ACADEMIC REGULATIONS
COURSE STRUCTURE AND DETAILED SYLLABUS

FOR

COMPUTER SCIENCE AND ENGINEERING

For B.TECH. FOUR YEAR DEGREE COURSE
(Applicable for the batches admitted from 2012-2013)
REGULATION : R12

J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(Autonomous)

Yenkapally, Moinabad Mandal, P.O.Himayath Nagar, R.R.Dist, Hyderabad-500 075
Fax&Phone No.910-8413-235753, Tel:08413-235755,201301
Website:www.jbiet.edu.in ; e-mail:principal@jbiet.edu.in
1. **Award of B.Tech. Degree**
 A student will be declared eligible for the award of the B. Tech. Degree if he fulfills the following academic regulations:
 i. **Pursued a course of study for not less than four academic years and not more than eight academic years.**
 ii. **Register for 200 credits and secure 200 credits**

2. Students, who fail to fulfill all the academic requirements for the award of the degree within eight academic years from the year of their admission, shall forfeit their seat in B.Tech course.

3. **Courses of study**
The following courses of study are offered at present for specialization for the B. Tech. Course:

<table>
<thead>
<tr>
<th>Branch Code</th>
<th>Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>02</td>
<td>Electrical and Electronics Engineer</td>
</tr>
<tr>
<td>03</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>04</td>
<td>Electronics and Communication Engineering</td>
</tr>
<tr>
<td>05</td>
<td>Computer Science and Engineering</td>
</tr>
<tr>
<td>11</td>
<td>Bio-Medical Engineering</td>
</tr>
<tr>
<td>12</td>
<td>Information Technology</td>
</tr>
<tr>
<td>25</td>
<td>Mining Engineering</td>
</tr>
</tbody>
</table>

and any other course as approved by the authorities of JBIET from time to time.

4. **Credits**

<table>
<thead>
<tr>
<th></th>
<th>I Year</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Periods / Week</td>
<td>Credit</td>
</tr>
<tr>
<td>Theory</td>
<td>03</td>
<td>06</td>
</tr>
<tr>
<td>Practical</td>
<td>02</td>
<td>04</td>
</tr>
<tr>
<td>Drawing</td>
<td>03</td>
<td>04</td>
</tr>
<tr>
<td>Mini Project</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Comprehensive Viva</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
5. Distribution and Weightage of Marks

i. The performance of a student in each semester / I year shall be evaluated subject-wise with a maximum of 100 marks for theory and 75 marks for practical subject. In addition, Industry oriented mini-project, seminar and project work shall be evaluated for **50, 50 and 200** marks respectively.

 ii. For theory subjects the distribution shall be 25 marks for Internal Evaluation and 75 marks for the End-Examination.

 iii. For the subject having design and / or drawing, (such as Engineering Graphics, Engineering Drawing, Machine Drawing) and estimation, the distribution shall be 25 marks for internal evaluation (15 marks for day-to-day work and 10 marks for subjective paper) and 75 marks for end examination. There shall be two internal tests in a Semester.

For theory subjects, the distribution shall be 25 marks for internal evaluation (Midterm exams (20marks) + Assignment (5marks)) and 75 marks for end examination. There shall be altogether four assignments (Each assignment consisting of 6 questions from every two units of syllabus) set by the teacher from the whole syllabus of the subject.

The pattern of question paper shall consist of two parts namely Part-A and Part-B out of which the candidate has to answer Part-A compulsorily and from Part-B, the candidate has to answer three questions out of five questions given. The Part-A i.e. question no.1 consists of sub questions, which are based on fundamentals and concept testing nature. These questions may of the following type:

a. Short answer questions for which answer is two to three sentences
b. Multiple choice questions
c. Fill in the blanks
d. True/False type

Any sub question may carry a maximum of 1 or 2 marks. Altogether candidate has to answer 4 questions out of 6 questions but question no.1 of Part-A is compulsory. The time allocated for the mid term examination is 2 hours. There shall be 2 Mid Term Examinations(1st Mid shall be from 1-4 Units and 2nd Mid shall be from 5-8 Units)

The Internal Evaluation is for 25 marks (20 for Mid term Examination and 5 Marks for Assignment), the average of these two shall be considered as the final marks for Internal Evaluation secured by the candidate.

However, for **first year**, there shall be 3 mid term examinations (Each for 20 Marks) and 3 Assignments (Each for 5 Marks), [1st mid shall be from 1-2 units, 2nd mid from 3-5 units and 3rd mid shall be from 6-8 units]. There shall be altogether six assignments (Each assignment consisting of 6 questions from every unit of syllabus) set by the teacher from the whole syllabus of the subject.
The Internal Evaluation is for 25 marks (20 for Mid term Examination and 5 Marks for Assignment), the average of these three shall be considered as the final marks for Internal Evaluation secured by the candidate.

The question paper shall contain 6 questions, 1 in Part-A and 5 in Part-B. The candidate shall have to answer Part-A compulsorily and shall have to answer any three questions from remaining five questions of Part-B. The Part-A i.e. question no.1 consists of sub questions, which are based on fundamentals and concept testing nature. These questions may of the following type:

a. Short answer questions for which answer is two to three sentences
b. Multiple choice questions
c. Fill in the blanks
d. True/False type

Any sub question may carry a maximum of 1 or 2 marks. Altogether candidate has to answer 4 questions out of 6 questions.

iv. For practical subjects there shall be a continuous evaluation during the semester for 25 sessional marks and 50 end examination marks. Out of the 25 marks for internal, day-to-day work in the laboratory shall be evaluated for 15 marks and internal examination for practical shall be evaluated for 10 marks conducted by the concerned laboratory teacher. The end examination shall be conducted with external examiner and laboratory teacher. The external examiner shall be appointed by the Chief Controller of Examinations.

v. For the subject having design and / or drawing, (such as Engineering Graphics, Engineering Drawing, Machine Drawing) and estimation, the distribution shall be 25 marks for internal evaluation (15 marks for day-to-day work and 10 marks for subjective paper) and 75 marks for end examination. There shall be two internal tests in a Semester and average of the two shall be considered for the award of marks for internal tests. However in the I year class, there shall be three tests and the average of the three mid term examinations will be taken into consideration.

vi. There shall be an industry-oriented mini-Project, in collaboration with an industry of their specialization, to be taken up during the vacation after III year II Semester examination. However, the mini project and its report shall be evaluated with the project work in IV year II Semester. The industry oriented mini project shall be submitted in report form and should be presented before the committee, which shall be evaluated for 50 marks. The committee consists of an external examiner, head of the department, the supervisor of mini project and a senior faculty member of the department. There shall be no internal marks for industry oriented mini project.

vii. There shall be a seminar presentation in IV year II Semester. For the seminar, the student shall collect the information on a specialized topic and prepare a technical report, showing his understanding over the topic, and submit to the department, which shall be evaluated by the Departmental committee consisting of Head of the department, seminar supervisor and a senior faculty member. The seminar report shall be evaluated for 50 marks. There shall be no external examination for seminar.

viii. There shall be a Comprehensive Viva-Voce in IV year II semester. The Comprehensive Viva-Voce will be conducted by a Committee consisting of (i) Head of the Department (ii) two Senior Faculty members of the Department. The Comprehensive Viva-Voce is aimed to assess the students’ understanding in various subjects he / she studied during the B.Tech
course of study. The Comprehensive Viva-Voce is evaluated for 100 marks by the Committee. There are no internal marks for the Comprehensive viva-voce.

ix. Out of a total of 200 marks for the project work, 50 marks shall be for Internal Evaluation and 150 marks for the End Semester Examination. The End Semester Examination (viva-voce) shall be conducted by the same committee appointed for industry oriented mini project. In addition the project supervisor shall also be included in the committee. The topics for industry oriented mini project, seminar and project work shall be different from each other. The evaluation of project work shall be conducted at the end of the IV year. The Internal Evaluation shall be on the basis of two seminars given by each student on the topic of his project.

6. Attendance Requirements:
 i. A student shall be eligible to appear for College End examinations if he acquires a minimum of 75% of attendance in aggregate of all the subjects.
 ii. Shortage of Attendance below 65% in aggregate shall in NO case be condoned.
 iii. Condonation of shortage of attendance in aggregate up to 10% (65% and above and below 75%) in each semester or I year may be granted by the College Academic Committee.
 iv. A student will not be promoted to the next semester unless he satisfies the attendance requirement of the present semester / I year, as applicable. They may seek re-admission for that semester / I year when offered next.
 v. Students whose shortage of attendance is not condoned in any semester / I year are not eligible to take their end examination of that class and their registration shall stand cancelled.
 vi. A stipulated fee shall be payable towards condonation of shortage of attendance.

7. Minimum Academic Requirements:
The following academic requirements have to be satisfied in addition to the attendance requirements mentioned in item no.6
 i. A student shall be deemed to have satisfied the minimum academic requirements and earned the credits allotted to each theory or practical design or drawing subject or project if he secures not less than 35% of marks in the end examination and a minimum of 40% of marks in the sum total of the internal evaluation and end examination taken together.
 ii. A student shall be promoted from II to III year only if he fulfils the academic requirement of 37 credits from one regular and one supplementary examinations of I year, and one regular examination of II year I semester irrespective of whether the candidate takes the examination or not.
 iii. A student shall be promoted from third year to fourth year only if he fulfils the academic requirements of total 62 credits from the following examinations, whether the candidate takes the examinations or not.
 a. Two regular and two supplementary examinations of I year.
 b. Two regular and one supplementary examinations of II year I semester.
 c. One regular and one supplementary examinations of II year II semester.
 d. One regular examination of III year I semester.
 iv. A student shall register and put up minimum attendance in all 200 credits and earn the 200 credits. Marks obtained in all 200 credits shall be considered for the calculation of percentage of marks.
v. Students who fail to earn 200 credits as indicated in the course structure within eight academic years from the year of their admission shall forfeit their seat in B.Tech course and their admission shall stand cancelled.

8. Course pattern:
 i. The entire course of study is of four academic years. The first year shall be on yearly pattern and the second, third and fourth years on semester pattern.
 ii. A student eligible to appear for the end examination in a subject, but absent at it or has failed in the end examination may appear for that subject at the supplementary examination.
 iii. When a student is detained due to lack of credits / shortage of attendance he may be re-admitted when the semester / year is offered after fulfilment of academic regulations, whereas the academic regulations hold good with the regulations he was first admitted.

9. Award of Class:
 After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of B. Tech. Degree he shall be placed in one of the following four classes:

<table>
<thead>
<tr>
<th>Class Awarded</th>
<th>% of marks to be secured</th>
<th>From the aggregate marks secured for the best 200 Credits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class with Distinction</td>
<td>70% and above</td>
<td></td>
</tr>
<tr>
<td>First Class</td>
<td>Below 70% but not less than 60%</td>
<td></td>
</tr>
<tr>
<td>Second Class</td>
<td>Below 60% but not less than 50%</td>
<td></td>
</tr>
<tr>
<td>Pass Class</td>
<td>Below 50% but not less than 40%</td>
<td></td>
</tr>
</tbody>
</table>

(The marks in internal evaluation and end examination shall be shown separately in the marks memorandum)

10. Minimum Instruction Days:
 The minimum instruction days for each semester / I year shall be 90/180 clear instruction days.

11. There shall be no branch transfers after the completion of admission process.

12. General:
 i. Where the words “he”, “him”, “his”, occur in the regulations, they include “she”, “her”, “hers”.
 ii. The academic regulation should be read as a whole for the purpose of any interpretation.
 iii. In the case of any doubt or ambiguity in the interpretation of the above rules, the decision of the JBIET is final.
 iv. The JBIET may change or amend the academic regulations or syllabi at any time and the changes or amendments made shall be applicable to all the students with effect from the dates notified by the JBIET.

_-*
Academic Regulations for B. Tech. (Lateral Entry Scheme)

(Effective for the students getting admitted into II year from the Academic Year 2011-2012 and onwards)

1. The Students have to acquire 150 credits from II to IV year of B.Tech. Program (Regular) for the award of the degree.
 Register for **150** credits and secure **150** credits.

2. Students, who fail to fulfil the requirement for the award of the degree in 6 consecutive academic years from the year of admission, shall forfeit their seat.

3. The same attendance regulations are to be adopted as that of B. Tech. (Regular).

4. **Promotion Rule:**
 A student shall be promoted from third year to fourth year only if he fulfils the academic requirements of 37 credits from the examinations.
 a. Two regular and one supplementary examinations of II year I semester.
 b. One regular and one supplementary examinations of II year II semester.
 c. One regular examination of III year I semester.

5. **Award of Class:**
 After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of B. Tech. Degree he shall be placed in one of the following four classes:

<table>
<thead>
<tr>
<th>Class</th>
<th>Required Marks</th>
<th>From the aggregate marks secured for 150 Credits. (i.e. II year to IV year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class with Distinction</td>
<td>70% and above</td>
<td></td>
</tr>
<tr>
<td>First Class</td>
<td>Below 70% but not less than 60%</td>
<td></td>
</tr>
<tr>
<td>Second Class</td>
<td>Below 60% but not less than 50%</td>
<td></td>
</tr>
<tr>
<td>Pass Class</td>
<td>Below 50% but not less than 40%</td>
<td></td>
</tr>
</tbody>
</table>

 (The marks in internal evaluation and end examination shall be shown separately in the marks memorandum)

6. All other regulations as applicable for B. Tech. Four-year degree course (Regular) will hold good for B. Tech. (Lateral Entry Scheme)
MALPRACTICES RULES

DISCIPLINARY ACTION FOR / IMPROPER CONDUCT IN EXAMINATIONS

<table>
<thead>
<tr>
<th>Nature of Malpractices/Improper conduct</th>
<th>Punishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the candidate:</td>
<td></td>
</tr>
<tr>
<td>1. (a) Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only.</td>
</tr>
<tr>
<td>(b) Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.</td>
</tr>
<tr>
<td>2. Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that Semester/year. The Hall Ticket of the candidate is to be cancelled and sent to the University.</td>
</tr>
<tr>
<td>3. Impersonates any other candidate in connection with the examination.</td>
<td>The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred and forfeits the seat. The performance of the original candidate who has been impersonated, shall be cancelled in all the subjects of the examination (including practicals and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.</td>
</tr>
<tr>
<td>4. Smuggles in the Answer book or additional sheet</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.</td>
<td>cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.</td>
</tr>
<tr>
<td>5. Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.</td>
<td>Cancellation of the performance in that subject.</td>
</tr>
<tr>
<td>6. Refuses to obey the orders of the Chief Superintendent/Assistant – Superintendent / any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in-charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.</td>
<td>In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The candidates also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the police and a police case is registered against them.</td>
</tr>
<tr>
<td>7. Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.</td>
<td>Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.</td>
</tr>
<tr>
<td>8. Possess any lethal weapon or firearm in the examination hall.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject</td>
</tr>
</tbody>
</table>
and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.

<table>
<thead>
<tr>
<th>Clause</th>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.</td>
<td>If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.</td>
<td>Student of the college's expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat. Person(s) who do not belong to the College will be handed over to police and, a police case will be registered against them.</td>
</tr>
<tr>
<td>10.</td>
<td>Comes in a drunken condition to the examination hall.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year.</td>
</tr>
<tr>
<td>11.</td>
<td>Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.</td>
<td>Cancellation of the performance in that subject and all other subjects the candidate has appeared including practical examinations and project work of that semester/year examinations.</td>
</tr>
<tr>
<td>12.</td>
<td>If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the University for further action to award suitable punishment.</td>
<td></td>
</tr>
</tbody>
</table>

Malpractices identified by squad or special invigilators

1. Punishments to the candidates as per the above guidelines.
2. Punishment for institutions: (if the squad reports that the college is also involved in encouraging malpractices)

 (i) A show cause notice shall be issued to the college.

 (ii) Impose a suitable fine on the college.

 (iii) Shifting the examination centre from the college to another college for a specific period of not less than one year.
J.B. Institute of Engineering & Technology (Autonomous)

B. Tech. Computer Science and Engineering

I Year Course Structure

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6751001</td>
<td>English</td>
<td>2</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>6751002</td>
<td>Mathematics - I</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>6751008</td>
<td>Mathematical Methods</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>6751004</td>
<td>Engineering Physics</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6751005</td>
<td>Engineering Chemistry</td>
<td>2</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>6751006</td>
<td>Computer Programming & Data Structures</td>
<td>3*</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>6751007</td>
<td>Engineering Drawing</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6751616</td>
<td>Computer Programming Lab.</td>
<td>-</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6751617</td>
<td>Engineering Physics / Engineering Chemistry Lab.</td>
<td>-</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6751618</td>
<td>English Language Communication Skills Lab.</td>
<td>-</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6751619</td>
<td>IT Workshop / Engineering Workshop</td>
<td>-</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Total 17 18 50

II Year I Semester Course Structure

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6753014</td>
<td>Probability and Statistics</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6753022</td>
<td>Mathematical Foundations of Computer Science</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6753023</td>
<td>Data Structures through C++</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6753024</td>
<td>Digital Logic Design</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6753009</td>
<td>Electronic Devices and Circuits</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>6753025</td>
<td>Basic Electrical Engineering</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6753608</td>
<td>Electrical and Electronics Lab</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6753609</td>
<td>Data Structures Lab through C++</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Total 21 11 25

II Year II Semester Course Structure

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6754012</td>
<td>Computer Organization</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6754013</td>
<td>Data Base Management Systems</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6754014</td>
<td>Object Oriented Programming</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>6754004</td>
<td>Environmental studies</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6754015</td>
<td>Formal Languages and Automata Theory</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6754016</td>
<td>Design and Analysis of Algorithms</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6754609</td>
<td>Object Oriented Programming Lab</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6754610</td>
<td>Data Base Management Systems Lab</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Total 21 11 25
III YEAR I SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6755025</td>
<td>Principles of programming Languages</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6755026</td>
<td>Operations Research</td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>6755027</td>
<td>Intellectual Property Rights and Cyber Law</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>6755028</td>
<td>Computer Forensics</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>6755029</td>
<td>Software Engineering</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6755030</td>
<td>Microprocessors & Interfacing</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6755031</td>
<td>Operating Systems</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>6755032</td>
<td>Data Communication & Computer Networks</td>
<td>4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6755038</td>
<td>Microprocessors & Interfacing Lab</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6755039</td>
<td>Computer Networks & Operating Systems Lab</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>21</td>
<td>11</td>
<td>25</td>
</tr>
</tbody>
</table>

OPEN ELECTIVE

III YEAR II SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6756028</td>
<td>Object Oriented Analysis and Design</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>6756029</td>
<td>VLSI Design</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6756030</td>
<td>Network Security</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6756031</td>
<td>Compiler Design</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6756032</td>
<td>Managerial Economics and Financial Analysis</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>6756032</td>
<td>Web Technologies</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6756039</td>
<td>Advanced English Communication Skills Lab</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6756040</td>
<td>Web Technologies & Compiler Design Lab</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>21</td>
<td>11</td>
<td>25</td>
</tr>
</tbody>
</table>

IV YEAR I SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6757046</td>
<td>Linux Programming</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6757047</td>
<td>Software Testing Methodologies</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6757048</td>
<td>Data Warehousing and Data Mining</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>6757049</td>
<td>Computer Graphics</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6757050</td>
<td>Advanced Computer Architecture</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6757051</td>
<td>Cloud Computing</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>6757052</td>
<td>Distributed Computing</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>6757053</td>
<td>Mobile Computing</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>6757054</td>
<td>Design Patterns</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>6757055</td>
<td>Machine Learning</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>6757056</td>
<td>Soft Computing</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>6757057</td>
<td>Information Retrieval Systems</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>6757049</td>
<td>Linux Programming and Data Mining Lab</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6757041</td>
<td>Case Tools & Software Testing Lab</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>21</td>
<td>11</td>
<td>25</td>
</tr>
</tbody>
</table>
J.B. INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)

B. TECH. COMPUTER SCIENCE AND ENGINEERING

IV YEAR II SEMESTER

COURSE STRUCTURE

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6758007</td>
<td>Management Science</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>6758035</td>
<td>Web Services</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6758036</td>
<td>Semantic Web & Social Networks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6758037</td>
<td>Scripting Languages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6758038</td>
<td>Multimedia & Rich Internet Applications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6758039</td>
<td>ELECTIVE III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6758040</td>
<td>Adhoc & Sensors Networks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6758041</td>
<td>Storage Area Networks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6758042</td>
<td>Database Security</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6758043</td>
<td>Embedded Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6758044</td>
<td>Industry Oriented Mini Project</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6758045</td>
<td>Seminar</td>
<td></td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>6758046</td>
<td>Project Work</td>
<td></td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>6758047</td>
<td>Comprehensive Viva</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>9</td>
<td>23</td>
<td>25</td>
</tr>
</tbody>
</table>

Note: All End Examinations (Theory and Practical) are of three hours duration.

T-Tutorial | **L – Theory** | **P – Practical/Drawing** | **C – Credits**
1. INTRODUCTION:

In view of the growing importance of English as a tool for global communication and the consequent emphasis on training students to acquire communicative competence, the syllabus has been designed to develop linguistic and communicative competence of Engineering students. The prescribed books and the exercises are meant to serve broadly as students’ handbooks. In the English classes, the focus should be on the skills of reading, writing, listening and speaking and for this the teachers should use the text prescribed for detailed study. For example, the students should be encouraged to read the texts/selected paragraphs silently. The teachers can ask comprehension questions to stimulate discussion and based on the discussions students can be made to write short paragraphs/essays etc. The text for non-detailed study is for extensive reading/reading for pleasure by the students. Hence, it is suggested that they read it on their own with topics selected for discussion in the class. The time should be utilized for working out the exercises given after each section, as also for supplementing the exercises with authentic materials of a similar kind for example, from newspaper articles, advertisements, promotional material etc. However, the stress in this syllabus is on skill development and practice of language skills.

