio interference.

UNIT – VII HARMONICS
Generation of Harmonics – Characteristics harmonics, calculation of AC Harmonics, Non- Characteristics harmonics, adverse effects of harmonics – Calculation of voltage & Current harmonics – Effect of Pulse number on harmonics

UNIT-VIII FILTERS
Types of AC filters, Design of Single tuned filters – Design of High pass filters.

TEXT BOOKS:

REFERENCE BOOKS:
Objective:
This course introduces the basics of Neural Networks and essentials of Artificial Neural Networks with Single Layer and Multilayer Feed Forward Networks. Also deals with Associate Memories and introduces Fuzzy sets and Fuzzy Logic system components. The Neural Network and Fuzzy Network system application to Electrical Engineering is also presented. This subject is very important and useful for doing Project Work.

Unit – I: Introduction to Neural Networks

Unit- II: Essentials of Artificial Neural Networks
Artificial Neuron Model, Operations of Artificial Neuron, Types of Neural Activation Function, ANN Architectures, Classification Taxonomy of ANN – Connectivity, Neural Dynamics (Activation and Synaptic), Learning Strategy (Supervised, Unsupervised, Reinforcement), Learning Rules, Types of Application

Unit–III: Single Layer Feed Forward Neural Networks

Unit- IV: Multilayer Feed forward Neural Networks
Credit Assignment Problem, Generalized Delta Rule, Derivation of Backpropagation (BP) Training, Summary of Backpropagation Algorithm, Kolmogorov Theorem, Learning Difficulties and Improvements.

Unit V: Associative Memories
Paradigms of Associative Memory, Pattern Mathematics, Hebbian Learning, General Concepts of Associative Memory (Associative Matrix, Association Rules, Hamming Distance, The Linear Associator, Matrix Memories, Content Addressable Memory).

Unit – VI
Bidirectional Associative Memory (BAM) Architecture, BAM Training Algorithms: Storage and Recall Algorithm, BAM Energy Function, Proof of BAM Stability Theorem
Architecture of Hopfield Network: Discrete and Continuous versions, Storage and Recall Algorithm, Stability Analysis, Capacity of the Hopfield Network
Summary and Discussion of Instance/Memory Based Learning Algorithms, Applications.

Unit – VII: Classical & Fuzzy Sets
Introduction to classical sets - properties, Operations and relations; Fuzzy sets, Membership, Uncertainty, Operations, properties, fuzzy relations, cardinalities, membership functions.

UNIT VIII: Fuzzy Logic System Components
Fuzzification, Membership value assignment, development of rule base and decision making system, Defuzzification to crisp sets, Defuzzification methods.

TEXT BOOK:
1. Neural Networks, Fuzzy logic, Genetic algorithms: synthesis and applications by Rajasekharan and Rai – PHI Publication.
2. Nureal networks by satish Kumar , TMH, 2004

REFERENCE BOOKS:
2. Neural Networks – Simon Hakins , Pearson Education
3. Neural Engineering by C.Eliasmith and CH.Anderson, PHI
4. Neural Networks and Fuzzy Logic System by Bart Kosko, PHI Publications.
UNIT-I STATE VARIABLE ANALYSIS

UNIT-II FOURIER SERIES AND FOURIER TRANSFORM REPRESENTATION
Introduction, Trigonometric form of Fourier series, Exponential form of Fourier series, Wave symmetry, Fourier integrals and transforms, Fourier transform of a periodic function , Properties of Fourier Transform , Parseval’s theorem , Fourier transform of some common signals, Fourier transform relationship with Laplace Transform.

UNIT-III APPLICATIONS OF FOURIER SERIES AND FOURIER TRANSFORM REPRESENTATION
Introduction, Effective value and average values of non sinusoidal periodic waves, currents, Power Factor, Effects of harmonics, Application in Circuit Analysis, Circuit Analysis using Fourier Series.

UNIT – IV LAPLACE TRANSFORM APPLICATIONS
Application of Laplace transform Methods of Analysis – Response of RL, RC, RLC Networks to Step, Ramp, and impulse functions, Shifting Theorem – Convolution Integral – Applications

UNIT-V TESTING OF POLYNOMIALS
Elements of realisability-Hurwitz polynomials-positive real functions-Properties-Testing-Sturm’s Test, examples.

UNIT-VI NETWORK SYNTHESIS
Network synthesis:Synthesis of one port LC networks-Foster and Cauer methods-Synthesis of RL and RC one port networks-Foster and Cauer methods

UNIT-VII SAMPLING
Sampling theorem – Graphical and Analytical proof for Band Limited Signal impulse sampling, natural and Flat top Sampling, Reconstruction of signal from its samples, effect of under sampling – Aliasing, introduction to Band Pass sampling, Cross correlation and auto correlation of functions, properties of correlation function, Energy density spectrum, Power density spectrum, Relation between auto correlation function and Energy / Power spectral density function.

UNIT-VIII Z-TRANSFORMS
Fundamental difference between continous and discrete time signals, discrete time complex, exponential and sinusoidal signals, periodicity of discrete time complex exponential, concept of Z-Transform of a discrete sequence. Distinction between Laplace, Fourier and Z-Transforms. Region of convergence in Z-Transforms, constraints on ROC for various classes of signals, Inverse Z-Transform properties of Z-Transforms.