2. OBJECTIVES:

a. To improve the language proficiency of the students in English with emphasis on LSRW skills.
b. To equip the students to study academic subjects with greater facility through the theoretical and practical components of the English syllabus.
c. To develop the study skills and communication skills in formal and informal situations.

3. SYLLABUS:

Listening Skills:
Objectives
1. To enable students to develop their listening skill so that they may appreciate its role in the LSRW skills approach to language and improve their pronunciation
2. To equip students with necessary training in listening so that they can comprehend the speech of people of different backgrounds and regions

Students should be given practice in listening to the sounds of the language to be able to recognise them, to distinguish between them to mark stress and recognise and use the right intonation in sentences.

• Listening for general content
• Listening to fill up information
• Intensive listening
• Listening for specific information

Speaking Skills:
Objectives
1. To make students aware of the role of speaking in English and its contribution to their success.
2. To enable students to express themselves fluently and appropriately in social and professional contexts.

• Oral practice
• Describing objects/situations/people
• Role play – Individual/Group activities (Using exercises from all the nine units of the prescribed text: Learning English : A Communicative Approach.)
• Just A Minute(JAM) Sessions.

Reading Skills:
Objectives
1. To develop an awareness in the students about the significance of silent reading and comprehension.
2. To develop the ability of students to guess the meanings of words from context and grasp the overall message of the text, draw inferences etc.

• Skimming the text
• Understanding the gist of an argument
• Identifying the topic sentence
• Inferring lexical and contextual meaning
• Understanding discourse features
• Recognizing coherence/sequencing of sentences

NOTE: The students will be trained in reading skills using the prescribed text for detailed study. They will be examined in reading and answering questions using ‘unseen’ passages which may be taken from the non-detailed text or other authentic texts, such as magazines/newspaper articles.

Writing Skills:
Objectives
1. To develop an awareness in the students about writing as an exact and formal skill
2. To equip them with the components of different forms of writing, beginning with the lower order ones.

• Writing sentences
• Use of appropriate vocabulary
• Paragraph writing
• Coherence and cohesiveness
• Narration / description
• Note Making
• Formal and informal letter writing
• Editing a passage

4. TEXTBOOKS PRESCRIBED:
In order to improve the proficiency of the student in the acquisition of the four skills mentioned above, the following texts and course content, divided into Eight Units, are prescribed:

For Detailed study

1. First textbook entitled “Enjoying Everyday English”, Published by Sangam Books, Hyderabad

For Non-detailed study
1. Second textbook “Inspiring Speeches and Lives”, Published by Maruthi Publications, Guntur

A. STUDY MATERIAL:
UNIT-I
a. Sir C.V. Raman (Detail) A pathbreaker in the saga of Indian Science. (Detail)
b. Leading a team and Work brings Solace (from Wings of Fire) --University Press

UNIT-II
a. The Connoisseur (Detail)
b. Mother Theresa (Non-detail)

UNIT-III
a. Kalpana Chawla “Inspiration” (Detail)
b. Sam Pitroda (Non-detail)

UNIT-IV
a. Bubbling Well Road (Detail)
b. I have a dream-Martin Luther king(Non-detail)

UNIT-V
a. The Cuddalore Experience(Detail)
b. Amartya kumar Sen(Non-detail)

UNIT-VI
a. **Youth, Awake, Arise - STOP NOT TILL**

Swami Vivekananda Institute of Human Excellence,

b. John F. Kennedy (Non-detail)

UNIT-VII

- Exercises on;
 - Reading & Writing Skills
 - Reading Comprehension
 - Letter Writing
 - Essay Writing

UNIT-VIII

- Exercises on Remedial Grammar;
- Common errors in English
- Subject-Verb agreement
- Tense aspect
- **Vocabulary development** - Synonyms, Antonyms, One word substitutes, Prefixes-Suffixes, Idioms, Phrases, Words often confused

REFERENCES :

1. **Innovate with English: A Course in English for Engineering Students**, edited by T Samson, Foundation Books
2. English Grammar Practice, Raj N Bakshi, Orient Longman.
3. **Effective English**, edited by E Suresh Kumar, A RamaKrishna Rao, P Sreehari, Published by Pearson
5. Spoken English, R K Bansal & JB Harrison, Orient Longman.
6. Technical Communication, Meenakshi Raman, Oxford University Press
7. Objective English Edgar Thorpe & Showick Thorpe, Pearson Education
9. Murphy’s English Grammar with CD, Murphy, Cambridge University Press.
10. Everyday Dialogues in English, Robert J. Dixson, Prentice Hall India Pvt Ltd.,
12. Basic Vocabulary Edgar Thorpe & Showick Thorpe, Pearson Education
16. Enrich your English, Thakur K B P Sinha, Vijay Nicole Imprints Pvt Ltd.,
UNIT-I : Sequences - Series
Basic definitions of Sequences and Series – Convergence and divergence – Ratio test – Comparison test – Integral test – Cauchy’s root test – Raabe’s test – Absolute and conditional convergence.

UNIT-II : Differential equations of first order and their applications
Overview of differential equations – exact, linear and Bernoulli. Applications to Newton’s Law of cooling, Law natural growth and decay, orthogonal trajectories and geometrical applications.

UNIT-III : Higher Order Linear differential equations and their applications
Linear differential equations of second and higher order with constant coefficients, RHS term of the f(X)=e^{ax}, Cos ax, and x^n, e^{ax} V(x), x^n V(x) method of variation of parameters. Applications bending of beams, Electrical circuits, simple harmonic motion.

UNIT-IV : Laplace transform and its application to Ordinary differential equations

UNIT-V : Function of Single Variable
Rolle’s Theorem – Lagrange’s Mean Value Theorem – Cauchy’s mean value Theorem – Generalized mean value theorem (all theorems without proof) Functions of several variables – Functional dependence – Jacobian – Maxima and Minima of functions of two variables with constraints and without constraints.

UNIT-VI : Application of Single variable
Radius, Centre and Circle of Curvature-Evoluttes and Envelopes Curve tracing – Cartesian, polar and parametric curves.

UNIT-VII : Integration & its applications
Riemann Sums, integral Representation for lengths, Areas, Volumes and Surface areas in Cartesian and polar coordinates, multiple integrals – double and triple integrals – change of order of integration – change of variable.

UNIT-VIII : Vector Calculus

TEXT BOOKS:
1. Engineering Mathematics by B.V.Ramana
2. Engineering Mathematics-I by T.K.V. Iyanar & B.Krishna Gandhi & Others, S.Chand

REFERENCES:
MATHEMATICAL METHODS

UNIT-I: Solution for linear systems

UNIT-II: Eigen values & Eigen Vectors

UNIT-III: Linear Transformations

UNIT-IV: Solution of Non – linear Systems

Interpolation:

UNIT-V: Curve fitting & Numerical Integration

UNIT-VI: Numerical solution of IVP’s in ODE

UNIT-VII: Fourier Series-Fourier Transform

UNIT-VIII: Z-Transform & Partial differential equations
Z-Transform-Properties-Damping rule-shifting rule-Initial & Final value theorems-convolution theorem –solution of difference equation by Z-transform –Introduction and Formation of partial equation by elimination of arbitrary constants and arbitrary functions, solutions of first order linear (Lagrange) equation and nonlinear (Standard type) equations.

TEXT BOOKS:
1. Engineering Mathematics by B.V.Ramana

REFERENCES:
1. Introductory Methods by Numerical Analysis by S.S. Sastry, PHI Learning Pvt. Ltd.
4. A text Book of KREYSZIG’S Mathematical Methods, Dr.A.Ramakrishna Prasad, WILEY Publications.
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

1 Year B.Tech.CSE
6751004

ENGINEERING PHYSICS

Unit-I Physical Optics:
1. Interference: Types of Interferences, Interference in thin films (reflected light) - Newton's rings.
2. Diffraction: Types of diffraction, Frounhofer’s Diffraction at a single slit, double slit and diffraction grating (N-slits).
3. Polarization: Introduction to polarization, Malus law, double refraction, Nicol's prism, Brewster’s law
 Applications of Interference, Diffraction & Polarization in industry.

UNIT-II Crystallography – XRD methods

UNIT-III Defects in Crystals & Principles of Quantum Mechanics
6. Defects in Crystals: Point Defects: Vacancies, Substitution, Interstitial, Frenkel and Schottky Defects, Concentration of vacancies at given temperature, concentration of Schottky & Frenkel defects, Qualitative treatment of line (Edge and Screw Dislocations) Defects, Burger’s Vector, Surface Defects and Volume Defects. (Qualitative treatment)

UNIT-IV Band Theory of Solids

UNIT-V Acoustics of Building & Acoustic Quieting and Ultrasonics

Ultrasonics:
Concept of ultrasonics wave generation, Different methods of generation of Ultrasonic’s (Piezostriction and Magnetostriiction) , concept of NDT & Applications.

UNIT-VI Dielectric and Magnetic Properties

UNIT-VII Lasers and Fiber Optics

UNIT-VIII Nanotechnology

TEXT BOOKS:
7. Engineering Physics – Adeel Ahmad & B S Bellubbi (Florence Publication , Hyd)

REFERENCES:
1. Solid state physics -- M.Arumugam
2. Applied physics – Mani naidu
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

1 Year B.Tech.CSE
6751005

ENGINEERING CHEMISTRY

UNIT I:

UNIT II:

UNIT III:

UNIT IV:

UNIT V:

UNIT VI:

UNIT VII:
Phase rule: Definitions: phase, component, degree of freedom, phase rule equitation. Phase diagrams - one component system: water system. Two component system lead- silver system, heat treatment based on iron-carbon phase diagram, hardening, annealing.

UNIT VIII:

TEXT BOOKS:

REFERENCE BOOKS:
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

1 Year B.Tech.CSE
6751006

COMPUTER PROGRAMMING AND DATA STRUCTURES

UNIT - I

UNIT - II
Introduction to C Language – Background, Simple C Programme, Identifiers, Basic data types, Variables, Constants, Input / Output, Operators, Expressions, Precedence and Associativity, Expression Evaluation, Type conversions, Bit wise operators, Statements, Simple C Programming examples.
Selection Statements – if and switch statements, Repetition statements – while, for, do-while statements, Loop examples, other statements related to looping – break, continue, goto, Simple C Programming examples.

UNIT - III
Designing Structured Programmes, Functions, basics, user defined functions, inter function communication, Standard functions, Scope, Storage classes-auto, register, static, extern, scope rules, type qualifiers, recursion- recursive functions, Preprocessor commands, example C programmes
Arrays – Concepts, using arrays in C, inter function communication, array applications, two – dimensional arrays, multidimensional arrays, C programme examples.

UNIT - IV
Pointers – Introduction (Basic Concepts), Pointers for inter function communication, pointers to pointers, compatibility, memory allocation functions, array of pointers, programming applications, pointers to void, pointers to functions, command –line arguments.
Strings – Concepts, C Strings, String Input / Output functions, arrays of strings, string manipulation functions, string / data conversion, C programme examples.

UNIT - V
Derived types – Structures – Declaration, definition and initialization of structures, accessing structures, nested structures, arrays of structures, structures and functions, pointers to structures, self referential structures, unions, typedef, bit fields, enumerated types, C programming examples.

UNIT - VI
Input and Output – Concept of a file, streams, standard input / output functions, formatted input / output functions, text files and binary files, file input / output operations, file status functions (error handling), C programme examples.

UNIT – VII
Searching and Sorting – Sorting- selection sort, bubble sort, insertion sort, quick sort, merge sort, Searching-linear and binary search methods.

UNIT - VIII
Data Structures – Introduction to Data Structures, abstract data types, Linear list – singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks-Operations, array and linked representations of stacks, stack application-infix to postfix conversion, postfix expression evaluation, recursion implementation, Queues-operations, array and linked representations.

TEXT BOOKS :

REFERENCES:
2. The C Programming Language, B.W. Kernighan and Dennis M.Ritchie, PHI/Pearson Education
7. C Programming & Data Structures, E. Balagurusamy, TMH.
8. C Programming & Data Structures, P. Dey, M Ghosh R Thereja, Oxford University Press
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

I Year B.Tech.
6751007

ENGINEERING DRAWING

UNIT – I
a) Conic Sections including the Rectangular Hyperbola – General method only.
b) Cycloid, Epicycloid and Hypocycloid
c) Involute.
d) Scales: Different types of Scales, Plain scales comparative scales, scales of chords.

UNIT – II
DRAWING OF PROJECTIONS OR VIEWS ORTHOGRAPHIC PROJECTION IN FIRST ANGLE
PROJECTION: Principles of Orthographic Projections – Conventions – First and Third Angle, Projections of Points and Lines inclined to both planes, True lengths, traces.

UNIT – III
PROJECTIONS OF PLANES & SOLIDS: Projections of regular Planes, auxiliary planes and Auxiliary projection inclined to both planes. Projections of Regular Solids inclined to both planes – Auxiliary Views.

UNIT – IV
SECTIONS AND SECTIONAL VIEWS: Right Regular Solids – Prism, Cylinder, Pyramid, Cone – Auxiliary views.

UNIT – V
DEVELOPMENT AND INTERPENETRATION OF SOLIDS: Development of Surfaces of Right, Regular Solids – Prisms, Cylinder, Pyramid Cone and their parts. Interpenetration of Right Regular Solids

UNIT - VI
INTERSECTION OF SOLIDS:- Intersection of Cylinder Vs Cylinder, Cylinder Vs Prism, Cylinder Vs Cone.

UNIT – VII

UNIT – VIII
TRANSFORMATION OF PROJECTIONS : Conversion of Isometric Views to Orthographic Views – Conventions, Introduction to perspective projections(Practise not required)

TEXT BOOK :
1. Engineering Drawing, N.D. Bhat / Charotar
3. Engineering Drawing – Basant Agrawal, TMH

REFERENCES :
Objectives:
- To make the student learn a programming language.
- To teach the student to write programs in C to solve the problems.
- To introduce the student to simple linear data structures such as lists, stacks, queues.

Recommended Systems/Software Requirements:
- Intel based desktop PC
- ANSI C Compiler with Supporting Editors

Week 1.

a) Write a C program to find the sum of individual digits of a positive integer.
b) A Fibonacci Sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence.
c) Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user.

Week 2.

a) Write a C program to calculate the following Sum:
 \[\text{Sum} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \frac{x^{10}}{10!} \]
b) Write a C program to find the roots of a quadratic equation.

Week 3

a) Write C programs that use both recursive and non-recursive functions
 i) To find the factorial of a given integer.
 ii) To find the GCD (greatest common divisor) of two given integers.
 iii) To solve the Towers of Hanoi problem.

Week 4

a) The total distance travelled by vehicle in ‘t’ seconds is given by distance = ut + \frac{1}{2}at^2 where ‘u’ and ‘a’ are the initial velocity (m/sec.) and acceleration (m/sec^2). Write C program to find the distance travelled at regular intervals of time given the values of ‘u’ and ‘a’. The program should provide the flexibility to the user to select his own time intervals and repeat the calculations for different values of ‘u’ and ‘a’.
b) Write a C program, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +, -, *, /, % and use Switch Statement)

Week 5

a) Write a C program to find both the largest and smallest number in a list of integers.
b) Write a C program that uses functions to perform the following:
 i) Addition of Two Matrices
 ii) Multiplication of Two Matrices

Week 6

a) Write a C program that uses functions to perform the following operations:
 i) To insert a sub-string in to a given main string from a given position.
 ii) To delete n Characters from a given position in a given string.
b) Write a C program to determine if the given string is a palindrome or not

Week 7

a) Write a C program that displays the position or index in the string S where the string T begins, or –1 if S doesn’t contain T.
b) Write a C program to count the lines, words and characters in a given text.
Week 8
a) Write a C program to generate Pascal’s triangle.
b) Write a C program to construct a pyramid of numbers.

Week 9
Write a C program to read in two numbers, x and n, and then compute the sum of this geometric progression:
\[1 + x + x^2 + x^3 + \ldots + x^n \]
For example: if \(n = 3 \) and \(x = 5 \), then the program computes \(1 + 5 + 25 + 125 \).
Print \(x \), \(n \), the sum
Perform error checking. For example, the formula does not make sense for negative exponents – if \(n \) is less than 0. Have your program print an error message if \(n < 0 \), then go back and read in the next pair of numbers of without computing the sum. Are any values of \(x \) also illegal? If so, test for them too.

Week 10
a) 2’s complement of a number is obtained by scanning it from right to left and complementing all the bits after the first appearance of a 1. Thus 2’s complement of 11100 is 00100. Write a C program to find the 2’s complement of a binary number.
b) Write a C program to convert a Roman numeral to its decimal equivalent.

Week 11
Write a C program that uses functions to perform the following operations:
 i) Reading a complex number
 ii) Writing a complex number
 iii) Addition of two complex numbers
 iv) Multiplication of two complex numbers
(Note: represent complex number using a structure.)

Week 12
a) Write a C program which copies one file to another.
b) Write a C program to reverse the first \(n \) characters in a file.
(Note: The file name and \(n \) are specified on the command line.)

Week 13
a) Write a C programme to display the contents of a file.
b) Write a C programme to merge two files into a third file (i.e., the contents of the first file followed by those of the second are put in the third file)

Week 14
Write a C program that uses functions to perform the following operations on singly linked list:
 i) Creation ii) Insertion iii) Deletion iv) Traversal

Week 15
Write C programs that implement stack (its operations) using
 i) Arrays ii) Pointers

Week 16
Write C programs that implement Queue (its operations) using
 i) Arrays ii) Pointers

Week 17
Write a C program that uses Stack operations to perform the following:
 i) Converting infix expression into postfix expression
 ii) Evaluating the postfix expression

Week 18
Write a C program that implements the following sorting methods to sort a given list of integers in ascending order
 i) Bubble sort
 ii) Selection sort
Week 19
Write C programs that use both recursive and non recursive functions to perform the following searching operations for a Key value in a given list of integers:
 i) Linear search ii) Binary search

Week 20
Write C program that implements the following sorting method to sort a given list of integers in ascending order:
 i) Quick sort

Week 21
Write C program that implements the following sorting method to sort a given list of integers in ascending order:
 i) Merge sort

Week 22
Write C programs to implement the Lagrange interpolation and Newton-Gregory forward interpolation.

Week 23
Write C programs to implement the linear regression and polynomial regression algorithms.

Week 24
Write C programs to implement Trapezoidal and Simpson methods.

Text Books
4. Practical C Programming, Steve Oualline, O’Reilly, SPD. TMH publications.
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

1 Year B.Tech. CSE.
6751617

ENGINEERING PHYSICS / ENGINEERING CHEMISTRY LAB

ENGINEERING PHYSICS LAB
(Any twelve experiments compulsory)

1. Dispersive power of the material of a prism – Spectrometer
5. Time constant of an R-C circuit.
6. L-C-R circuit.
7. Magnetic field along the axis of current carrying coil – Stewart and Gees method.
8. Study the characteristics of LED and LASER sources.
9. Study the characteristics of p-i-n and avalanche photodiode detectors.
11. Evaluation of numerical aperture of given fibre.
12. Energy gap of a material of p-n junction.
13. Thermo electric effect – Seebeck effect and Peltier effect.
14. Torsional pendulum.
16.

ENGINEERING CHEMISTRY LAB
List of Experiments (Any 12 of the following):

Titrimetry:
1. Estimation of hardness of water by EDTA method. (or) Estimation of calcium in limestone by Permanganometry.

Mineral Analysis:
2. Determination of percentage of copper in brass

Instrumental Methods:
4. Colorimetry:
 Determination of ferrous iron in cement by colorimetric method.
 (Or) Estimation of Copper by Colorimetric method.

5. Conductometry:
 Conductometric titration of strong acid Vs strong base.
 (or) Conductometric titration of mixture of acids Vs strong base.

6. Potentiometry:
 Titration of strong acid Vs strong base by potentiometry.
 (or) Titration of weak acid Vs strong base by potentiometry.

Physical Properties:
7. Determination of viscosity of sample oil by redwood/oswald’s viscometer
8. Determination Surface Tension of lubricants.
Identification and Preparations:
9. Identification of functional groups present in organic compounds.
10. Preparation of organic compounds
 Asprin (or) Benzimidazole

Kinetics:
11. To determine the rate constant of hydrolysis of methyl acetate catalysed by an acid and also the energy of activation. (or) To study the kinetics of reaction between K$_2$S$_2$O$_8$ and KI.
12. Demonstration Experiments (Any One of the following):
 a. Determination of dissociation constant of weak acid by PH metry
 b. Preparation of Thiokol rubber
 c. Adsorption on Charcoal
 d. Heat of reaction

TEXT BOOKS:
2. Inorganic quantitative analysis, Vogel.
3.

REFERENCE BOOKS:
1. Text Book of engineering chemistry by R. N. Goyal and Harrmendra Goel.
ENGLISH LANGUAGE COMMUNICATION SKILLS LAB

The Language Lab focuses on the production and practice of sounds of language and familiarises the students with the use of English in everyday situations and contexts.

Objectives:
1. To expose the students to a variety of self-instructional, learner-friendly modes of language learning.
2. To help the students cultivate the habit of reading passages from the computer monitor, thus providing them with the required facility to face computer-based competitive exams such as GRE, TOEFL, GMAT etc.
3. To enable them to learn better pronunciation through stress on word accent, intonation, and rhythm.
4. To train them to use language effectively to face interviews, group discussions, public speaking.
5. To initiate them into greater use of the computer in resume preparation, report writing, format-making etc.

SYLLABUS:
The following course content is prescribed for the English Language Laboratory sessions:
1. Introduction to the Sounds of English- Vowels, Diphthongs & Consonants.
2. Introduction to Stress and Intonation.
3. Situational Dialogues / Role Play.
5. ‘Just A Minute’ Sessions (JAM).
6. Describing Objects / Situations / People.
7. Information Transfer
8. Debate
10. Giving Directions.

Minimum Requirement:
The English Language Lab shall have two parts:
i) The Computer aided Language Lab for 60 students with 60 systems, one master console, LAN facility and English language software for self-study by learners.
ii) The Communication Skills Lab with movable chairs and audio-visual aids with a P.A System, a T. V., a digital stereo –audio & video system and camcorder etc.

System Requirement (Hardware component):
Computer network with Lan with minimum 60 multimedia systems with the following specifications:
i) P – IV Processor
 a) Speed – 2.8 GHZ
 b) RAM – 512 MB Minimum
 c) Hard Disk – 80 GB
ii) Headphones of High quality

Suggested Software:
- Cambridge Advanced Learners’ English Dictionary with CD.
- The Rosetta Stone English Library.
- Clarity Pronunciation Power – Part I.
- Mastering English in Vocabulary, Grammar, Spellings, Composition
- Dorling Kindersley series of Grammar, Punctuation, Composition etc.
- Language in Use, Foundation Books Pvt Ltd with CD.
- Learning to Speak English - 4 CDs.
- Vocabulary in Use, Michael McCarthy, Felicity O’Den, Cambridge.
- Murphy’s English Grammar, Cambridge with CD.
- English in Mind, Herbert Puchta and Jeff Stranks with Meredith Levy, Cambridge
Books Suggested for English Language Lab Library (to be located within the lab in addition to the CDs of the text book which are loaded on the systems):

1. **A Handbook for English Language Laboratories** – Prof. E. Suresh Kumar, P. Sreehari, Foundation Books.
3. **English Conversation Practice** by Grant Taylor, Tata McGraw Hill.
5. **Communicate or Collapse: A Handbook of Effective Public Speaking, Group Discussions and Interviews**, by Pushpa Lata & Kumar, Prentice-Hall of India.
7. **Spoken English** by R. K. Bansal & J. B. Harrison, Orient Longman.
8. **English Language Communication: A Reader cum Lab Manual** Dr A Ramakrishna Rao, Dr. G. Natanam & Prof. S. A. Sankaranarayanan, Anuradha Publications, Chennai.
12. **Spoken English: A foundation Course, Parts 1 & 2**, Kamlesh Sadanand and Susheela punitha, Orient Longman

DISTRIBUTION AND WEIGHTAGE OF MARKS

English Language Laboratory Practical Paper:

1. The practical examinations for the English Language Laboratory shall be conducted as per the University norms prescribed for the core engineering practical sessions.
2. For the Language lab sessions, there shall be a continuous evaluation during the year for 25 sessional marks and 50 year-end Examination marks. Of the 25 marks, 15 marks shall be awarded for day-to-day work and 10 marks to be awarded by conducting Internal Lab Test(s). The year-end Examination shall be conducted by an external examiner/ or the teacher concerned with the help of another member of the staff of the same department of the same institution.
IT WORKSHOP/ENGINEERING WORKSHOP

Objectives:
The IT Workshop for engineers is a training lab course spread over 54 hours. The modules include training on PC Hardware, Internet & World Wide Web and Productivity tools including Word, Excel and Power Point.

PC Hardware introduces the students to a personal computer and its basic peripherals, the process of assembling a personal computer, installation of system software like MS Windows, Linux and the required device drivers. In addition hardware and software level troubleshooting process, tips and tricks would be covered. The students should work on working PC to disassemble and assemble to working condition and install Windows and Linux on the same PC. Students are suggested to work similar tasks in the Laptop scenario wherever possible.

Internet & World Wide Web module introduces the different ways of hooking the PC on to the internet from home and workplace and effectively usage of the internet. Usage of web browsers, email, newsgroups and discussion forums would be covered. In addition, awareness of cyber hygiene, i.e., protecting the personal computer from getting infected with the viruses, worms and other cyber attacks would be introduced.

Productivity tools module would enable the students in crafting professional word documents, excel spread sheets and power point presentations using the Microsoft suite of office tools and LaTeX. (Recommended to use Microsoft office 2007 in place of MS Office 2003)

PC Hardware
Week 1 – Task 1: Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral and submit to your instructor.

Week 2 – Task 2: Every student should disassemble and assemble the PC back to working condition. Lab instructors should verify the work and follow it up with a Viva. Also students need to go through the video which shows the process of assembling a PC. A video would be given as part of the course content.

Week 3 – Task 3: Every student should individually install MS windows on the personal computer. Lab instructor should verify the installation and follow it up with a Viva.

Week 4 – Task 4: Every student should install Linux on the computer. This computer should have windows installed. The system should be configured as dual boot with both windows and Linux. Lab instructors should verify the installation and follow it up with a Viva.

Week 5 – Task 5: Hardware Troubleshooting: Students have to be given a PC which does not boot due to improper assembly or defective peripherals. They should identify the problem and fix it to get the computer back to working condition. The work done should be verified by the instructor and followed up with a Viva.

Week 6 – Task 6: Software Troubleshooting: Students have to be given a malfunctioning CPU due to system software problems. They should identify the problem and fix it to get the computer back to working condition. The work done should be verified by the instructor and followed up with a Viva.

Internet & World Wide Web
Week 7 - Task 1: Orientation & Connectivity Boot Camp: Students should get connected to their Local Area Network and access the Internet. In the process they configure the TCP/IP setting. Finally students should demonstrate to the instructor, how to access the websites and email. If there is no internet connectivity preparations need to be made by the instructors to simulate the WWW on the LAN.

Week 8 - Task 2: Web Browsers, Surfing the Web: Students customize their web browsers with the LAN proxy settings, bookmarks, search toolbars and pop up blockers. Also, plug-ins like Macromedia Flash and JRE for applets should be configured.
Week 9 - Task 3 : Search Engines & Netiquette : Students should know what search engines are and how to use the search engines. A few topics would be given to the students for which they need to search on Google. This should be demonstrated to the instructors by the student.

Week 10 - Task 4 : Cyber Hygiene : Students would be exposed to the various threats on the internet and would be asked to configure their computer to be safe on the internet. They need to first install an anti virus software, configure their personal firewall and windows update on their computer. Then they need to customize their browsers to block pop ups, block active x downloads to avoid viruses and/or worms.

Productivity tools

LaTeX and Word

Week 11 – Word Orientation : The mentor needs to give an overview of LaTeX and Microsoft (MS) office 2007/ equivalent (FOSS) tool word: Importance of LaTeX and MS office 2007/ equivalent (FOSS) tool Word as word Processors, Details of the three tasks and features that would be covered in each, using LaTeX and word – Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter.

Task 1 : Using LaTeX and Word to create project certificate. Features to be covered:- Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in both LaTeX and Word.

Week 12 - Task 2 : Creating project abstract Features to be covered:- Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.

Week 13 - Task 3 : Creating a Newsletter : Features to be covered:- Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphs and Mail Merge in word.

Excel

Week 14 - Excel Orientation : The mentor needs to tell the importance of MS office 2007/ equivalent (FOSS) tool Excel as a Spreadsheet tool, give the details of the two tasks and features that would be covered in each. Using Excel – Accessing, overview of toolbars, saving excel files, Using help and resources.

Task 1: Creating a Scheduler - Features to be covered:- Gridlines, Format Cells, Summation, auto fill, Formatting Text

Week 15 - Task 2 : Calculating GPA - Features to be covered:- Cell Referencing, Formulae in excel – average, std. deviation, Charts, Renaming and Inserting worksheets, Hyper linking, Count function, LOOKUP/VLOOKUP, Sorting, Conditional formatting

LaTeX and MS/equivalent (FOSS) tool Power Point

Week 16 - Task1 : Students will be working on basic power point utilities and tools which help them create basic power point presentation. Topic covered during this week includes :- PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows in both LaTeX and Power point. Students will be given model power point presentation which needs to be replicated (exactly how it’s asked).

Week 17- Task 2 : Second week helps students in making their presentations interactive. Topic covered during this week includes : Hyperlinks, Inserting –Images, Clip Art, Audio, Video, Objects, Tables and Charts

Week 18 - Task 3 : Concentrating on the in and out of Microsoft power point and presentations in LaTeX. Helps them learn best practices in designing and preparing power point presentation. Topic covered during this week includes :- Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes etc), Inserting – Background, textures, Design Templates, Hidden slides.
REFERENCES:
1. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
2. LaTeX Companion – Leslie Lamport, PHI/Pearson.
3. Introduction to Computers, Peter Norton, 6/e Mc Graw Hill
4. Upgrading and Repairing, PC’s 18th e, Scott Muller QUE, Pearson Education
5. Comdex Information Technology course tool kit Vikas Gupta, WILEY Dreamtech
7. PC Hardware and A+Handbook – Kate J. Chase PHI (Microsoft)

ENGINEERING WORKSHOP

1. TRADES FOR EXERCISES:
 At least two exercises from each trade:
 1. House Wiring
 2. Carpentry
 3. Tin-Smithy and Development of jobs carried out and soldering.
 4. Fitting

2. TRADES FOR DEMONSTRATION & EXPOSURE:
 1. Metal Cutting (Water Plasma)
 2. Power Tools in Construction, wood working, Electrical Engineering and Mechanical Engineering

TEXT BOOK:
2. Workshop Manual by Venkat Reddy
PROBABILITY AND STATISTICS

UNIT-I: Probability:

UNIT-II: Distributions
Binomial , Poisson & normal distributions related properties . Sampling distributions – Sampling distribution of means (σ known and Unknown)

UNIT-III: Testing of Hypothesis I
Tests of hypothesis point estimations – interval estimations Bayesian estimation. Large samples, Null hypothesis – Alternate hypothesis type I, & type II errors – critical region confidential interval for mean testing of single variance. Difference between the mean.

UNIT-IV : Testing of Hypothesis II
Confidental interval for the proportions. Tests of hypothesis for the proportions single and difference between the proportions.

UNIT-V: Small samples
Confidence interval for the t- distribution – Tests of hypothesis – t- distributions, F- distributions χ² distribution. Test of Hypothesis.

UNIT-VI: Correlation & Regression
Coefficient of correlation – Regression Coefficient – The lines of regression – The rank correlation

UNIT-VII: Queuing Theory
Arrival Theorem - Pure Birth process and Death Process M/M/1 Model. MATLAB/R Introduction.

UNIT-VIII: Stochastic processes

TEXT BOOKS:
3. Introduction to MATLAB by RudraGupta

REFERENCES:
UNIT-I
Mathematical Logic: Statements and notations, Connectives, Well formed formulas, Truth Tables, tautology, equivalence implication, Normal forms, Quantifiers, universal quantifiers

UNIT-II

UNIT-III
Relations: Properties of Binary Relations, equivalence, transitive closure, compatibility and partial ordering relations, Lattices, Hasse diagram. Functions: Inverse Function Composition of functions, recursive Functions, Lattice and its Properties,

UNIT-IV
Algebraic structures: Algebraic systems Examples and general properties, Semi groups and monads, groups sub groups’ homomorphism, Isomorphism.

UNIT-V
Elementary Combinatorics: Basis of counting, Combinations & Permutations, with repetitions, Constrained repetitions, Binomial Coefficients, Binomial Multinomial theorems, the principles of Inclusion – Exclusion. Pigeon hole principles and its application

UNIT-VI
Recurrence Relation: Generating Functions, Function of Sequences Calculating Coefficient of generating function, Recurrence relations, Solving recurrence relation by substitution and Generating funds. Characteristics roots solution of In homogeneous Recurrence Relation.

UNIT-VII
Graph Theory: Representation of Graph, DFS, BFS, Spanning Trees, planar Graphs

UNIT-VIII
Graph Theory and Applications, Basic Concepts Isomorphism and Sub graphs, Multi graphs and Euler circuits, Hamiltonian graphs, Chromatic Numbers

TEXT BOOKS:

REFERENCES:
4. Discrete Mathematics with Applications, Thomas Koshy, Elsevier
5. Logic and Discrete Mathematics, Grass Man & Trembley, Pearson Education.
DATA STRUCTURES THROUGH C++

Unit I:
C++ Class Overview- Basic OOP concepts, Class Definition, Objects, Class Members, Access Control, Class Scope, Constructors and destructors, parameter passing methods, Inline functions, static class members, this pointer, friend functions, dynamic memory allocation and deallocation (new and delete), exception handling.

Unit II:
Function Overloading, Operator Overloading, Generic Programming- Function and class templates, Inheritance basics, base and derived classes, inheritance types, base class access control, runtime polymorphism using virtual functions, abstract classes, streams I/O.

Unit III:
Algorithms, performance analysis- time complexity and space complexity. Review of basic data structures- The list ADT, Stack ADT, Queue ADT, array and linked Implementations using template classes in C++. Trees – Basic Terminology, Binary tree ADT, array and linked representations, traversals, threaded binary trees.

Unit IV:
Dictionaries, linear list representation, skip list representation, operations insertion, deletion and searching. Hashing- hash table representation, hash functions, collision resolution-separate chaining, open addressing-linear probing, quadratic probing, double hashing, rehashing, extendible hashing, comparison of hashing and skip lists.

Unit V:
Priority Queues – Definition, ADT, Realizing a Priority Queue using Heaps, Definition, insertion, Deletion, Heap sort, External Sorting- Model for external sorting, Multiway merge, Polyphase merge.

Unit VI:
Search Trees (Part1):
Binary Search Trees, Definition, ADT, Implementation, Operations- Searching, Insertion and Deletion, AVL Trees, Definition, Operations – Insertion and Searching

Unit VII:
Search trees (part- II): B-Trees, Definition, B-Tree of order m, insertion, deletion and searching, Comparison of Search Trees Graphs – Basic terminology, representations of Graphs, Graph search methods – DFS, BFS.

Unit VIII:
Text Processing - Pattern matching algorithms- Brute force, the Knuth-Morris-Pratt algorithm, Tries- Standard Tries, Compressed Tries, Suffix tries.

TEXT BOOKS:

REFERENCES:
3. Data structures using C and C++, Langsam, Augenstein and Tanenbaum, PHI.
8. An Introduction to Data structures and Algorithms, J.A.Storer, Springer.
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

II Year B.Tech. CSE-I Sem
6753024

DIGITAL LOGIC DESIGN

UNIT-I
BINARY SYSTEMS : Digital Systems, Binary Numbers, Number base conversions, Octal and Hexadecimal Numbers, complements, Signed binary numbers, Binary codes, Binary Storage and Registers, Binary logic.

UNIT-II
BOOLEAN ALGEBRA AND LOGIC GATES : Basic Definitions, Axiomatic definition of Boolean Algebra, Basic theorems and properties of Boolean algebra, Boolean functions canonical and standard forms, other logic operations, Digital logic gages, integrated circuits.

UNIT-III
GATE – LEVEL MINIMIZATION : The map method, Four-variable map, Five-Variable map, product of sums simplification Don’t-care conditions, NAND and NOR implementation other Two-level implementnations, Exclusive – Or function, Hardware Description language (HDL).

UNIT - IV
COMBINATIONAL LOGIC : Combinational Circuits, Analysis procedure Design procedure, Binary Adder-Subtractor Decimal Adder, Binary multiplier, magnitude comparator, Decoders, Encoders, Multiplexers, HDL for combinational circuits.

UNIT - V
SYNCHRONOUS SEQUENTIAL LOGIC : Sequential circuits, latches, Flip-Flops Analysis of clocked sequential circuits, HDL for sequential circuits, State Reduction and Assignment, Design Procedure.

UNIT - VI
Registers, shift Registers, Ripple counters synchronous counters, other counters, HDL for Registers and counters.

UNIT - VII
Introduction, Random-Access Memory, Memory Decoding, Error Detection and correction Read-only memory, Programmable logic Array programmable Array logic, Sequential Programmable Devices.

UNIT-VIII

TEXT BOOKS :

REFERENCES :
2. Switching and Logic Design, C.V.S. Rao, Pearson Education
ELECTRONIC DEVICES AND CIRCUITS

Unit- I: p-n Junction Diode
Qualitative Theory of p-n Junction, p-n Junction as a Diode, Diode Equation, Volt-Ampere Characteristics, Temperature dependence of VI characteristic, Ideal versus Practical – Resistance levels (Static and Dynamic), Transition and Diffusion Capacitances, Diode Equivalent Circuits, Load Line Analysis, Breakdown Mechanisms in Semi Conductor Diodes, Zener Diode Characteristics.

Unit- II: Rectifiers and Filters
The p-n junction as a Rectifier, Half wave Rectifier, Full wave Rectifier, Bridge Rectifier, Harmonic components in a Rectifier Circuit, Inductor Filters, Capacitor Filters, L- Section Filters, π- Section Filters, Comparison of Filters, Voltage Regulation using Zener Diode.

Unit- III: Bipolar Junction Transistor

Unit- IV: Transistor Biasing and Stabilization
Operating Point, The DC and AC Load lines, Need for Biasing, Fixed Bias, Collector Feedback Bias, Emitter Feedback Bias, Collector - Emitter Feedback Bias, Voltage Divider Bias, Bias Stability, Stabilization Factors, Stabilization against variations in VBE and β, Bias Compensation using Diodes and Transistors, Thermal Runaway, Thermal Stability.

Unit- V: Small Signal Low Frequency BJT Models
BJT Hybrid Model, Determination of h-parameters from Transistor Characteristics, Analysis of a Transistor Amplifier Circuit using h-Parameters, Comparison of CB, CE, and CC Amplifier Configurations.

Unit-VI: Field Effect Transistor

Unit VII: FET Amplifiers
FET Common Source Amplifier, Common Drain Amplifier, Generalized FET Amplifier, Biasing FET, FET as Voltage Variable Resistor, Comparison of BJT and FET.

Unit VIII: INDUSTRIAL ELECTRONIC DEVICES & APPLICATIONS:
Negative resistance Devices, Uni junction Transistor(UJT), UJT Relaxation Oscillator, Programmable UJT(PUT), Silicon Controlled Rectifier(SCR), Transient Effect in SCR, Light Activated SCR(LASCR), SILICON Controlled Switch(SCS), Schottky Barrier Diode, DIAC,TRIAC Diodes & Their characteristics.

TEXT BOOKS
3. Introduction to Electronic Devices and Circuits - Rober T. Paynter, PE.

REFERENCES
UNIT - I
Introduction to Electrical Engineering: ohm’s law, basic circuit components, Kirchhoff’s laws. Simple problems.

UNIT-II
Network Analysis: Basic definitions, types of elements, types of sources, resistive networks, inductive networks, capacitive networks, series parallel circuits, star delta and delta star transformation. Network theorems- Superposition, Thevenin’s, Maximum power transfer theorems and simple problems.

UNIT-III
Alternating Quantities: Principle of ac voltages, waveforms and basic definitions, root mean square and average values of alternating currents and voltage, form factor and peak factor, phasor representation of alternating quantities, the J operator and phasor algebra, analysis of ac circuits with single basic network element, single phase series circuits.

UNIT-IV
Transformers: Principles of operation, Constructional Details, Ideal Transformer and Practical Transformer, Losses, Transformer Test, Efficiency and Regulation Calculations (All the above topics are only elementary treatment and simple problems).

UNIT-VI
D.C Generators: Principle of operation of dc machines, types of D.C generators, e.m.f equation in D.C generator.

UNIT-V
D.C motors: Principle of operation of dc motors, types of D.C motors, losses and torque equation, losses and efficiency calculation in D.C generator

UNIT-VII
A.C Machines: Three phase induction motor, principle of operation, slip and rotor frequency, torque (simple problems).

UNIT VIII
Basic Instruments: Introduction, classification of instruments, operating principles, essential features of measuring instruments, Moving coil permanent magnet (PMMC) instruments, Moving Iron of Ammeters And Voltmeters (elementary Treatment only)

TEXT BOOKS:
2. Basic Electrical Engineering - By M.S.Naidu and S. Kamakshiah – TMH.
4. Electrical and Electronic Technology-By Hughes – Pearson Education.

REFERENCES:
ELECTRICAL AND ELECTRONICS LAB

PART - A
1. Verification of Superposition and Reciprocity theorems.
2. Verification of maximum power transfer theorem. Verification on DC with Resistive load.
3. Experimental determination of Thevenin’s theorem.
5. Swinburne’s Test on DC shunt machine (Predetermination of efficiency of a given DC Shunt machine working as motor and generator).
7. OC & SC tests on Single-phase transformer (Predetermination of efficiency and regulation at given power factors).
8. Brake test on 3-phase Induction motor (performance characteristics).

PART - B
1. PN Junction Diode Characteristics (Forward bias, Reverse bias)
2. Zener Diode Characteristics
3. Transistor CE Characteristics (Input and Output)
4. Rectifier without Filters (Full wave & Half wave)
5. Rectifier with Filters (Full wave & half wave)
OBJECTIVES:
- To make the student learn an object oriented way of solving problems.
- To make the student write ADTS for all data structures.