TEXT BOOKS:
1. Network and Systems – D Roy Chowdhary, New Age International

REFERENCE BOOKS:
1. Linear System Analysis – A N Tripathi, New Age International
2. Engineering Network Analysis and Filter Design- Gopal G Bhisk & Umesh
4. Linear system analysis by A.Cheng, Oxford publishers.
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

IV Year B.Tech EEE II-Sem
6758011

RELIABILITY ENGINEERING AND APPLICATIONS TO POWER SYSTEMS
(ELECTIVE-III)

UNIT – I Basics of Probability theory & Distribution

UNIT – II Network Modelling and Reliability Analysis

UNIT – III Reliability functions
Reliability functions f(t), F(t), R(t), h(t) and their relationships – exponential distribution – Expected value and standard deviation of exponential distribution – Bath tub curve – reliability analysis of series parallel networks using exponential distribution – reliability measures MTTF, MTTR, MTBF.

UNIT – IV Markov Modelling

UNIT – V Frequency & Duration Techniques
Frequency and duration concept – Evaluation of frequency of encountering state, mean cycletime, for one , two component repairable models – evaluation of cumulative probability and cumulative frequency of encountering of merged states.

UNIT – VI Generation System Reliability Analysis

UNIT – VII Composite Systems Reliability Analysis

UNIT – VIII Distribution System and Reliability Analysis

TEXT BOOKS:
ADVANCED CONTROL SYSTEMS
(ELECTIVE – IV)

OBJECTIVE:
This subject deals with state space, describing function, phase plane and stability analysis including controllability and observability. It also deals with modern control and optimal control systems.

UNIT – I STATE SPACE ANALYSIS
State Space Representation, Solution of State Equation, State Transition Matrix, Canonical Forms – Controllable Canonical Form, Observable Canonical Form, Jordan Canonical Form.

UNIT – II CONTROLLABILITY AND OBSERVABILITY
Tests for controllability and observability for continuous time systems – Time varying case, minimum energy control, time invariant case, Principle of Duality, Controllability and observability form Jordan canonical form and other canonical forms.

UNIT – III DESCRIBING FUNCTION ANALYSIS
Introduction to nonlinear systems, Types of nonlinearities, describing functions, describing function analysis of nonlinear control systems.

UNIT-IV PHASE-PLANE ANALYSIS
Introduction to phase-plane analysis, Method of Isoclines for Constructing Trajectories, singular points, phase-plane analysis of nonlinear control systems.

UNIT-V STABILITY ANALYSIS
Stability in the sense of Lyapunov., Lyapunov’s stability and Lyapunov’s instability theorems. Direct method of Lyapunov for the Linear and Nonlinear continuous time autonomous systems.

UNIT – VI MODAL CONTROL
Effect of state feedback on controllability and observability, Design of State Feedback Control through Pole placement. Full order observer and reduced order observer.

UNIT-VII CALCULUS OF VARIATIONS

UNIT –VIII OPTIMAL CONTROL

TEXT BOOKS:

REFERENCE BOOKS:
4. Modern control SYetem – By Dorf, Pearson
Unit – I: Preliminaries:

Unit – II: Line and ground reactive parameters:

Unit – III: Voltage gradients of conductors:

Unit – IV: Corona effects – I:
Power loss and audible noise (AN) – corona loss formulae – charge voltage diagram – generation, characteristics – limits and measurements of AN – relation between 1-phase and 3-phase AN levels – Examples.

Unit – V: Corona effects – II:

Unit – VI: Electrostatic field:

Unit- VII: Traveling wave theory

Unit – VIII: Voltage control:

TEXT BOOKS:
1. EHVAC Transmission Engineering by R. D. Begumudre, New Age International (p) Ltd.
2. HVAC and DC Transmission by S. Rao
Objective:
- Is to acquaint budding engineers with the basic principles of organization, operation and performance of modern-day computer systems.
- It covers all aspects of computer technology, from the underlying integrated circuit technology used to construct computer components, to the use of parallel organization concepts in combining those components.

UNIT-I:

UNIT-II:

UNIT-III:

UNIT-IV:
MICRO PROGRAMMED CONTROL: Control memory, Address sequencing, microprogram example, design of control unit Hard wired control. Microprogrammed control

UNIT-V:
THE MEMORY SYSTEM: Basic concepts semiconductor RAM memories. Read-only memories Cache memories performance considerations, Virtual memories secondary storage.

UNIT-VI:

UNIT-VII:
P PIPELINE AND VECTOR PROCESSING: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline Vector Processing, Array Processors.

UNIT-VIII:

TEXT BOOKS:

REFERENCES:
<table>
<thead>
<tr>
<th>Course Description</th>
<th>Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry Oriented Mini Project</td>
<td>6758605</td>
<td>2</td>
</tr>
<tr>
<td>Seminar</td>
<td>6758606</td>
<td>2</td>
</tr>
<tr>
<td>Project Work</td>
<td>6758607</td>
<td>10</td>
</tr>
<tr>
<td>Comprehensive Viva</td>
<td>6758608</td>
<td>2</td>
</tr>
</tbody>
</table>