RECOMMENDED SYSTEMS/SOFTWARE REQUIREMENTS:
- Intel based desktop PC with minimum of 166 MHz or faster processor with atleast 64 MB RAM and 100 MB free disk space
- C++ compiler and STL Recommended

WEEK 1:
Write C++ programs to implement the following using an array.
 a) Stack ADT
 b) Queue ADT

WEEK 2:
Write C++ programs to implement the following using a singly linked list.
 a) Stack ADT
 b) Queue ADT

WEEK 3:
Write C++ programs to implement the deque (double ended queue) ADT using a doubly linked list and an array.

WEEK 4:
Write a C++ program to perform the following operations:
 a) Insert an element into a binary search tree.
 b) Delete an element from a binary search tree.
 c) Search for a key element in a binary search tree.

WEEK 5:
Write C++ programs that use recursive functions to traverse the given binary tree in
 a) Preorder b) inorder and c) postorder.

WEEK 6:
Write C++ programs that use non-recursive functions to traverse the given binary tree in
 b) Preorder b) inorder and c) postorder.

WEEK 7:
Write C++ programs for the implementation of bfs and dfs for a given graph.

WEEK 8:
Write C++ programs for implementing the following sorting methods:
 a) Merge sort b) Heap sort

WEEK 9:
Write a C++ program to perform the following operations
 a) Insertion into a B-tree b) Deletion from a B-tree

WEEK 10:
Write a C++ program to perform the following operation
 a) Insertion into an AVL-tree

WEEK 11:
Write a C++ program to implement all the functions of a dictionary (ADT) using hashing.

WEEK 12:
Write a C++ program for implementing Knuth-Morris-Pratt pattern matching algorithm.

(Note: Use Class Templates in the above Programs)

TEXT BOOKS:
5. The Art,Philosophy, and Science of OOP with C++, Rick Miller,SPD.
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)
II Year B.Tech. CSE - II Semester
6754012
L T/P/D C
4 1/-/- 4

COMPUTER ORGANIZATION

UNIT I :

UNIT II :

UNIT III :
MICRO PROGRAMMED CONTROL : Control memory, Address sequencing, microprogram example, design of control unit Hard wired control. Microprogrammed control

UNIT IV :

UNIT V :
THE MEMORY SYSTEM : Basic concepts semiconductor RAM memories. Read-only memories Cache memories performance considerations, Virtual memories secondary storage. Introduction to RAID.

UNIT-VI

UNIT VII :
PIPELINE AND VECTOR PROCESSING : Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline Vector Processing, Array Processors.

UNIT VIII :

TEXT BOOKS :

REFERENCES :
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

II Year B.Tech. CSE-II Sem
6754013

DATABASE MANAGEMENT SYSTEMS

UNIT I:

UNIT II:
History of data base Systems. Data base design and ER diagrams – Beyond ER Design Entities, Attributes and Entity sets – Relationships and Relationship sets – Additional features of ER Model – Concept Design with the ER Model – Conceptual Design for Large enterprises.

UNIT III:

UNIT IV:
Form of Basic SQL Query – Examples of Basic SQL Queries – Introduction to Nested Queries – Correlated Nested Queries Set – Comparison Operators – Aggregative Operators – NULL values – Comparison using Null values – Logical connectivite’s – AND, OR and NOT – Impact on SQL Constructs – Outer Joins – Disallowing NULL values – Complex Integrity Constraints in SQL Triggers and Active Data bases.

UNIT V:

UNIT VI:

UNIT VII:

UNIT VIII:

TEXT BOOKS:

REFERENCES:
1. Data base Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition
2. Fundamentals of Database System, Elmasri Navratae Pearson Education
3. Introduction to Database Systems, C.J.Date Pearson Education
4. Oracle for Professionals,The X Team,S.Shah and V.Shah,SPD.
5. Database Systems Using Oracle:A Simplified guide to SQL and PL/SQL,Shah,PHI.
OBJECT ORIENTED PROGRAMMING

UNIT I :
Object oriented thinking :- Need for oop paradigm, A way of viewing world – Agents, responsibility, messages, methods, classes and instances, class hierarchies (Inheritance), method binding, overriding and exceptions, summary of oop concepts, coping with complexity, abstraction mechanisms.

UNIT II :
Java Basics History of Java, Java buzzwords, data types, variables, scope and life time of variables, arrays, operators, expressions, control statements, type conversion and casting, simple java program, concepts of classes, objects, constructors, methods, access control, this keyword, garbage collection, overloading methods and constructors, parameter passing, recursion, nested and inner classes, exploring string class.

UNIT III :
Inheritance – Hierarchical abstractions, Base class object, subclass, subtype, substitutability, forms of inheritance- specialization, specification, construction, extension, limitation, combination, benefits of inheritance, costs of inheritance. Member access rules, super uses, using final with inheritance, polymorphism- method overriding, abstract classes, the Object class.

UNIT IV :
Packages and Interfaces : Defining, Creating and Accessing a Package, Understanding CLASSPATH, importing packages, differences between classes and interfaces, defining an interface, implementing interface, applying interfaces, variables in interface and extending interfaces. Exploring java.io.

UNIT V :
Exception handling - Concepts of exception handling, benefits of exception handling, Termination or resumptive models, exception hierarchy, usage of try, catch, throw, throws and finally, built in exceptions, creating own exception sub classes. String handling,Exploring java.util

UNIT VI :
Multithreading- Differences between multi threading and multitasking, thread life cycle, creating threads, thread priorities, synchronizing threads, interthread communication, thread groups, daemon threads. Enumerations, autoboxing, annotations,generics.

UNIT VII :
Event Handling : Events, Event sources, Event classes, Event Listeners, Delegation event model, handling mouse and keyboard events, Adapter classes. The AWT class hierarchy, user interface components- labels, button, canvas, scrollbars, text components, check box, check box groups, choices, lists panels – scrollpane, dialogs, menubar, graphics, layout manager – layout manager types – border, grid, flow, card and grid bag.

UNIT VIII :
Applets – Concepts of Applets, differences between applets and applications, life cycle of an applet, types of applets, creating applets, passing parameters to applets.

TEXT BOOKS :
1. Java; the complete reference, 7th editon, Herbert schildt, TMH.
2. Understanding OOP with Java, updated edition, T. Budd, pearson eduction.

REFERENCES :
2. An Introduction to OOP, third edition, T. Budd, pearson education.
3. Introduction to Java programming , Y. Daniel Liang, pearson education.
9. Maurach’s Beginning Java2 JDK 5 , SPD.
ENVIRONMENTAL STUDIES

UNIT-I: ECOSYSTEMS: Concept of ecosystem, Classification of ecosystem, Functions of ecosystem, Food chains, Food webs and ecological pyramids, Flow of energy, Biogeochemical cycles, Biomagnification, carrying capacity.

UNIT-II: NATURAL RESOURCES: Classification of Resources: Living and Non-Living resources, Renewable and Non-Renewable resources. Water resources: use and over utilization, Land resources, land degradation, Forest resources, Mineral resources uses. Energy resources: growing energy needs, use of alternate energy sources-case studies. Environmental effects due to exploitation of various resources.

UNIT-III: BIODIVERSITY AND BIOTIC RESOURCES: Species, ecosystem diversity, Hotspots, Value of biodiversity, Threats to biodiversity, Conservation of biodiversity: In-Situ and Ex-Situ conservation, Biological disasters, pandemic and epidemics, Biological warfare.

UNIT-IV: ENVIRONMENTAL POLLUTION AND CONTROL: Classification of pollutions and pollutants, causes, effects of water, air, noise pollution, Introduction to control technologies: Water (primary, secondary, tertiary), Air(particulate and gaseous emissions), Soil(conservation and remediation), Noise(controlling devices) Solid waste : types, collection and disposal methods, characteristics of e-waste and its management.

UNIT-VIII: TOWARDS SUSTAINABLE FUTURE: Concept of Sustainable Development, Threats to Sustainability, Strategies for achieving Sustainable development, Environmental Ethics, Environmental Economics, Concept of Green Computing, Green chemistry and low Carbon life styles..

Text Book:

1. TEXT BOOK OF ENVIRONMENTAL Science and Technology by M.Anji Reddy 2007
2. Principles of Environmental Science and Engineering by P.Venugopal Rao
3. Introduction to Environmental Studies by K.Mukkanti

References

1. Tata McgrawHill : Introduction to Environmental Studies by Benny Joseph
2. Environmental studies by Erach Bharucha 2005, University Grants Commission, University Press
The purpose of this course is to acquaint the student with an overview of the theoretical foundations of computer science from the perspective of formal languages.

- Classify machines by their power to recognize languages.
- Employ finite state machines to solve problems in computing.
- Explain deterministic and non-deterministic machines.
- Comprehend the hierarchy of problems arising in the computer sciences.

UNIT I:
Fundamentals: Strings, Alphabet, Language, Operations, Finite state machine, definitions, finite automaton model, acceptance of strings, and languages, deterministic finite automaton and non-deterministic finite automaton, transition diagrams and Language recognizers.

UNIT II:
Finite Automata: NFA with Î transitions - Significance, acceptance of languages. Conversions and Equivalence: Equivalence between NFA with and without Î transitions, NFA to DFA conversion, minimisation of FSM, equivalence between two FSM’s, Finite Automata with output-Moore and Melay machines.

UNIT III:
Regular Languages: Regular sets, regular expressions, identity rules, Constructing finite Automata for a given regular expressions, Conversion of Finite Automata to Regular expressions. Pumping lemma of regular sets, closure properties of regular sets (proofs not required).

UNIT IV:
Grammar Formalism: Regular grammars-right linear and left linear grammars, equivalence between regular linear grammar and FA, inter conversion, Context free grammar, derivation trees, sentential forms.
Right most and leftmost derivation of strings.

UNIT V:

UNIT VI:
Push Down Automata: Push down automata, definition, model, acceptance of CFL, Acceptance by final state and acceptance by empty state and its equivalence. Equivalence of CFL and PDA, interconversion. (Proofs not required). Introduction to DCFL and DPDA.

UNIT VII:
Turing Machine: Turing Machine, definition, model, design of TM, Computable functions, recursively enumerable languages. Church’s hypothesis, counter machine, types of Turing machines (proofs not required).

UNIT VIII:
Computability Theory: Chomsky hierarchy of languages, linear bounded automata and context sensitive language, LR(0) grammar, decidability of, problems, Universal Turing Machine, undecidability of posts. Correspondence problem, Turing reducibility, Definition of P and NP problems, NP complete and NP hard problems.

TEXT BOOKS:
1. “Introduction to Automata Theory Languages and Computation”. Hopcroft H.E. and Ullman J. D. Pearson Education
2. Introduction to Theory of Computation – Sipser 2nd edition Thomson

REFERENCES:
1. Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley.
2. Introduction to languages and the Theory of Computation ,John C Martin, TMH
4 Theory of Computer Science – Automata languages and computation -Mishra and Chandrashekan, 2nd edition, PHI
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

II Year B.Tech. CSE-II Sem

6754016

T T/P/D C

3 1/-/- 3

DESIGN AND ANALYSIS OF ALGORITHMS

UNIT I :
Introduction: Algorithm, Psuedo code for expressing algorithms, Performance Analysis- Space complexity, Time complexity, Asymptotic Notation- Big oh notation, Omega notation, Theta notation and Little oh notation, Probabilistic analysis, Amortized analysis.

UNIT II :
Disjoint Sets- disjoint set operations, union and find algorithms, spanning trees, connected components and biconnected components.

UNIT III :
Divide and conquer: General method, applications- Binary search, Quick sort, Merge sort, Strassen’s matrix multiplication.

UNIT IV :
Greedy method: General method, applications- Job sequencing with dead lines, 0/1 knapsack problem, Minimum cost spanning trees, Single source shortest path problem.

UNIT V :
Dynamic Programming: General method, applications- Matrix chain multiplication, Optimal binary search trees, 0/1 knapsack problem, All pairs shortest path problem, Travelling sales person problem, Reliability design.

UNIT VI :
Backtracking: General method, applications- n-queen problem, sum of subsets problem, graph coloring, Hamiltonian cycles.

UNIT VII :
Branch and Bound: General method, applications- Travelling sales person problem, 0/1 knapsack problem- LC Branch and Bound solution, FIFO Branch and Bound solution.

UNIT VIII :
NP-Hard and NP-Complete problems: Basic concepts, non deterministic algorithms, NP - Hard and NP Complete classes, Cook’s theorem.

TEXT BOOKS :
2. Design and Analysis Algorithms - Parag Himanshu Dave, Himanshu Bhalchandra Dave Publisher: Pearson

REFERENCES :
5. Algorithms – Richard Johnsonbaugh and Marcus Schaefer, Pearson Education
OBJECT ORIENTED PROGRAMMING LAB

Objectives:
- To make the student learn an object oriented way of solving problems.
- To teach the student to write programs in Java to solve the problems

Recommended Systems/Software Requirements:
- Intel based desktop PC with minimum of 166 MHZ or faster processor with atleast 64 MB RAM and 100 MB free disk space
- JDK Kit. Recommended

Week 1:
- a) Write a Java program that prints all real solutions to the quadratic equation \(ax^2 + bx + c = 0 \). Read in \(a, b, c \) and use the quadratic formula. If the discriminant \(b^2 - 4ac \) is negative, display a message stating that there are no real solutions.
- b) The Fibonacci sequence is defined by the following rule:
 The first two values in the sequence are 1 and 1. Every subsequent value is the sum of the two values preceding it. Write a Java program that uses both recursive and non recursive functions to print the \(n \)th value in the Fibonacci sequence.

Week 2:
- a) Write a Java program that prompts the user for an integer and then prints out all prime numbers up to that integer.
- b) Write a Java program to multiply two given matrices.
- c) Write a Java Program that reads a line of integers, and then displays each integer, and the sum of all the integers (Use StringTokenizer class of java.util)

Week 3:
- a) Write a Java program that checks whether a given string is a palindrome or not. Ex: MADAM is a palindrome.
- b) Write a Java program for sorting a given list of names in ascending order.
- c) Write a Java program to make frequency count of words in a given text.

Week 4:
- a) Write a Java program that reads a file name from the user, then displays information about whether the file exists, whether the file is readable, whether the file is writable, the type of file and the length of the file in bytes.
- b) Write a Java program that reads a file and displays the file on the screen, with a line number before each line.
- c) Write a Java program that displays the number of characters, lines and words in a text file.

Week 5:
- a) Write a Java program that:
 i) Implements stack ADT.
 ii) Converts infix expression into Postfix form
 iii) Evaluates the postfix expression

Week 6:
- a) Develop an applet that displays a simple message.
- b) Develop an applet that receives an integer in one text field, and computes its factorial Value and returns it in another text field, when the button named “Compute” is clicked.

Week 7:
Write a Java program that works as a simple calculator. Use a grid layout to arrange buttons for the digits and for the +, -, *, % operations. Add a text field to display the result.
Week 8:
a) Write a Java program for handling mouse and key events.

Week 9:
a) Write a Java program that creates three threads. First thread displays “Good Morning” every one second, the second thread displays “Hello” every two seconds and the third thread displays “Welcome” every three seconds.
b) Write a Java program that correctly implements producer consumer problem using the concept of inter thread communication.

Week 10:
Write a program that creates a user interface to perform integer divisions. The user enters two numbers in the textfields, Num1 and Num2. The division of Num1 and Num2 is displayed in the Result field when the Divide button is clicked. If Num1 or Num2 were not an integer, the program would throw a NumberFormatException. If Num2 were Zero, the program would throw an ArithmeticException. Display the exception in a message dialog box.

Week 11:
a) Write a java program that simulates a traffic light. The program lets the user select one of three lights: red, yellow, or green. When a radio button is selected, the light is turned on, and only one light can be on at a time. No light is on when the program starts.
b) Write a Java program that allows the user to draw lines, rectangles and ovals.

Week 12:
a) Write a java program to create an abstract class named Shape that contains an empty method named numberOfSides(). Provide three classes named Trapezoid, Triangle and Hexagon such that each one of the classes extends the class Shape. Each one of the classes contains only the method numberOfSides() that shows the number of sides in the given geometrical figures.
b) Suppose that a table named Table.txt is stored in a text file. The first line in the file is the header, and the remaining lines correspond to rows in the table. The elements are separated by commas. Write a java program to display the table using Jtable component.

TEXT BOOKS:

2. Programming with Java, M.P. Bhave and S.A. Patekar, Pearson Education
7. Essentials of Java Programming, Muthu C, TMH.
9. The Art, Philosophy, and Science of OOP with Java, R. Miller, R. Kasperian, SPD.
DATABASE MANAGEMENT SYSTEMS LAB

Objective: This lab enables the students to practice the concepts learnt in the subject DBMS by developing a database for an example company named “Roadway Travels” whose description is as follows. The student is expected to practice the designing, developing and querying a database in the context of example database “Roadway travels”. Students are expected to use “Mysql” database.

Roadway Travels

“Roadway Travels” is in business since 1997 with several buses connecting different places in India. Its main office is located in Hyderabad.

The company wants to *computerize its operations* in the following areas:

- Reservations and Ticketing
- Cancellations

Reservations & Cancellation:

Reservations are directly handled by booking office. Reservations can be made 30 days in advance and tickets issued to passenger. One Passenger/person can book many tickets (to his/her family).

Cancellations are also directly handed at the booking office.

In the process of *computerization of Roadway Travels* you have to design and develop a Database which consists the data of Buses, Passengers, Tickets, and Reservation and cancellation details. You should also develop query’s using SQL to retrieve the data from the database.

The above process involves many steps like 1. Analyzing the problem and identifying the Entities and Relationships, 2. E-R Model 3. Relational Model 4. Normalization 5. Creating the database 6. Querying. *Students are supposed to work on these steps week wise and finally create a complete “Database System” to Roadway Travels.* Examples are given at every experiment for guidance to students.

Experiment 1: E-R Model

Analyze the problem carefully and come up with the entities in it. Identify what data has to be persisted in the database. This contains the entities, attributes etc.

Identify the primary keys for all the entities. Identify the other keys like candidate keys, partial keys, if any.

Example:

Entities:

1. BUS
2. Ticket
3. Passenger

Relationships:

1. Reservation
2. Cancellation

PRIMARY KEY ATTRIBUTES:

1. Ticket ID (Ticket Entity)
2. Passport ID (Passenger Entity)
3. Bus_NO(Bus Entity)

Apart from the above mentioned entities you can identify more. The above mentioned are few.

Note: The student is required to submit a document by writing the Entities and Keys to the lab teacher.

Experiment 2: Concept design with E-R Model

Relate the entities appropriately. Apply cardinalities for each relationship. Identify strong entities and weak entities (if any). Indicate the type of relationships (total / partial). Try to incorporate generalization, aggregation, specialization etc wherever required.
Example: E-R diagram for bus

![E-R diagram for bus]

Note: The student is required to submit a document by drawing the E-R Diagram to the lab teacher.

Experiment 3: Relational Model

Represent all the entities (Strong, Weak) in tabular fashion. Represent relationships in a tabular fashion. There are different ways of representing relationships as tables based on the cardinality. Represent attributes as columns in tables or as tables based on the requirement. Different types of attributes (Composite, Multi-valued, and Derived) have different way of representation.

Example: The passenger tables look as below. This is an example. You can add more attributes based on your E-R model. This is not a normalized table.

<table>
<thead>
<tr>
<th>Passenger</th>
<th>Name</th>
<th>Age</th>
<th>Sex</th>
<th>Address</th>
<th>Ticket_id</th>
<th>Passport ID</th>
</tr>
</thead>
</table>

Note: The student is required to submit a document by Represent relationships in a tabular fashion to the lab teacher.

Experiment 4: Normalization

Database normalization is a technique for designing relational database tables to minimize duplication of information and, in so doing, to safeguard the database against certain types of logical or structural problems, namely data anomalies. For example, when multiple instances of a given piece of information occur in a table, the possibility exists that these instances will not be kept consistent when the data within the table is updated, leading to a loss of data integrity. A table that is sufficiently normalized is less vulnerable to problems of this kind, because its structure reflects the basic assumptions for when multiple instances of the same information should be represented by a single instance only.

For the above table in the First normalization we can remove the multi valued attribute Ticket_id and place it in another table along with the primary key of passenger.
First Normal Form: The above table can be divided into two tables as shown below.

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Sex</th>
<th>Address</th>
<th>Passport ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Passport ID</th>
<th>Ticket_id</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You can do the second and third normal forms if required. Any how Normalized tables are given at the end.

Experiment 5: Installation of Mysql and practicing DDL commands

Installation of MySql. In this week you will learn Creating databases, How to create tables, altering the database, dropping tables and databases if not required. You will also try truncate, rename commands etc.

Example for creation of a normalized “Passenger” table.

```
CREATE TABLE Passenger (
    Passport_id     INTEGER   PRIMARY KEY,
    Name   VARCHAR (50) Not NULL,
    Age     INTEGER Not NULL,
    Sex   CHAR,
    Address  VARCHAR (50) Not NULL);
```

Similarly create all other tables.

Note: Detailed creation of tables is given at the end.

Experiment 6: Practicing DML commands

DML commands are used to for managing data within schema objects. Some examples:

- SELECT - retrieve data from the a database
- INSERT - insert data into a table
- UPDATE - updates existing data within a table
- DELETE - deletes all records from a table, the space for the records remain

Inserting values into “Bus” table:

Insert into Bus values (1234, ’hyderabad’, ‘tirupathi’);
Insert into Bus values (2345, ’hyderabad’, ’Banglore’);
Insert into Bus values (23, ’hyderabad’, ’Kolkata’);
Insert into Bus values (45, ’Tirupathi’, ’Banglore’);
Insert into Bus values (34, ’hyderabad’, ’Chennai’);

Inserting values into “Passenger” table:

Insert into Passenger values (1, 45, ’ramesh’, 45, ’M’, ’abc123’);
Insert into Passenger values (2, 78, ’geetha’, 36, ’F’, ’abc124’);
Insert into Passenger values (45, 90, ’ram’, 30, ’M’, ’abc12’);
Insert into Passenger values (67, 89, ’ravi’, 50, ’M’, ’abc14’);
Insert into Passenger values (56, 22, ’seetha’, 32, ’F’, ’abc55’);

Few more Examples of DML commands:

Select * from Bus; (selects all the attributes and display)
UPDATE BUS SET Bus No = 1 WHERE BUS NO=2;

Experiment 7: Querying

In this week you are going to practice queries (along with sub queries) using ANY, ALL, IN, Exists, NOT EXISTS, UNION, INTERSECT, Constraints etc.
Practice the following Queries:
1. Display unique PNR_no of all passengers.
2. Display all the names of male passengers.
3. Display the ticket numbers and names of all the passengers.
4. Find the ticket numbers of the passengers whose name start with 'r' and ends with 'h'.
5. Find the names of passengers whose age is between 30 and 45.
6. Display all the passengers names beginning with ‘A’
7. Display the sorted list of passengers names

Experiment 8 and Experiment 9: Querying (continued…)

You are going to practice queries using Aggregate functions (COUNT, SUM, AVG, and MAX and MIN),
GROUP BY, HAVING and Creation and dropping of Views.
1. Write a Query to display the Information present in the Passenger and cancellation tables. **Hint**: Use UNION Operator.
2. Display the number of days in a week on which the 9W01 bus is available.
3. Find number of tickets booked for each PNR_no using GROUP BY CLAUSE. **Hint**: Use GROUP BY on PNR_No.
4. Find the distinct PNR numbers that are present.
5. Find the number of tickets booked by a passenger where the number of seats is greater than 1. **Hint**: Use GROUP BY, WHERE and HAVING CLAUSES.
6. Find the total number of cancelled seats.

Experiment 10: Triggers

In this week you are going to work on Triggers. Creation of insert trigger, delete trigger, update trigger. Practice triggers using the above database.

Eg: CREATE TRIGGER updcheck BEFORE UPDATE ON passenger
 FOR EACH ROW
 BEGIN
 IF NEW.TickentNO > 60 THEN
 SET New.Tickent no = Ticket no;
 ELSE
 SET New.Tickent no = 0;
 END IF;
 END;

Experiment 11: Procedures

In this session you are going to learn Creation of stored procedure, Execution of procedure and modification of procedure. Practice procedures using the above database.

Eg: CREATE PROCEDURE myProc()
 BEGIN
 SELECT COUNT(Tickets) FROM Ticket WHERE age>=40;
 END;

Experiment 12: Cursors

In this week you need to do the following: Declare a cursor that defines a result set. Open the cursor to establish the result set. Fetch the data into local variables as needed from the cursor, one row at a time. Close the cursor when done

CREATE PROCEDURE myProc(in_customer_id INT)
 BEGIN
 DECLARE v_id INT;
 DECLARE v_name VARCHAR(30);
 DECLARE c1 CURSOR FOR SELECT stdId, stdFirstname FROM students WHERE stdId = in_customer_id;
 OPEN c1;
 FETCH c1 into v_id, v_name;
 Close c1;
 END;
Tables

BUS
Bus No: Varchar: PK (public key)
Source : Varchar
Destination : Varchar

Passenger
PPNO: Varchar(15)) : PK
Name: Varchar(15)
Age : int (4)
Sex:Char(10) : Male / Female
Address: VarChar(20)

Passenger_Tickets
PPNO: Varchar(15)) : PK
Ticket_No: Numeric (9)

Reservation
PNR_No: Numeric(9) : FK
Journey_date : datetime(8)
No_of_seats : int (8)
Address : Varchar (50)
Contact_No: Numeric (9) --> Should not be less than 9 and Should not accept any other character other than Integer
Status: Char (2) : Yes / No

Cancellation
PNR_No: Numeric(9) : FK
Journey_date : datetime(8)
No_of_seats : int (8)
Address : Varchar (50)
Contact_No: Numeric (9) --> Should not be less than 9 and Should not accept any other character other than Integer
Status: Char (2) : Yes / No

Ticket
Ticket_No: Numeric (9): PK
Journey_date : datetime(8)
Age : int (4)
Sex:Char(10) : Male / Female
Source : Varchar
Destination : Varchar
Dep_time : Varchar

Reference Books:
1. Introduction to SQL, Rick F. Vander Lans, Pearson Education.
2. Oracle PL/SQL, B. Rosenzweig and E. Silvestrova, Pearson Education.
3. Oracle PL/SQL Programming, Steven Feuerstein, SPD.
4. SQL & PL/SQL for Oracle 10g, Black Book, Dr. P.S. Deshpande, DreamTech.
5. Oracle Database 11g PL/SQL Programming, M. McLaughlin, TMH.
6. SQL Fundamentals, J.J. Patrick, Pearson Education.
UNIT I

UNIT II
Syntax and Semantics: general Problem of describing Syntax and Semantics, formal methods of describing syntax - BNF, EBNF for common programming languages features, parse trees, ambiguous grammars, attribute grammars, denotational semantics and axiomatic semantics for common programming language features.

UNIT III
Data types: Introduction, primitive, character, user defined, array, associative, record, union, pointer and reference types, design and implementation uses related to these types. Names, Variable, concept of binding, type checking, strong typing, type compatibility, named constants, variable initialization.

UNIT IV
Expressions and Statements: Arithmetic relational and Boolean expressions, Short circuit evaluation mixed mode assignment, Assignment Statements, Control Structures – Statement Level, Compound Statements, Selection, Iteration, Unconditional Statements, guarded commands.

UNIT V
Subprograms and Blocks: Fundamentals of sub-programs, Scope and lifetime of variable, static and dynamic scope, Design issues of subprograms and operations, local referencing environments, parameter passing methods, overloaded sub-programs, generic sub-programs, parameters that are sub-program names, design issues for functions user defined overloaded operators, co routines.

UNIT VI
Abstract Data types: Abstractions and encapsulation, introductions to data abstraction, design issues, language examples, C++ parameterized ADT, object oriented programming in small talk, C++, Java, C#, Ada 95
Concurrency: Subprogram level concurrency, semaphores, monitors, massage passing, Java threads, C# threads.

UNIT VII
Exception handling : Exceptions, exception Propagation, Exception handler in Ada, C++ and Java.
Logic Programming Language : Introduction and overview of logic programming, basic elements of prolog, application of logic programming.

UNIT VIII
Functional Programming Languages: Introduction, fundamentals of FPL, LISP, ML, Haskell, application of Functional Programming Languages and comparison of functional and imperative Languages.

TEXT BOOKS:

REFERENCE BOOKS:
3. LISP, Patric Henry Winston and Paul Horn, Pearson Education.
UNIT I

UNIT II

UNIT III

UNIT IV
Sequencing models. Solution of Sequencing Problem – Processing n Jobs through 2 Machines – Processing n Jobs through 3 Machines – Processing 2 Jobs through m machines – Processing n Jobs through m Machines.

UNIT V

UNIT VI

UNIT VII
Replacement Models. Replacement of Items that Deteriorate whose maintenance costs increase with time without change in the money value. Replacement of items that fail suddenly: individual replacement policy, group replacement policy.

UNIT VIII
Inventory models. Inventory costs. Models with deterministic demand – model (a) demand rate uniform and production rate infinite, model (b) demand rate non-uniform and production rate infinite, model (c) demand rate uniform and production rate finite.

TEXT BOOKS:

REFERENCE BOOKS:
INTERINTELECTUAL PROPERTY RIGHTS AND CYBER LAW
(OPEN ELECTIVE)

UNIT-I: Introduction to Intellectual Property, Law of Trademarks, Trademark Selection & Searching

UNIT-II: Trademark Registration Process, Post-registration Procedures, Trademark Maintenance, Transfer of Rights to Marks

UNIT-III: Inter Partes Proceedings, Infringement, Dilution, New Developments in Trademark Law

UNIT-IV: Law of Copyright, Subject Matter Of Copyright, Rights Afforded by Copyright Law

UNIT-V: Copyright Ownership, Transfers, Duration, Registration, and Searching
Copyright Ownership Issues – Joint works – Ownership in Derivative works – Works Made for hire – Transfers of Copyright – Termination of Transfers of Copyright – Duration of Copyright. Copyright Registration Application – Deposit Materials – Application Process and Registration of Copyright – Searching Copyright Office Records – Obtaining Copyright Office Records and Deposit Materials – Copyright Notice.

UNIT-VI: Copyright Infringement, New Developments in Copyright Law, Semiconductor Chip Protection Act

UNIT-VII: Law of Patents, Patent Searches, Ownership, Transfer

UNIT-VIII: Patent Infringement, New Developments and International Patent Law

TEXT BOOK:
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

III Year B.Tech. CSE - I Sem
6755028

COMPUTER FORENSICS
(OPEN ELECTIVE)

UNIT – I

Types of Computer Forensics Technology: Types of Military Computer Forensic Technology, Types of Law Enforcement – Computer Forensic Technology – Types of Business Computer Forensic Technology

UNIT – II

UNIT – III
Computer Image Verification and Authentication: Special Needs of Evidential Authentication – Practical Consideration – Practical Implementation

UNIT – IV
Computer Forensics analysis and validation: Determining what data to collect and analyze, validating forensic data, addressing data-hiding techniques, performing remote acquisitions
Network Forensics: Network forensics overview, performing live acquisitions, developing standard procedures for network forensics, using network tools, examining the honeynet project.

UNIT – V
Processing Crime and Incident Scenes: Identifying digital evidence, collecting evidence in private-sector incident scenes, processing law enforcement crime scenes, preparing for a search, securing a computer incident or crime scene, seizing digital evidence at the scene, storing digital evidence, obtaining a digital hash, reviewing a case

UNIT – VI
Current Computer Forensic tools: evaluating computer forensic tool needs, computer forensics software tools, computer forensics hardware tools, validating and testing forensics software

UNIT – VII
E-Mail Investigations: Exploring the role of e-mail in investigation, exploring the roles of the client and server in e-mail, investigating e-mail crimes and violations, understanding e-mail servers, using specialized e-mail forensic tools
Cell phone and mobile device forensics: Understanding mobile device forensics, understanding acquisition procedures for cell phones and mobile devices.

UNIT – VIII
Working with Windows and DOS Systems: understanding file systems, exploring Microsoft File Structures, Examining NTFS disks, Understanding whole disk encryption, windows registry, Microsoft startup tasks, MS-DOS startup tasks, virtual machines.

TEXT BOOK:

REFERENCE BOOKS:
1. Real Digital Forensics by Keith J. Jones, Richard Bejtlich, Curtis W. Rose, Addison- Wesley Pearson Education
5. Software Forensics Collecting Evidence from the Scene of a Digital Crime by Robert M.Slade, TMH 2005
6. Windows Forensics by Chad Steel, Wiley India Edition.
SOFTWARE ENGINEERING

UNIT I

UNIT II
Process models: The waterfall model, Incremental process models, Evolutionary process models, Specialized process models, The Unified process.
Software Requirements: Functional and non-functional requirements, User requirements, System requirements, Interface specification, the software requirements document.

UNIT III
Requirements engineering process: Feasibility studies, Requirements elicitation and analysis, Requirements validation, Requirements management.
System models: Context Models, Behavioral models, Data models, Object models, structured methods.

UNIT IV
Design Engineering: Design process and Design quality, Design concepts, the design model, pattern based software design.
Creating an architectural design: software architecture, Data design, Architectural styles and patterns, Architectural Design, assessing alternative architectural designs, mapping data flow into a software architecture.

UNIT V
Modeling component-level design : Designing class-based components, conducting component-level design,
Object constraint language, designing conventional components.
Performing User interface design: Golden rules, User interface analysis and design, interface analysis, interface design steps, Design evaluation.

UNIT VI
Testing Strategies: A strategic approach to software testing, test strategies for conventional software, Black-Box and White-Box testing,
Validation testing, System testing, the art of Debugging.
Product metrics: Software Quality, Frame work for Product metrics, Metrics for Analysis Model, Metrics for Design Model, Metrics for source code, Metrics for testing, Metrics for maintenance.

UNIT VII
Risk management: Reactive vs Proactive Risk strategies, software risks, Risk identification, Risk projection, Risk refinement, RMMM, RMMM Plan.

UNIT VIII

TEXT BOOKS:

REFERENCE BOOKS:
3. Fundamentals of Software Engineering,Rajib Mall PHI, 2005
4. Software Engineering, Principles and Practices, Deepak Jain, Oxford University Press,
10. Introduction to Software Engineering, R.J. Leach, CRC Press.
UNIT-I: 8 bit/16 bit Microprocessors:
An overview of 8085, Architecture of 8086 Microprocessor, Special functions of General purpose registers. 8086 flag register and function of 8086 Flags. Addressing modes of 8086, Instruction set of 8086. Assembler directives, simple programs, procedures, and macros

UNIT-II: Assembly level programming:
Assembly language programs involving logical, Branch & Call instructions, sorting, evaluation of arithmetic expressions, string manipulation

UNIT-III: Modes of operation in 8086:
Pin diagram of 8086-Minimum mode and maximum mode of operation, Timing diagram. Memory interfacing to 8086 (Static RAM & EPROM), Need for DMA, DMA data transfer Method, Interfacing with 8237/8257.

UNIT-IV: I/O Interface:
8255 PPI – various modes of operation and interfacing to 8086, Interfacing Keyboard, Displays, Stepper Motor and actuators, D/A and A/D converter interfacing.

UNIT-V: Interrupt Control:

UNIT-VI: Serial Communication control:
Serial data transfer schemes. Asynchronous and Synchronous data transfer schemes. 8251 USART architecture and interfacing, TTL to RS 232C and RS232C to TTL conversion, Sample program of serial data transfer, IEEE 488 GPIB

UNIT-VII: Introduction to Microcontrollers:
Overview of 8051 microcontroller, Architecture, I/O Ports, Memory organization, addressing modes and instruction set of 8051, simple programs

UNIT-VIII: Real time control:
Timer/Counter operation in 8051, Serial Communication control in 8051, Interrupt structure of 8051, Memory and I/O interfacing of 8051

TEXT BOOKS:

REFERENCES:
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

III Year B.Tech. CSE - I Sem
6755031

OPERATING SYSTEMS

UNIT - I
Operating Systems Overview - Operating systems functions, Overview of computer operating systems, protection and security, distributed systems, special purpose systems, operating systems structures-operating system services and systems calls, system programs, operating system structure, operating systems generation

UNIT - II
Process Management – Process concepts, threads, scheduling-criteria, algorithms, their evaluation, Thread scheduling, case studies UNIX, Linux, Windows

UNIT - III
Concurrency - Process synchronization, the critical-section problem, Peterson’s Solution, synchronization Hardware, semaphores, classic problems of synchronization, monitors, Synchronization examples, atomic transactions. Case studies UNIX, Linux, Windows

UNIT - IV
Memory Management - Swapping, contiguous memory allocation, paging, structure of the page table, segmentation, virtual memory, demand paging, page-replacement algorithms, Allocation of frames, Thrashing case studies UNIX, Linux, Windows

UNIT - V
Principles of deadlock – system model, deadlock characterization, deadlock prevention, detection and avoidance, recovery from deadlock.

UNIT - VI
File system Interface - the concept of a file, Access Methods, Directory structure, File system mounting, file sharing, protection.

File System implementation - File system structure, file system implementation, directory implementation, allocation methods, free-space management, efficiency and performance, case studies. UNIX, Linux, Windows

UNIT - VII
Mass-storage structure - overview of Mass-storage structure, Disk structure, disk attachment, disk scheduling, swap-space management, RAID structure, stable-storage implementation, Tertiary storage structure.

I/O systems - Hardware, application I/O interface, kernel I/O subsystem, Transforming I/O requests to Hardware operations, STREAMS, performance.

UNIT - VIII

Security - The Security problem, program threats, system and network threats cryptography as a security tool, user authentication, implementing security defenses, firewalls to protect systems and networks, computer –security classifications, case studies UNIX, Linux, Windows

TEXT BOOKS:

REFERENCES:
5. An Introduction to Operating Systems, P.C.P. Bhatt, PHI.
DATA COMMUNICATION AND COMPUTER NETWORKS

UNIT – I

UNIT – II
Bandwidth utilization: Multiplexing and Spreading, Multiplexing, Spread Spectrum, Transmission Media, Guided Media, Unguided Media: Wireless, Switching, Circuit-Switched Networks, Datagram Networks, Virtual-Circuit Networks, Structure of a Switch, Using Telephone and Cable Networks for Data Transmission, Telephone Networks, Dial-up Modems, Digital Subscriber Line, Cable TV Networks, Cable TV for Data Transfer

UNIT – III
Error Detection and Correction, Introduction, Block Coding, Liner Block Codes, Cyclic Codes, Checksum, Data Link Control, Framing, Flow and Error Control, Protocols, Noiseless Channels, HDLC, Point-to-Point Protocol, Multiple Access, Random Access, Aloha, Controlled Access, Channelization, IEEE Standards, Standard Ethernet, Changes in the Standard, Fast Ethernet, Gigabit Ethernet, IEEE 802.11, Bluetooth

UNIT – IV
Connecting LANs, Backbone Networks, and Virtual LANs, Connecting Devices, Backbone Networks, Virtual LANs, Cellular Telephony, Satellite Networks, Sonet/SDH, Architecture, Sonet Layers, Sonet Frames, STS Multiplexing, Sonet Networks, Virtual Tributaries, Virtual-Circuit Networks: Frame Relay and ATM, Frame Relay, ATM, ATM LANs

UNIT – V

UNIT – VI

UNIT – VII
Application Layer: Domain Name System, Name Space, Domain Name Space, Distribution of Name Space, DNS in the Internet, Resolution, DNS Messages, Types of Records, Registrars, Dynamic Domain Name System (DDNS), Encapsulation, Remote Logging, Electronic Mail and File Transfer, Remote Logging, Telnet, Electronic Mail, File Transfer

UNIT – VIII

TEXT BOOKS:
1. Data Communications and Networking, Fourth Edition by Behrouza A. Forouzan, TMH.

REFERENCE BOOKS:
1. Introduction to Data communications and Networking, W. Tomasi, Pearson education.
7. Data communications and computer Networks, P.C. Gupta, PHI.
Minimum of 12 experiments are to be conducted.

1. Write and execute an Assembly language Program (ALP) to 8086 processor to add, subtract and multiply two 16 bit unsigned numbers. Store the result in extra segment.
2. Write and execute an Assembly language Program (ALP) to 8086 processor to divide a 32 bit unsigned number by a 16 bit unsigned number. Store the result in stack segment.
3. Write and execute an Assembly language Program (ALP) to 8086 processor to sort the given array of 32 bit numbers in ascending and descending order.
4. Write and execute an Assembly language Program (ALP) to 8086 processor to pick the median from the given array of numbers.
5. Write and execute an Assembly language Program (ALP) to 8086 processor to find the length of a given string which terminates with a special character.
6. Write and execute an Assembly language Program (ALP) to 8086 processor to reverse the given string and verify whether it is a palindrome.
7. Write and execute an Assembly language Program (ALP) to 8086 processor to verify the password.
8. Write and execute an Assembly language Program (ALP) to 8086 processor to insert or delete a character/ number from the given string.
9. Write and execute an Assembly language Program (ALP) to 8086 processor to call a delay subroutine and display the character on the LED display.
10. Interface a keypad to 8086 microprocessor and display the key number pressed on the 7-segment display which is also interfaced to 8086.
11. Write an interrupt service routine to 8086 when ever there is an interrupt request on interrupt pin, which displays “hello” on a LCD.
12. Interface an 8086 microprocessor trainer kit to PC and establish a communication between them through RS 232.
13. Interface DMA controller to 8086 and transfer bulk data from memory to I/O device.
15. Interface an 8 bit ADC to 8086 and generate digital output and store it in memory for the given square/ ramp/ triangle wave form inputs.
16. Interface an ADC to 8086 and generate step, ramp, triangle and square waveforms with different periods.
Objective:
- To understand the functionalities of various layers of OSI model
- To understand the operating system functionalities

System/Software Requirement
- Intel based desktop PCs LAN CONNECTED with minimum of 166 MHZ or faster processor with at least 64 MB RAM and 100 MB free disk space

Part - A
1. Implement the data link layer framing methods such as character, character stuffing and bit stuffing.
2. Implement on a data set of characters the three CRC polynomials – CRC 12, CRC 16 and CRC CCIP.
3. Implement Dijkstra’s algorithm to compute the Shortest path through a graph.
4. Take an example subnet graph with weights indicating delay between nodes. Now obtain Routing table at each node using distance vector routing algorithm.
5. Take an example subnet of hosts. Obtain broadcast tree for it.
6. Take a 64 bit playing text and encrypt the same using DES algorithm.
7. Write a program to break the above DES coding.
8. Using RSA algorithm Encrypt a text data and Decrypt the same.

Part - B
1. Simulate the following CPU scheduling algorithms
 a) Round Robin b) SJF c) FCFS d) Priority
2. Simulate all file allocation strategies
 a) Sequential b) Indexed c) Linked
3. Simulate MVT and MFT
4. Simulate all File Organization Techniques
 a) Single level directory b) Two level c) Hierarchical d) DAG
5. Simulate Bankers Algorithm for Dead Lock Avoidance
6. Simulate Bankers Algorithm for Dead Lock Prevention
7. Simulate all page replacement algorithms
 a) FIFO b) LRU c) LFU etc.
8. Simulate Paging Technique of memory management.
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

III Year B.Tech. CSE -II Sem
6756028
L T/P/D C
4 -/- 4

OBJECT ORIENTED ANALYSIS AND DESIGN

UNIT - I
Introduction to UML : Importance of modeling, principles of modeling, object oriented modeling, conceptual model of the UML, Architecture, Software Development Life Cycle.

UNIT - II
Basic Structural Modeling : Classes, Relationships, common Mechanisms, and diagrams.
Advanced Structural Modeling : Advanced classes, advanced relationships, Interfaces, Types and Roles, Packages.

UNIT - III
Class & Object Diagrams : Terms, concepts, modeling techniques for Class & Object Diagrams.

UNIT - IV

UNIT - V
Basic Behavioral Modeling-II : Use cases, Use case Diagrams, Activity Diagrams.

UNIT - VI
Advanced Behavioral Modeling : Events and signals, state machines, processes and Threads, time and space, state chart diagrams.

UNIT - VII
Architectural Modeling : Component, Deployment, Component diagrams and Deployment diagrams.

UNIT - VIII
Case Study : The Unified Library application.

TEXT BOOKS :
2. Hans-Erik Eriksson, Magnus Penker, Brian Lyons, David Fado: UML 2 Toolkit, WILEY-Dreamtech India Pvt. Ltd.

REFERENCE BOOKS:
5. Learning UML 2.0,Russ Miles and Kim Hamilton,O’Reilly,SPD.
7. UML and C++,R.C.Lee, and W.M.Tepfenhart,PHI.
10. Mark Priestley: Practical Object-Oriented Design with UML, TMH.

65
VLSI DESIGN

Unit I
Introduction: Introduction to IC Technology – MOS, PMOS, NMOS, CMOS & BiCMOS Technologies; Oxidation, Lithography, Diffusion, Ion implantation, Metallization, Encapsulation, Probe testing, Integrated Resistors and Capacitors, CMOS Nanotechnology

Unit II
Basic Electrical Properties: Basic Electrical Properties of MOS and BiCMOS Circuits: Ids-Vds relationships, MOS transistor threshold Voltage, gm, Figure of merit ωo; Pass transistor, NMOS Inverter, Various pull ups, CMOS Inverter analysis and design, Bi-CMOS Inverters.

Unit III

Unit IV

Unit V:
Data Path Subsystems: Subsystem Design, Shifters, Adders, ALUs, Multipliers, Parity generators, Comparators, Zero/One Detectors, Counters.

Unit VI:
Array Subsystems: SRAM, DRAM, ROM, Serial Access Memories, Content Addressable Memory.

Unit VII:
Semiconductor Integrated Circuit Design: PLAs, FPGAs, CPLDs, Standard Cells, Programmable Array Logic, Design Approach, Parameters influencing low power design.

Unit VIII

TEXT BOOKS:

REFERENCES:
4. Introduction to VLSI – Mead & Convey, BS Publications, 2010
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

III Year B.Tech. CSE -II Sem
6756030

NETWORK SECURITY

UNIT - I
Security Attacks (Interruption, Interception, Modification and Fabrication), Security Services (Confidentiality, Authentication, Integrity, Non-repudiation, access Control and Availability) and Mechanisms, A model for Internetwork security, Internet Standards and RFCs, Buffer overflow & format string vulnerabilities, TCP session hijacking, ARP attacks, route table modification, UDP hijacking, and man-in-the-middle attacks.

UNIT - II
Conventional Encryption Principles, Conventional encryption algorithms, cipher block modes of operation, location of encryption devices, key distribution Approaches of Message Authentication, Secure Hash Functions and HMAC.

UNIT - III
Public key cryptography principles, public key cryptography algorithms, digital signatures, digital Certificates, Certificate Authority and key management Kerberos, X.509 Directory Authentication Service.

UNIT - IV
Email privacy: Pretty Good Privacy (PGP) and S/MIME.

UNIT - V

UNIT - VI
Web Security Requirements, Secure Socket Layer (SSL) and Transport Layer Security (TLS), Secure Electronic Transaction (SET).

UNIT - VII
Basic concepts of SNMP, SNMPv1 Community facility and SNMPv3. Intruders, Viruses and related threats.

UNIT - VIII

TEXT BOOKS :
2. Hack Proofing your network by Ryan Russell, Dan Kaminsky, Rain Forest Puppy, Joe Grand, David Ahmad, Hal Flynn Ido Dubrawsky, Steve W.Manzuik and Ryan Permeh, Wiley Dreamtech

REFERENCES :
UNIT – I
Overview of Compilation: Phases of Compilation – Lexical Analysis, Regular Grammar and regular expression for common programming language features, pass and Phases of translation, interpretation, bootstrapping, data structures in compilation – LEX lexical analyzer generator.

UNIT – II
Top down Parsing: Context free grammars, Top down parsing – Backtracking, LL (1), recursive descent parsing, Predictive parsing, Preprocessing steps required for predictive parsing.

UNIT – III
Bottom up parsing: Shift Reduce parsing, LR and LALR parsing, Error recovery in parsing, handling ambiguous grammar, YACC – automatic parser generator.

UNIT – IV
Semantic analysis: Intermediate forms of source Programs – abstract syntax tree, polish notation and three address codes. Attributed grammars, Syntax directed translation, Conversion of popular Programming languages language Constructs into Intermediate code forms, Type checker.

UNIT – V
Symbol Tables: Symbol table format, organization for block structures languages, hashing, tree structures representation of scope information. Block structures and non block structure storage allocation: static, Runtime stack and heap storage allocation, storage allocation for arrays, strings and records.

UNIT – VI
Code optimization: Consideration for Optimization, Scope of Optimization, local optimization, loop optimization, frequency reduction, folding, DAG representation.

UNIT – VII
Data flow analysis: Flow graph, data flow equation, global optimization, redundant sub expression elimination, Induction variable elements, Live variable analysis, Copy propagation.

UNIT – VIII
Object code generation: Object code forms, machine dependent code optimization, register allocation and assignment generic code generation algorithms, DAG for register allocation.

TEXT BOOKS:

REFERENCES:
1. lex &yacc – John R. Levine, Tony Mason, Doug Brown, O’reilly
Unit I Introduction to Managerial Economics:

Unit II Elasticity of Demand: Definition, Types, Measurement and Significance of Elasticity of Demand. Demand Forecasting, Factors governing demand forecasting, methods of demand forecasting (survey methods, statistical methods, expert opinion method, test marketing, controlled experiments, judgmental approach to demand forecasting)

Cost Analysis: Cost concepts, Opportunity cost. Fixed vs. Variable costs, Explicit costs Vs. Implicit costs, Out of pocket costs vs. Imputed costs. Break-even Analysis (BEA)-Determination of Break-Even Point (simple problems)- Managerial Significance and limitations of BEA.

Unit IV Introduction to Markets & Pricing Policies:
Market structures: Types of competition, Features of Perfect competition, Monopoly and Monopolistic Competition. Price-Output Determination in case of Perfect Competition and Monopoly.

Unit VI Capital and Capital Budgeting: Capital and its significance, Types of Capital, Estimation of Fixed and Working capital requirements, Methods and sources of raising finance.

Nature and scope of capital budgeting, features of capital budgeting proposals, Methods of Capital Budgeting: Payback Method, Accounting Rate of Return (ARR) and Net Present Value Method (simple problems)

Unit VIII Financial Analysis through ratios: Computation, Analysis and Interpretation of Liquidity Ratios (Current Ratio and quick ratio), Activity Ratios (Inventory turnover ratio and Debtor Turnover ratio), Capital structure Ratios (Debt- Equity ratio, Interest Coverage ratio), and Profitability ratios (Gross Profit Ratio, Net Profit ratio, Operating Profit Ratio, P/E Ratio and EPS).

TEXT BOOKS:

REFERENCES:

Prerequisites: Nil

Objective: To explain the basic principles of managerial economics, accounting and current business environment underlying business decision making.

Codes/Tables: Present Value Tables need to be permitted into the examinations Hall.

Question Paper Pattern: 5 Questions to be answered out of 8 questions. Out of eight questions 4 questions will be theory questions and 4 questions should be problems.
Each question should not have more than 3 bits.
WEB TECHNOLOGIES

UNIT-I:
HTML Common tags- List, Tables, images, forms, Frames; Cascading Style sheets;

UNIT-II:
Introduction to Java Scripts, Objects in Java Script, Dynamic HTML with Java Script

UNIT-III:

UNIT-IV:
Java Beans: Introduction to Java Beans, Advantages of Java Beans, BDK Introspection, Using Bound properties, Bean Info Interface, Constrained properties Persistence, Customizes, Java Beans API, Introduction to EJB’s

UNIT-V:

UNIT-VI:

UNIT-VII:
JSP Application Development: Generating Dynamic Content, Using Scripting Elements Implicit JSP Objects, Conditional Processing – Displaying Values Using an Expression to Set an Attribute, Declaring Variables and Methods Error Handling and Debugging Sharing Data Between JSP pages, Requests, and Users Passing Control and Date between Pages – Sharing Session and Application Data – Memory Usage Considerations

UNIT VIII:

TEXT BOOKS:
1. Programming world wide web-Sebesta,Pearson
2. Java: the complete reference, 7th edition, Herbert Schildt, TMH.
3. Core SERVLETS ANDJAVA SERVER PAGES VOLUME 1: CORE TECHNOLOGIES By Marty Hall and Larry Brown Pearson (UNITs 5,6,7,8)

REFERENCE BOOKS:
2. Internet and World Wide Web – How to program by Dietel and Nieto PHI/Pearson Education Asia.
4. Murach’s beginning JAVA JDK 5, Murach, SPD
5. An Introduction to web Design and Programming –Wang-Thomson
7. Programming world wide web-Sebesta,Pearson
8. Web Warrior Guide to Web Programming-Bai/Ekedaw-Thomas
9. Beginning Web Programming-Jon Duckett WROX.
ADVANCED ENGLISH COMMUNICATION SKILLS LAB

1. Introduction
The introduction of the English Language Lab is considered essential at 3rd year level. At this stage the students need to prepare themselves for their careers which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalised context. The proposed course should be an integrated theory and lab course to enable students to use ‘good’ English and perform the following:

- Gather ideas and information, to organise ideas relevantly and coherently.
- Engage in debates.
- Participate in group discussions.
- Face interviews.
- Write project/research reports/technical reports.
- Make oral presentations.
- Write formal letters.
- Transfer information from non-verbal to verbal texts and vice versa.
- To take part in social and professional communication.

2. Objectives:
This Lab focuses on using computer-aided multimedia instruction for language development to meet the following targets:

- To improve the students’ fluency in English, through a well-developed vocabulary and enable them to listen to English spoken at normal conversational speed by educated English speakers and respond appropriately in different socio-cultural and professional contexts.
- Further, they would be required to communicate their ideas relevantly and coherently in writing.

3. Syllabus:
The following course content is prescribed for the Advanced Communication Skills Lab:

- **Functional English** – starting a conversation – responding appropriately and relevantly – using the right body language – role play in different situations.
- **Vocabulary Building** – synonyms and antonyms, word roots, one-word substitutes, prefixes and suffixes, study of word origin, analogy, idioms and phrases.
- **Reading Comprehension** – reading for facts, guessing meanings from context, scanning, skimming, inferring meaning, Critical reading.
- **Writing Skills** – structure and presentation of different types of writing – Resume writing / e-correspondence/Technical report writing/Portfolio writing – planning for writing – research abilities/data collection/organizing data/tools/analysis – improving one’s writing.
- **Group Discussion** – dynamics of group discussion, intervention, summarizing, modulation of voice, body language, relevance, fluency and coherence.
- **Presentation Skills** – Oral presentations (individual and group) through JAM sessions/seminars and written presentations through posters/projects/reports/PPTs/e-mails/assignments etc.
- **Interview Skills** – concept and process, pre-interview planning, opening strategies, answering strategies, interview through tele and video-conferencing.

4. Minimum Requirement:
The English Language Lab shall have two parts:

i) **The Computer aided Language Lab** for 60 students with 60 systems, one master console, LAN facility and English language software for self-study by learners.

ii) **The Communication Skills Lab** with movable chairs and audio-visual aids with a P.A System, a T. V., a digital stereo –audio & video system and camcorder etc.

System Requirement (Hardware component):
Computer network with Lan with minimum 60 multimedia systems with the following specifications:

- P – IV Processor
 - Speed – 2.8 GHZ
 - RAM – 512 MB Minimum
 - Hard Disk – 80 GB

- Headphones of High quality

5. Suggested Software:
The software consisting of the prescribed topics elaborated above should be procured and used.

Suggested Software:

- Clarity Pronunciation Power – part II
- Oxford Advanced Learner’s Compass, 7th Edition
- DELTA’s key to the Next Generation TOEFL Test: Advanced Skill Practice.
- *Lingua TOEFL CBT Insider*, by Dreamtech
- *TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)*
- The following software from ‘train2success.com’
 - Preparing for being Interviewed,
 - Positive Thinking,
 - Interviewing Skills,
 - Telephone Skills,
 - Time Management
 - Team Building,
 - Decision making
- *English in Mind*, Herbert Puchta and Jeff Stranks with Meredith Levy, Cambridge

6. Books Recommended:

DISTRIBUTION AND WEIGHTAGE OF MARKS:

Advanced Communication Skills Lab Practicals:
1. The practical examinations for the English Language Laboratory practice shall be conducted as per the University norms prescribed for the core engineering practical sessions.
2. For the English Language lab sessions, there shall be a continuous evaluation during the year for 25 sessional marks and 50 End Examination marks. Of the 25 marks, 15 marks shall be awarded for day-to-day work and 10 marks to be awarded by conducting Internal Lab Test(s). The End Examination shall be conducted by the teacher concerned with the help of another member of the staff of the same department of the same institution.
Objective:
To create a fully functional website with MVC architecture. To develop an online book store using we can sell books (Ex: Amazon.com).

Hardware and Software required:
1. A working computer system with either Windows or Linux
2. A web browser either IE or Firefox
3. Tomcat web server and Apache web server
4. XML editor like Altova XML Spy [www.Altova.com/XMLSpy – free], Stylus Studio, etc.,
5. A database either Mysql or Oracle
6. JVM (Java virtual machine) must be installed on your system
7. BDK (Bean development kit) must be also be installed

Week 1:
Design the following static web pages required for an online book store website.

1) HOME PAGE:
The static home page must contain three frames.

Top frame: Logo and the college name and links to Home page, Login page, Registration page, Catalogue page and Cart page (the description of these pages will be given below).

Left frame: At least four links for navigation, which will display the catalogue of respective links.
For e.g.: When you click the link “CSE” the catalogue for CSE Books should be displayed in the Right frame.

Right frame: The pages to the links in the left frame must be loaded here. Initially this page contains description of the web site.

<table>
<thead>
<tr>
<th>Logo</th>
<th>Web Site Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>Login</td>
</tr>
<tr>
<td></td>
<td>Registration</td>
</tr>
<tr>
<td></td>
<td>Catalogue</td>
</tr>
<tr>
<td></td>
<td>Cart</td>
</tr>
<tr>
<td>CSE</td>
<td></td>
</tr>
<tr>
<td>ECE</td>
<td></td>
</tr>
<tr>
<td>EEE</td>
<td></td>
</tr>
<tr>
<td>CIVIL</td>
<td></td>
</tr>
</tbody>
</table>

![Fig 1.1](image)

2) LOGIN PAGE:
This page looks like below:

<table>
<thead>
<tr>
<th>Logo</th>
<th>Web Site Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>Login</td>
</tr>
<tr>
<td></td>
<td>Registration</td>
</tr>
<tr>
<td></td>
<td>Catalogue</td>
</tr>
<tr>
<td></td>
<td>Cart</td>
</tr>
<tr>
<td>CSE</td>
<td></td>
</tr>
<tr>
<td>ECE</td>
<td></td>
</tr>
<tr>
<td>EEE</td>
<td></td>
</tr>
<tr>
<td>CIVIL</td>
<td></td>
</tr>
</tbody>
</table>

3) CATALOGUE PAGE:
The catalogue page should contain the details of all the books available in the web site in a table.
The details should contain the following:
2. Author Name.
3. Publisher.
5. Add to cart button.

<table>
<thead>
<tr>
<th>Logo</th>
<th>Web Site Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Home</td>
</tr>
<tr>
<td>CSE</td>
<td></td>
</tr>
<tr>
<td>ECE</td>
<td></td>
</tr>
<tr>
<td>EEE</td>
<td></td>
</tr>
<tr>
<td>CIVIL</td>
<td></td>
</tr>
</tbody>
</table>

Book : XML Bible
Author : Winston
Publication : Wiely
Price $ 40.5

Book : AI
Author : S.Russel
Publication : Princeton hall
Price $ 63

Book : Java 2
Author : Watson
Publication : BPB publications
Price $ 35.5

Book : HTML in 24 hours
Author : Sam Peter
Publication : Sam publicaton
Price $ 50

Total amount $130.5

Note: Week 2 contains the remaining pages and their description.

Week 2:

4) CART PAGE:

The cart page contains the details about the books which are added to the cart.
The cart page should look like this:

<table>
<thead>
<tr>
<th>Logo</th>
<th>Web Site Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Home</td>
</tr>
<tr>
<td>CSE</td>
<td></td>
</tr>
<tr>
<td>ECE</td>
<td></td>
</tr>
<tr>
<td>EEE</td>
<td></td>
</tr>
<tr>
<td>CIVIL</td>
<td></td>
</tr>
</tbody>
</table>

Book name Java 2 & XML Bible
Price $35.5 & $40.5
Quantity 2 & 1
Amount $70 & $40.5

Total amount $130.5

5) REGISTRATION PAGE:

Create a "registration form" with the following fields

1) Name (Text field)
2) Password (password field)
3) E-mail id (text field)
4) Phone number (text field)
5) Sex (radio button)
6) Date of birth (3 select boxes)
7) Languages known (check boxes – English, Telugu, Hindi, Tamil)
8) Address (text area)

WE Week 3:

VALIDATION:

Write JavaScript to validate the following fields of the above registration page.
1. Name (Name should contain alphabets and the length should not be less than 6 characters).
2. Password (Password should not be less than 6 characters length).
3. E-mail id (should not contain any invalid and must follow the standard pattern name@domain.com)
4. Phone number (Phone number should contain 10 digits only).

Note: You can also validate the login page with these parameters.

Week-4:
Design a web page using **CSS** (Cascading Style Sheets) which includes the following:

1) Use different font, styles:
 In the style definition you define how each selector should work (font, color etc.).
 Then, in the body of your pages, you refer to these selectors to activate the styles.

For example:

```html
<HEAD>
<style type="text/css">
B.headline {color:red; font-size:22px; font-family:arial; text-decoration:underline}
</style>
</HEAD>

<BODY>
<b>This is normal bold</b> <br>
Selector {cursor:value}

For example:

<html>
<head>
<style type="text/css">
.xlink {cursor:crosshair}
.hlink{cursor:help}
</style>
</head>
<body>
<br>
<a href="mypage.htm" class="xlink">CROSS LINK</a>
<br>
<a href="mypage.htm" class="hlink">HELP LINK</a>
</body>
</html>

<b class="headline">This is headline style bold</b>
```

2) Set a background image for both the page and single elements on the page.
 You can define the background image for the page like this:

```html
BODY {background-image:url(myimage.gif);}
```

3) Control the repetition of the image with the background-repeat property.
 As background-repeat: repeat
 Tiles the image until the entire page is filled, just like an ordinary background image in plain HTML.
4) Define styles for links as:
 A:link
 A:visited
 A:active
 A:hover

 Example:

   ```html
   <style type="text/css">
   A:link {text-decoration: none}
   A:visited {text-decoration: none}
   A:active {text-decoration: none}
   A:hover {text-decoration: underline; color: red;}
   </style>
   ```

5) Work with layers:
 For example:

 LAYER 1 ON TOP:
   ```html
   <div style="position:relative; font-size:50px; z-index:2;">LAYER 1</div>
   </div>
   <div style="position:relative; top:50; left:5; color:red; font-size:80px; z-index:1">LAYER 2</div>
   ```

 LAYER 2 ON TOP:
   ```html
   <div style="position:relative; font-size:50px; z-index:3;">LAYER 1</div>
   </div>
   <div style="position:relative; top:-50; left:5; color:red; font-size:80px; z-index:4">LAYER 2</div>
   ```

6) Add a customized cursor:
 Selector {cursor:value}

```html
<html>
<head>
<style type="text/css">
.xlink {cursor:crosshair}
.hlink {cursor:help}
</style>
</head>

<body>
<h1>
<a href="mypage.htm" class="xlink">CROSS LINK</a>
<br>
<a href="mypage.htm" class="hlink">HELP LINK</a>
</h1>
</body>
</html>
```

Week-5:

Write an XML file which will display the Book information which includes the following:

1) Title of the book
2) Author Name
3) ISBN number
4) Publisher name
5) Edition
6) Price

Write a Document Type Definition (DTD) to validate the above XML file.

Display the XML file as follows.
The contents should be displayed in a table. The header of the table should be in color GREY. And the Author names column should be displayed in one color and should be capitalized and in bold. Use your own colors for remaining columns.

Use XML schemas XSL and CSS for the above purpose.

Note: Give at least for 4 books. It should be valid syntactically.

Hint: You can use some xml editors like XML-spy

Week-6:

VISUAL BEANS:

Create a simple visual bean with a area filled with a color.
The shape of the area depends on the property shape. If it is set to true then the shape of the area is Square and it is Circle, if it is false.
The color of the area should be changed dynamically for every mouse click. The color should also be changed if we change the color in the "property window".

Week-7:

1) Install TOMCAT web server and APACHE.
 While installation assign port number 4040 to TOMCAT and 8080 to APACHE. Make sure that these ports are available i.e., no other process is using this port.
2) Access the above developed static web pages for books web site, using these servers by putting the web pages developed in week-1 and week-2 in the document root.
Access the pages by using the urls:
- http://localhost:8080/books.html (for Apache)

Week-8: User Authentication:

Assume four users user1, user2, user3 and user4 having the passwords pwd1, pwd2, pwd3 and pwd4 respectively. Write a servlet for doing the following:
1. Create a Cookie and add these four user id’s and passwords to this Cookie.
2. Read the user id and passwords entered in the Login form (week1) and authenticate with the values (user id and passwords) available in the cookies.
 If he is a valid user (i.e., user-name and password match) you should welcome him by name(user-name) else you should display “You are not an authenticated user.”
 Use init-parameters to do this. Store the user-names and passwords in the webinf.xml and access them in the servlet by using the getInitParameters() method.

Week-9:

Install a database (Mysql or Oracle).
Create a table which should contain at least the following fields: name, password, email-id, phone number (these should hold the data from the registration form).
Practice 'JDBC' connectivity.
 Write a java program/servlet/JSP to connect to that database and extract data from the tables and display them. Experiment with various SQL queries.
Insert the details of the users who register with the web site, whenever a new user clicks the submit button in the registration page (week2).

Week-10:

Write a JSP which does the following job:
Insert the details of the 3 or 4 users who register with the web site (week9) by using registration form. Authenticate the user when he submits the login form using the user name and password from the database (similar to week8 instead of cookies).

Week-11:

Create tables in the database which contain the details of items (books in our case like Book name, Price, Quantity, Amount) of each category. Modify your catalogue page (week 2) in such a way that you should connect to the database and extract data from the tables and display them in the catalogue page using JDBC.

Week-12:

HTTP is a stateless protocol. Session is required to maintain the state.
The user may add some items to cart from the catalog page. He can check the cart page for the selected items. He may visit the catalogue again and select some more items. Here our interest is the selected items should be added to the old cart rather than a new cart. Multiple users can do the same thing at a time (i.e., from different systems in the LAN using the ip-address instead of localhost). This can be achieved through the use of sessions. Every user will have his own session which will be created after his successful login to the website. When the user logs out his session should get invalidated (by using the method session.invalidate()).

Modify your catalogue and cart JSP pages to achieve the above mentioned functionality using sessions.

Compiler Design Lab

Objective:
- To provide an understanding of the language translation peculiarities by designing a complete translator for a mini language.

Recommended Systems/Software Requirements:
- Intel based desktop PC with minimum of 166 MHZ or faster processor with atleast 64 MB RAM and 100 MB free disk space
Consider the following mini Language, a simple procedural high-level language, only operating on integer data, with a syntax looking vaguely like a simple C crossed with Pascal. The syntax of the language is defined by the following BNF grammar:

<program> ::= <block>

<block> ::= { <variabledefinition> <slist> } | { <slist> }

<variabledefinition> ::= int <vardeflist> ;

<vardeflist> ::= <vardec> | <vardec> , <vardeflist>

<vardec> ::= <identifier> | <identifier> [<constant>]

<slist> ::= <statement> | <statement> ; <slist>

<statement> ::= <assignment> | <ifstatement> | <whilestatement>

<block> ::= <printstatement> | <empty>

<assignment> ::= <identifier> = <expression>

<identifier> ::= <expression> = <expression>

<ifstatement> ::= if <bexpression> then <slist> else <slist> endif

<whilestatement> ::= while <bexpression> do <slist> enddo

<printstatement> ::= print (<expression>)

<expression> ::= <expression> <addingop> <term> | <term> | <addingop> <term>

<bexpression> ::= <expression> <relop> <expression>

<relop> ::= < | <= | == | >= | > | !=

<addingop> ::= + | -

<term> ::= <term> <multop> <factor> | <factor>

<multop> ::= * | /

<bracket> ::= [<identifier> | <identifier>] [<constant> | <constant>] [<expression>]

<bracket> ::= <identifier> <letterordigit> | <letter>

<letterordigit> ::= <letter> | <digit>

<letter> ::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z

<digit> ::= 0|1|2|3|4|5|6|7|8|9

<empty> has the obvious meaning

Comments (zero or more characters enclosed between the standard C/Java-style comment brackets /*...*/ can be inserted. The language has rudimentary support for 1-dimensional arrays. The declaration int a[3] declares an array of three elements, referenced as a[0], a[1] and a[2]. Note also that you should worry about the scoping of names.

A simple program written in this language is:

```plaintext
int a[3],t1,t2;
t1=2;
a[0]=1; a[1]=2; a[2]=3;
t2=-(a[2]+t1*6)/(a[2]-t1);
if t2>5 then
print(t2);
else 
int t3;
t3=99;
t2=25;
print(-t1+t2*t3); /* this is a comment
on 2 lines */
endif }
```

1. Design a Lexical analyzer for the above language. The lexical analyzer should ignore redundant spaces, tabs and newlines. It should also ignore comments. Although the syntax specification states that identifiers can be arbitrarily long, you may restrict the length to some reasonable value.

2. Implement the lexical analyzer using JLex, flex or lex or other lexical analyzer generating tools.

3. Design Predictive parser for the given language.

4. Design LALR bottom up parser for the above language.

5. Convert the BNF rules into Yacc form and write code to generate abstract syntax tree.

6. Write program to generate machine code from the abstract syntax tree generated by the parser. The following instruction set may be considered as target code.

The following is a simple register-based machine, supporting a total of 17 instructions. It has three distinct internal storage areas. The first is the set of 8 registers, used by the individual instructions as detailed below, the second is an area used for the storage of variables and the third is an area used

78
for the storage of program. The instructions can be preceded by a label. This consists of an integer in the range 1 to 9999 and the label is followed by a colon to separate it from the rest of the instruction. The numerical label can be used as the argument to a jump instruction, as detailed below.

In the description of the individual instructions below, instruction argument types are specified as follows:

- **R** specifies a register in the form R0, R1, R2, R3, R4, R5, R6 or R7 (or r0, r1, etc.).
- **L** specifies a numerical label (in the range 1 to 9999).
- **V** specifies a “variable location” (a variable number, or a variable location pointed to by a register - see below).
- **A** specifies a constant value, a variable location, a register or a variable location pointed to by a register (an indirect address). Constant values are specified as an integer value, optionally preceded by a minus sign, preceded by a # symbol. An indirect address is specified by an @ followed by a register.

So, for example, an A-type argument could have the form 4 (variable number 4), #4 (the constant value 4), r4 (register 4) or @r4 (the contents of register 4 identifies the variable location to be accessed).

The instruction set is defined as follows:

- **LOAD A,R** loads the integer value specified by A into register R.
- **STORE R,V** stores the value in register R to variable V.
- **OUT R** outputs the value in register R.
- **NEG R** negates the value in register R.
- **ADD A,R** adds the value specified by A to register R, leaving the result in register R.
- **SUB A,R** subtracts the value specified by A from register R, leaving the result in register R.
- **MUL A,R** multiplies the value specified by A by register R, leaving the result in register R.
- **DIV A,R** divides register R by the value specified by A, leaving the result in register R.
- **JMP L** causes an unconditional jump to the instruction with the label L.
- **JEQ R,L** jumps to the instruction with the label L if the value in register R is zero.
- **JNE R,L** jumps to the instruction with the label L if the value in register R is not zero.
- **JGE R,L** jumps to the instruction with the label L if the value in register R is greater than or equal to zero.
- **JGT R,L** jumps to the instruction with the label L if the value in register R is greater than zero.
- **JLE R,L** jumps to the instruction with the label L if the value in register R is less than or equal to zero.
- **JLT R,L** jumps to the instruction with the label L if the value in register R is less than zero.
- **NOP** is an instruction with no effect. It can be tagged by a label.
- **STOP** stops execution of the machine. All programs should terminate by executing a STOP instruction.
UNIT - I
Linux Utilities: File handling utilities, Security by file permissions, Process utilities, Disk utilities, Networking commands, Filters, Text processing utilities and Backup utilities, sed – scripts, operation, addresses, commands, applications, awk – execution, fields and records, scripts, operation, patterns, actions, functions, using system commands in awk.

UNIT - II
Working with the Bourne again shell (bash): Introduction, shell responsibilities, pipes and input Redirection, output redirection, here documents, running a shell script, the shell as a programming language, shell meta characters, file name substitution, shell variables, command substitution, shell commands, the environment, quoting, test command, control structures, arithmetic in shell, shell script examples, interrupt processing, functions, debugging shell scripts.

UNIT - III
Files: File Concept, File System Structure, Inodes, File Attributes, File types, Library functions, the standard I/O and formatted I/O in C, stream errors, kernel support for files, System calls, file descriptors, low level file access – File structure related system calls (File APIs), file and record locking, file and directory management – Directory file APIs, Symbolic links & hard links.

UNIT - IV
Process – Process concept, Kernel support for process, process attributes, process control - process creation, waiting for a process, process termination, zombie process, orphan process, Process APIs. Signals – Introduction to signals, Signal generation and handling, Kernel support for signals, Signal function, unreliable signals, reliable signals, kill, raise, alarm, pause, abort, sleep functions.

UNIT - V
Interprocess Communication: Introduction to IPC, Pipes, FIFOs, Introduction to three types of IPC message queues, semaphores and shared memory. Message Queues- Kernel support for messages, Unix system V APIs for messages, client/server example.

UNIT - VI
Semaphores-Kernel support for semaphores, Unix system V APIs for semaphores.

UNIT - VII
Shared Memory- Kernel support for shared memory, Unix system V APIs for shared memory, semaphore and shared memory example.

UNIT - VIII
Multithreaded Programming: Differences between threads and processes, Thread structure and uses, Threads and Lightweight Processes, POSIX Thread APIs, Creating Threads, Thread Attributes, Thread Synchronization with semaphores and with Mutexes, Example programs.

UNIT - VIII
Sockets: Introduction to Sockets, Socket Addresses, Socket system calls for connection oriented protocol and connectionless protocol, example-client/server programs.

TEXT BOOKS:
1. Unix System Programming using C++, T.Chan, PHI. (UNIT III to UNIT VIII)

REFERENCE BOOKS:
1. Linux System Programming, Robert Love, O’Reilly, SPD.
3. Unix Network Programming, W.R.Stevens, PHI.
SOFTWARE TESTING METHODOLOGIES

UNIT - I
Introduction: Purpose of testing, Dichotomies, model for testing, consequences of bugs, taxonomy of bugs.

UNIT - II
Flow graphs and Path testing: Basics concepts of path testing, predicates, path predicates and achievable paths, path sensitizing, path instrumentation, application of path testing.

UNIT - III
Transaction Flow Testing: transaction flows, transaction flow testing techniques. Dataflow testing: Basics of dataflow testing, strategies in dataflow testing, application of dataflow testing.

UNIT - IV
Domain Testing: domains and paths, Nice & ugly domains, domain testing, domains and interfaces testing, domain and interface testing, domains and testability.

UNIT - V
Paths, Path products and Regular expressions: path products & path expression, reduction procedure, applications, regular expressions & flow anomaly detection.

UNIT - VI
Logic Based Testing: overview, decision tables, path expressions, kv charts, specifications.

UNIT - VII
State, State Graphs and Transition testing: state graphs, good & bad state graphs, state testing, Testability tips.

UNIT - VIII
Graph Matrices and Application: Motivational overview, matrix of graph, relations, power of a matrix, node reduction algorithm, building tools. (Student should be given an exposure to a tool like JMeter or Win-runner).

TEXT BOOKS:

REFERENCE BOOKS:
1. The craft of software testing - Brian Marick, Pearson Education.
7. Software Testing, M. G. Limaye, TMH.
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

IV Year B.Tech. CSE - I Sem
6757048

DATA WAREHOUSING AND DATA MINING

UNIT I
Introduction: Fundamentals of data mining, Data Mining Functionalities, Classification of Data Mining systems, Data Mining Task Primitives, Integration of a Data Mining System with a Database or a Data Warehouse System, Major issues in Data Mining.
Data Preprocessing: Need for Preprocessing the Data, Data Cleaning, Data Integration and Transformation, Data Reduction, Discretization and Concept Hierarchy Generation.

UNIT II
Data Warehouse and OLAP Technology for Data Mining: Data Warehouse, Multidimensional Data Model, Data Warehouse Architecture, Data Warehouse Implementation, Further Development of Data Cube Technology, From Data Warehousing to Data Mining
Data Cube Computation and Data Generalization: Efficient Methods for Data Cube Computation, Further Development of Data Cube and OLAP Technology, Attribute-Oriented Induction.

UNIT III
Mining Frequent Patterns, Associations and Correlations: Basic Concepts, Efficient and Scalable Frequent Itemset Mining Methods, Mining various kinds of Association Rules, From Association Mining to Correlation Analysis, Constraint-Based Association Mining

UNIT IV
Classification and Prediction: Issues Regarding Classification and Prediction, Classification by Decision Tree Induction, Bayesian Classification, Rule-Based Classification, Classification by Backpropagation, Support Vector Machines, Associative Classification, Lazy Learners, Other Classification Methods, Prediction, Accuracy and Error measures, Evaluating the accuracy of a Classifier or a Predictor, Ensemble Methods

Unit V
Cluster Analysis Introduction :Types of Data in Cluster Analysis, A Categorization of Major Clustering Methods, Partitioning Methods, Hierarchical Methods, Density-Based Methods, Grid-Based Methods, Model-Based Clustering Methods, Clustering High-Dimensional Data, Constraint-Based Cluster Analysis, Outlier Analysis.

UNIT VI
Mining Streams, Time Series and Sequence Data: Mining Data Streams, Mining Time-Series Data, Mining Sequence Patterns in Transactional Databases, Mining Sequence Patterns in Biological Data, Graph Mining, Social Network Analysis and Multirelational Data Mining:

UNIT VII
Mining Object, Spatial, Multimedia, Text and Web Data: Multidimensional Analysis and Descriptive Mining of Complex Data Objects, Spatial Data Mining, Multimedia Data Mining, Text Mining, Mining the World Wide Web.

UNIT VIII
Applications and Trends in Data Mining: Data Mining Applications, Data Mining System Products and Research Prototypes, Additional Themes on Data Mining and Social Impacts of Data Mining.

TEXT BOOKS:
2. Introduction to Data Mining – Pang-Ning Tan, Michael Steinbach and Vipin Kumar, Pearson education.

REFERENCE BOOKS:
5. The Data Warehouse Life cycle Tool kit – Ralph Kimball Wiley student edition
7. Data Mining Introductory and advanced topics – Margaret H Dunham, Pearson education
COMPUTER GRAPHICS

UNIT I
Introduction. Application areas of Computer Graphics, overview of graphics systems, video-display devices, raster-scan systems, random scan systems, graphics monitors and work stations and input devices

UNIT II
Output primitives: Points and lines, line drawing algorithms, mid-point circle and ellipse algorithms. Filled area primitives: Scan line polygon fill algorithm, boundary-fill and flood-fill algorithms.

UNIT III
2-D Geometrical transforms: Translation, scaling, rotation, reflection and shear transformations, matrix representations and homogeneous coordinates, composite transforms, transformations between coordinate systems.

UNIT IV
2-D Viewing: The viewing pipeline, viewing coordinate reference frame, window to view-port coordinate transformation, viewing functions, Cohen-Sutherland and Cyrus-beck line clipping algorithms, Sutherland–Hodgeman polygon clipping algorithm.

UNIT V
3-D Object representation: Polygon surfaces, quadric surfaces, spline representation, Hermite curve, Bezier curve and B-spline curves, Bezier and B-spline surfaces. Basic illumination models, polygon rendering methods.

UNIT VI
3-D Geometric transformations: Translation, rotation, scaling, reflection and shear transformations, composite transformations, 3-D viewing: Viewing pipeline, viewing coordinates, view volume and general projection transforms and clipping.

UNIT VII
Visible surface detection methods: Classification, back-face detection, depth-buffer, scan-line, depth sorting, BSP-tree methods, area subdivision and octree methods

UNIT VIII
Computer animation: Design of animation sequence, general computer animation functions, raster animation, computer animation languages, key frame systems, motion specifications

TEXT BOOKS:

REFERENCE BOOKS:
ADVANCED COMPUTER ARCHITECTURE
(ELECTIVE – I)

Unit – I

Unit-II
Principals of Scalable performance, Performance metrics and measures, Parallel Processing applications, Speed up performance laws, Scalability Analysis and Approaches, Hardware Technologies, Processes and Memory Hierarchy, Advanced Processor Technology, Superscalar and Vector Processors, Memory Hierarchy Technology, Virtual Memory Technology.

Unit – III
Bus Cache and Shared memory, Backplane bus systems, Cache Memory organizations, Shared-Memory Organizations, Sequential and weak consistency models, Pipelining and superscalar techniques, Linear Pipeline Processors, Non-Linear Pipeline Processors, Instruction Pipeline design, Arithmetic pipeline design, superscalar pipeline design.

Unit – IV
Parallel and Scalable Architectures, Multiprocessors and Multicomputers, Multiprocessor system interconnects, cache coherence and synchronization mechanism, Three Generations of Multicomputers, Message-passing Mechanisms, Multivetor and SIMD computers, Vector Processing Principals, Multivector Multiprocessors, Compound Vector processing, SIMD computer Organizations, The connection machine CM-5.

Unit – V
Scalable, Multithreaded and Dataflow Architectures, Latency-hiding techniques, Principals of Multithreading, Fine-Grain Multicomputers, Scalable and multithreaded Architectures, Dataflow and hybrid Architectures.

Unit – VI
Software for parallel programming, Parallel models, Languages and Compilers, Parallel Programming models, Parallel languages and compilers, Dependence analysis and data arrays, code optimization and scheduling, Loop Parallelization and pipelining.

Unit – VII
Parallel Program development and Environments, Parallel Programing Environments, Synchronization and Multiprocessing modes, Shared-Variable program structures, Message-passing program development. Mapping program onto multicomputers.

Unit – VIII
Instruction level parallelism, Introduction, Basic Design issues, Problem Definition, Model of typical processor, Compiler-Detector Instruction level parallelism, Operand forwarding, Recorder Buffer, Register Re-naming, Tomasulo’s Algorithm, Branch Prediction, Limitations in exploiting instruction level parallelism, Thread level parallelism, Recent Advances in computer Architecture, Brief overview of Technology, Forms of Parallelism

TEXT BOOK:

REFERENCE BOOKS:
1. Computer Architecture, Fourth edition, J.L.Hennessy and D.A. Patterson, ELSEVIER.
UNIT-I

UNIT-II

UNIT – III
Web services delivered from the cloud: Infrastructure as a service – Platform-as-a-service – Software-as-a-service. Building Cloud networks: Evolution from the MSP model to cloud computing and software-as-a-service – The cloud data center – SOA as step toward cloud computing – Basic approach to a data center based SOA.

UNIT – IV

UNIT – V

UNIT – VI

UNIT – VII
Virtualization: Adding guest Operating system. Cloud computing case studies1: Amazon EC2 – Amazon simple DB – Amazon S3 – Amazon Cloud Front – Amazon SQS

UNIT – VIII

TEXT BOOKS:

REFERENCES:
1. Cloud Application Architectures by George Reese, Oreilly publishers
2. Cloud computing and SOA convergence in your enterprise, by David S. Linthicum, Addison- Wesley
UNIT I
Introduction
Definitions, The different forms of computing – Monolithic, Distributed, Parallel and cooperative computing, the meaning of Distributed computing, Examples of Distributed systems, the strengths and weaknesses of Distributed computing, operating system concepts relevant to distributed computing, Network basics, the architecture of distributed applications, Interprocess Communications-An Archetypal IPC Program Interface, Event Synchronization, Timeouts and Threading, Deadlocks and Timeouts, Data representation, Data Encoding, Text-Based Protocols, Request-Response Protocols, Event Diagram and Sequence Diagram, Connection-Oriented versus Connectionless IPC, The Evolution of Paradigms for IPCs.

UNIT II
Distributed Computing Paradigms
Paradigms and Abstraction, Paradigms for Distributed Applications – Message Passing Paradigm, The Client-Server Paradigm, The peer-to-peer Paradigm, Message system (or MOM) Paradigm – the point-to-point message model and the publish/subscribe message model, RPC model, The Distributed Objects Paradigms – RMI, ORB, the object space Paradigm, The Mobile Agent Paradigm, the Network Services Paradigm, The collaborative application (Groupware Paradigm), choosing a Paradigm for an application.

UNIT III
The Socket API-The Datagram Socket API, The Stream-Mode Socket API, Client-Server Paradigm Issues, Connection-Oriented and Connectionless Servers, Iterative and Concurrent Servers, Group Communication-Unicasting versus Multicasting, Multicast API, Connectionless versus Connection-Oriented Multicast, Reliable Multicasting versus Unreliable Multicasting, The Java Basic Multicast API.

UNIT IV
Distributed Objects Paradigm (RMI)
Message passing versus Distributed Objects, An Archetypal Distributed Object Architecture, Distributed Object Systems, RPC, RMI, The Java RMI Architecture, Java RMI API, A sample RMI Application, steps for building an RMI application, testing and debugging, comparison of RMI and socket API.

UNIT V
Distributed Object Paradigm (CORBA)
The basic Architecture, The CORBA object interface, Inter-ORB protocols, object servers and object clients, CORBA object references, CORBA Naming Service and the Interoperable Naming Service, CORBA object services, object Adapters, Java IDL, An example CORBA application.

UNIT VI
Grid Computing
Introduction, Grid Computing Anatomy – The Grid Problem, The Concept of Virtual Organizations, Grid Architecture, Grid Architecture and relationship to other Distributed Technologies, Grid computing road map, Merging the Grid services Architecture with the Web Services Architecture.

UNIT VII
Open Grid Service Architecture – Introduction, Architecture and Goal, Sample Use cases: Commercial Data Center, National Fusion Collaboratory, Online Media and Entertainment. OGSA platform Components, Open Grid Services Infrastructure.

UNIT VIII
Globus GT 3 Toolkit – Architecture, Programming Model, A sample implementation.

TEXT BOOKS:

REFERENCE BOOKS:
7. Grid Computing – Making the global infrastructure a reality, Fran Berman, Geoffrey C Fox, Anthony J G Hey, Wiley India, 2010
MOBILE COMPUTING
(ELECTIVE – I)

UNIT I
Introduction:
Mobile Communications, Mobile Computing – Paradigm, Promises/Novel Applications and Impediments and Architecture; Mobile and Handheld Devices, Limitations of Mobile and Handheld Devices.
GSM – Services, System Architecture, Radio Interfaces, Protocols, Localization, Calling, Handover, Security, New Data Services, GPRS, CSHSD, DECT.

UNIT II
(Wireless) Medium Access Control (MAC)
Motivation for a specialized MAC (Hidden and exposed terminals, Near and far terminals), SDMA, FDMA, TDMA, CDMA. MAC protocols for GSM, Wireless LAN (IEEE802.11), Collision Avoidance (MACA, MACAW) Protocols.

UNIT III
Mobile IP Network Layer
IP and Mobile IP Network Layers, Packet Delivery and Handover Management, Location Management, Registration, Tunnelling and Encapsulation, Route Optimization, DHCP.

UNIT IV
Mobile Transport Layer

UNIT V
Database Issues

UNIT VI
Data Dissemination and Synchronization, Communications Asymmetry, Classification of Data Delivery Mechanisms, Data Dissemination Broadcast Models, Selective Tuning and Indexing Methods, Digital Audio and Video Broadcasting (DAB & DVB). Data Synchronization – Introduction, Software, and Protocols

UNIT VII
Mobile Ad hoc Networks (MANETs)
Introduction, Applications & Challenges of a MANET, Routing, Classification of Routing Algorithms, Algorithms such as DSR, AODV, DSDV, etc., Mobile Agents, Service Discovery.

UNIT VIII

TEXT BOOKS

REFERENCE BOOKS
UNIT-I
Introduction: What is a Design Pattern?, Design Patterns in Smalltalk MVC, Describing Design Patterns, The Catalog of Design Patterns, Organizing the Catalog, How Design Patterns Solve Design Problems, How to Select a Design Pattern, How to Use a Design Pattern.

UNIT-II

UNIT-III
Creational Patterns: Abstract Factory, Builder, Factory Method, Prototype, Singleton, Discussion of Creational Patterns.

UNIT-IV
Structural Pattern Part-I: Adapter, Bridge, Composite.

UNIT-V
Structural Pattern Part-II: Decorator, açade, Flyweight, Proxy.

UNIT-VI
Behavioral Patterns Part-I: Chain of Responsibility, Command, Interpreter, Iterator.

UNIT-VII
Behavioral Patterns Part-II: Mediator, Memento, Observer, State, Strategy, Template Method, Visitor, Discussion of Behavioral Patterns.

UNIT-VIII
What to Expect from Design Patterns, A Brief History, The Pattern Community An Invitation, A Parting Thought.

TEXT BOOK:
1. Design Patterns By Erich Gamma, Pearson Education
2. Head First Design Patterns By Eric Freeman-Oreilly-SPD.

REFERENCES:
4. Design Patterns Explained By Alan Shalloway, Pearson Education.
5. Pattern Oriented Software Architecture, F. Buschmann & others, John Wiley & Sons.
UNIT – I
Introduction: An illustrative learning task, and a few approaches to it. What is known from algorithms? Theory, Experiment. Biology. Psychology.

UNIT – II

UNIT – III

UNIT – IV
Neural Network Learning: Perceptions and gradient descent back propagation.

UNIT – V

UNIT—VI
Bayesian Approaches: The basics Expectation Maximization. Hidden Markov Models

UNIT—VII

UNIT—VIII

TEXT BOOKS:

REFERENCE BOOKS:
3. Chris Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

IV Year B.Tech. CSE - I Sem

| 6757056 |

SOFT COMPUTING

(ELECTIVE – II)

<table>
<thead>
<tr>
<th>UNIT-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI Problems and Search: AI problems, Techniques, Problem Spaces and Search, Heuristic Search Techniques- Generate and Test, Hill Climbing, Best First Search Problem reduction.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint Satisfaction and Means End Analysis. Approaches to Knowledge Representation- Using Predicate Logic and Rules.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT-III</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>UNIT-IV</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>UNIT-V</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>UNIT-VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuzzy Relations- Cardinality, Operations, Properties and composition. Tolerance and equivalence relations. Membership functions- Features, Fuzzification, membership value assignments, Defuzzification.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT-VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuzzy Arithmetic and Fuzzy Measures, Fuzzy Rule Base and Approximate Reasoning Fuzzy Decision making.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT-VIII</th>
</tr>
</thead>
</table>

TEXT BOOKS:

REFERENCES :

1. Computational Intelligence, Amit Konar, Springer.
UNIT I
Introduction: Definition, Objectives, Functional Overview, Relationship to DBMS, Digital libraries and Data Warehouses, Information Retrieval System Capabilities - Search, Browse, Miscellaneous.

UNIT II

UNIT III
Automatic Indexing: Classes of automatic indexing, Statistical indexing, Natural language, Concept indexing, Hypertext linkages

UNIT IV
Document and Term Clustering: Introduction, Thesaurus generation, Item clustering, Hierarchy of clusters.

UNIT V
User Search Techniques: Search statements and binding, Similarity measures and ranking, Relevance feedback, Selective dissemination of information search, Weighted searches of Boolean systems, Searching the Internet and hypertext.

UNIT VI
Text Search Algorithms: Introduction, Software text search algorithms, Hardware text search systems.

UNIT VIII

TEXTBOOKS

REFERENCE BOOKS
LINUX PROGRAMMING AND DATA MINING LAB

LINUX PROGRAMMING:
Note: Use Bash for Shell scripts.
1. Write a shell script that accepts a file name, starting and ending line numbers as arguments and displays all the lines between the given line numbers.
2. Write a shell script that deletes all lines containing a specified word in one or more files supplied as arguments to it.
3. Write a shell script that displays a list of all the files in the current directory to which the user has read, write and execute permissions.
4. Write a shell script that receives any number of file names as arguments checks if every argument supplied is a file or a directory and reports accordingly. Whenever the argument is a file, the number of lines on it is also reported.
5. Write a shell script that accepts a list of file names as its arguments, counts and reports the occurrence of each word that is present in the first argument file on other argument files.
6. Write a shell script to list all of the directory files in a directory.
7. Write a shell script to find factorial of a given integer.
8. Write an awk script to count the number of lines in a file that do not contain vowels.
9. Write an awk script to find the number of characters, words and lines in a file.
10. Write a c program that makes a copy of a file using standard I/O and system calls.
11. Implement in C the following Unix commands using System calls
 A. cat
 B. ls
 C. mv
12. Write a program that takes one or more file/directory names as command line input and reports the following information on the file.
 A. File type.
 B. Number of links.
 C. Time of last access.
 D. Read, Write and Execute permissions.
13. Write a C program to emulate the Unix ls –l command.
14. Write a C program to list for every file in a directory, its inode number and file name.
15. Write a C program that demonstrates redirection of standard output to a file. Ex: ls > f1.
16. Write a C program to create a child process and allow the parent to display “parent” and the child to display “child” on the screen.
17. Write a C program to create a Zombie process.
18. Write a C program that illustrates how an orphan is created.
19. Write a C program that illustrates how to execute two commands concurrently with a command pipe. Ex: ls –l | sort
20. Write C programs that illustrate communication between two unrelated processes using named pipe.
21. Write a C program to create a message queue with read and write permissions to write 3 messages to it with different priority numbers.
22. Write a C program that receives the messages (from the above message queue as specified in (21)) and displays them.
23. Write a C program to allow cooperating processes to lock a resource for exclusive use, using a) Semaphores b) flock or lockf system calls.
24. Write a C program that illustrates suspending and resuming processes using signals.
25. Write a C program that implements a producer-consumer system with two processes. (using Semaphores).
26. Write client and server programs (using C) for interaction between server and client processes using Unix Domain sockets.

27. Write client and server programs (using C) for interaction between server and client processes using Internet Domain sockets.

28. Write a C program that illustrates two processes communicating using shared memory.

TEXT BOOKS:

Data Mining Lab:

Credit Risk Assessment

Description: The business of banks is making loans. Assessing the credit worthiness of an applicant is of crucial importance. You have to develop a system to help a loan officer decide whether the credit of a customer is good, or bad. A bank's business rules regarding loans must consider two opposing factors. On the one hand, a bank wants to make as many loans as possible. Interest on these loans is the bank's profit source. On the other hand, a bank cannot afford to make too many bad loans. Too many bad loans could lead to the collapse of the bank. The bank's loan policy must involve a compromise: not too strict, and not too lenient.

To do the assignment, you first and foremost need some knowledge about the world of credit. You can acquire such knowledge in a number of ways.

1. **Knowledge Engineering.** Find a loan officer who is willing to talk. Interview her and try to represent her knowledge in the form of production rules.
2. **Books.** Find some training manuals for loan officers or perhaps a suitable textbook on finance. Translate this knowledge from text form to production rule form.
3. **Common sense.** Imagine yourself as a loan officer and make up reasonable rules which can be used to judge the credit worthiness of a loan applicant.
4. **Case histories.** Find records of actual cases where competent loan officers correctly judged when, and when not to, approve a loan application.

The German Credit Data:

Actual historical credit data is not always easy to come by because of confidentiality rules. Here is one such dataset, consisting of 1000 actual cases collected in Germany. credit dataset (original) Excel spreadsheet version of the German credit data. (Down load from web)

In spite of the fact that the data is German, you should probably make use of it for this assignment. (Unless you really can get 100 cases collected in German.)

A few notes on the German dataset

- DM stands for Deutsche Mark, the unit of currency, worth about 90 cents Canadian (but looks and acts like a quarter).
- owns_telephone. German phone rates are much higher than in Canada so fewer people own telephones.
- foreign_worker. There are millions of these in Germany (many from Turkkey). It is very hard to get German citizenship if you were not born of German parents.
- There are 20 attributes used in judging a loan applicant. The goal is the classify the applicant into one of two categories, good or bad.

Subtasks: (Turn in your answers to the following tasks)

1. List all the categorical (or nominal) attributes and the real-valued attributes separately.
2. What attributes do you think might be crucial in making the credit assessment? Come up with some simple rules in plain English using your selected attributes.
3. One type of model that you can create is a Decision Tree - train a Decision Tree using the complete dataset as the training data. Report the model obtained after training.
4. Suppose you use your above model trained on the complete dataset, and classify credit good/bad for each of the examples in the dataset. What % of examples can you classify correctly? (This is also called testing on the training set) Why do you think you cannot get 100 % training accuracy?
5. Is testing on the training set as you did above a good idea? Why or Why not?
6. One approach for solving the problem encountered in the previous question is using cross-validation? Describe what is cross-validation briefly. Train a Decision Tree again using cross-validation and report your results. Does your accuracy increase/decrease? Why? (10 marks)
7. Check to see if the data shows a bias against “foreign workers” (attribute 20), or “personal-status” (attribute 9). One way to do this (perhaps rather simple minded) is to remove these attributes from the dataset and see if the decision tree created in those cases is significantly different from the full dataset case which you have already done. To remove an attribute you can use the preprocess tab in Weka’s GUI Explorer. Did removing these attributes have any significant effect? Discuss.
8. Another question might be, do you really need to input so many attributes to get good results? Maybe only a few would do. For example, you could try just having attributes 2, 3, 5, 7, 10, 17 (and 21, the class attribute (naturally)). Try out some combinations. (You had removed two attributes in problem 7. Remember to reload the arff data file to get all the attributes initially before you start selecting the ones you want.)
9. Sometimes, the cost of rejecting an applicant who actually has a good credit (case 1) might be higher than accepting an applicant who has bad credit (case 2). Instead of counting the misclassifications equally in both cases, give a higher cost to the first case (say cost 5) and lower cost to the second case. You can do this by using a cost matrix in Weka. Train your Decision Tree again and report the Decision Tree and cross-validation results. Are they significantly different from results obtained in problem 6 (using equal cost)?

10. Do you think it is a good idea to prefer simple decision trees instead of having long complex decision trees? How does the complexity of a Decision Tree relate to the bias of the model?

11. You can make your Decision Trees simpler by pruning the nodes. One approach is to use Reduced Error Pruning. Explain this idea briefly. Try reduced error pruning for training your Decision Trees using cross-validation (you can do this in Weka) and report the Decision Tree you obtain. Also, report your accuracy using the pruned model. Does your accuracy increase?

12. (Extra Credit): How can you convert a Decision Trees into “if-then-else rules”. Make up your own small Decision Tree consisting of 2-3 levels and convert it into a set of rules. There also exist different classifiers that output the model in the form of rules - one such classifier in Weka is rules.PART, train this model and report the set of rules obtained. Sometimes just one attribute can be good enough in making the decision, yes, just one! Can you predict what attribute that might be in this dataset? OneR classifier uses a single attribute to make decisions (it chooses the attribute based on minimum error). Report the rule obtained by training a one R classifier. Rank the performance of j48, PART and oneR.

Task Resources:
Andrew Moore's Data Mining Tutorials (See tutorials on Decision Trees and Cross Validation)
- Decision Trees (Source: Tan, MSU)
- Tom Mitchell's book slides (See slides on Concept Learning and Decision Trees)
- Weka resources:
 - Introduction to Weka (html version) (download ppt version)
 - Download Weka
 - Weka Tutorial
 - ARFF format
 - Using Weka from command line
Students are divided into batches of 5 each and each batch has to draw the following diagrams using UML for an ATM system whose description is given below.

UML diagrams to be developed are:

1. Use Case Diagram.
2. Class Diagram.
3. Sequence Diagram.
5. State Diagram
6. Activity Diagram.
7. Component Diagram
8. Deployment Diagram.

Description for an ATM System

The software to be designed will control a simulated automated teller machine (ATM) having a magnetic stripe reader for reading an ATM card, a customer console (keyboard and display) for interaction with the customer, a slot for depositing envelopes, a dispenser for cash (in multiples of Rs. 100, Rs. 500 and Rs. 1000), a printer for printing customer receipts, and a key-operated switch to allow an operator to start or stop the machine. The ATM will communicate with the bank's computer over an appropriate communication link. (The software on the latter is not part of the requirements for this problem.)

The ATM will service one customer at a time. A customer will be required to insert an ATM card and enter a personal identification number (PIN) - both of which will be sent to the bank for validation as part of each transaction. The customer will then be able to perform one or more transactions. The card will be retained in the machine until the customer indicates that he/she desires no further transactions, at which point it will be returned - except as noted below.

The ATM must be able to provide the following services to the customer:

1. A customer must be able to make a cash withdrawal from any suitable account linked to the card, in multiples of Rs. 100 or Rs. 500 or Rs. 1000. Approval must be obtained from the bank before cash is dispensed.
2. A customer must be able to make a deposit to any account linked to the card, consisting of cash and/or checks in an envelope.
 The customer will enter the amount of the deposit into the ATM, subject to manual verification when the envelope is removed from the machine by an operator. Approval must be obtained from the bank before physically accepting the envelope.
3. A customer must be able to make a transfer of money between any two accounts linked to the card.
4. A customer must be able to make a balance inquiry of any account linked to the card.
5. A customer must be able to abort a transaction in progress by pressing the Cancel key instead of responding to a request from the machine.

The ATM will communicate each transaction to the bank and obtain verification that it was allowed by the bank. Ordinarily, a transaction will be considered complete by the bank once it has been approved. In the case of a deposit, a second message will be sent to the bank indicating that the customer has deposited the envelope. (If the customer fails to deposit the envelope within the timeout period, or presses cancel instead, no second message will be sent to the bank and the deposit will not be credited to the customer.)

If the bank determines that the customer's PIN is invalid, the customer will be required to re-enter the PIN before a transaction can proceed. If the customer is unable to successfully enter the PIN after three tries, the card will be permanently retained by the machine, and the customer will have to contact the bank to get it back.

If a transaction fails for any reason other than an invalid PIN, the ATM will display an explanation of the problem, and will then ask the customer whether he/she wants to do another transaction.

The ATM will provide the customer with a printed receipt for each successful transaction.

The ATM will have a key-operated switch that will allow an operator to start and stop the servicing of customers. After turning the switch to the "on" position, the operator will be required to verify and enter the total cash on hand. The machine can only be turned off when it is not servicing a customer. When the switch is moved to the "off" position, the machine will shut down, so that the operator may remove deposit envelopes and reload the machine with cash, blank receipts, etc.
Software Testing Lab
List of Experiments

1. Write programs in ‘C’ Language to demonstrate the working of the following constructs:
 i) do...while ii) while ...do iii) if...else iv) switch v) for
2. “A program written in ‘C’ language for Matrix Multiplication fails” Introspect the causes for its failure and write down the possible reasons for its failure.
3. Take any system (e.g. ATM system) and study its system specifications and report the various bugs.
4. Write the test cases for any known application (e.g. Banking application)
5. Create a test plan document for any application (e.g. Library Management System)
6. Study of any testing tool (e.g. Win runner)
7. Study of any web testing tool (e.g. Selenium)
8. Study of any bug tracking tool (e.g. Bugzilla, bugbit)
9. Study of any test management tool (e.g. Test Director)
10. Study of any open source-testing tool (e.g. Test Link)
11. Take a mini project (e.g. University admission, Placement Portal) and execute it. During the Life cycle of the mini project create the various testing documents* and final test report document.

*Note: To create the various testing related documents refer to the text “Effective Software Testing Methodologies by William E. Perry”
J.B. INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

IV Year B.Tech. CSE - II Sem
6758007

MANAGEMENT SCIENCE

Unit I

Unit II

Unit III
Operations Management: Principles and Types of Plant Layout- Methods of production (Job, batch and Mass Production), Work Study - Basic procedure involved in Method Study and Work Measurement- Statistical Quality Control: \(\bar{X} \) chart, R chart, c chart, p chart.

Unit IV

Unit V
A) Materials Management: Objectives, Need for Inventory control, EOQ, ABC Analysis, VED Analysis, FSN Analysis, Purchase Procedure, Stores Management - Logistics and basics of supply Chain Management.

Unit VI

Unit VII

Unit VIII

REFERENCE BOOKS:
1. Aryasri: Management Science, TMH, New Delhi, 2009
2. Stoner, Management, Pearson, 2009

Pre-requisites: Managerial Economics

Objective: To familiarize with the process of management and to provide basic insights into select contemporary management practices.

Codes/Tables: Normal Distribution Function Table need to be permitted into the examination Hall.

Question Paper Pattern: 5 Questions to be answered out of 8 questions. The question paper should contain at least 2 practical problems, one each from units – III & IV

Each question should not have more than 3 bits.

Unit VIII will have only short questions, not essay questions.
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

IV Year B.Tech. CSE - II Sem
6758035

WEB SERVICES
(ELECTIVE – III)

UNIT - I
Evolution and Emergence of Web Services - Evolution of distributed computing, Core distributed computing technologies – client/server, CORBA, JAVA RMI, Micro Soft DCOM, MOM, Challenges in Distributed Computing, role of J2EE and XML in distributed computing, emergence of Web Services and Service Oriented Architecture (SOA).

UNIT - II
Introduction to Web Services – The definition of web services, basic operational model of web services, tools and technologies enabling web services, benefits and challenges of using web services.

UNIT - III
Web Services Architecture – Web services Architecture and its characteristics, core building blocks of web services, standards and technologies available for implementing web services, web services communication, basic steps of implementing web services, developing web services enabled applications.

UNIT - IV
Core fundamentals of SOAP – SOAP Message Structure, SOAP encoding, SOAP message exchange models, SOAP communication and messaging, SOAP security.

UNIT - V
Developing Web Services using SOAP – Building SOAP Web Services, developing SOAP Web Services using Java, limitations of SOAP.

UNIT - VI
Describing Web Services – WSDL – WSDL in the world of Web Services, Web Services life cycle, anatomy of WSDL definition document, WSDL bindings, WSDL Tools, limitations of WSDL.

UNIT - VII
Discovering Web Services – Service discovery, role of service discovery in a SOA, service discovery mechanisms, UDDI – UDDI Registries, uses of UDDI Registry, Programming with UDDI, UDDI data structures, support for categorization in UDDI Registries, Publishing API, Publishing information to a UDDI Registry, searching information in a UDDI Registry, deleting information in a UDDI Registry, limitations of UDDI.

UNIT - VIII

TEXT BOOKS:
3. XML, Web Services, and the Data Revolution, F.P.Coye, Pearson Education.

REFERENCES:
2. Java Web Services, D.A. Chappell & T. Jewell, O’Reilly,SPD.

98
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

IV Year B.Tech. CSE - II Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1/-/1</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMANTIC WEB AND SOCIAL NETWORKS
(ELECTIVE – III)

Unit I:

Unit II:
Machine Intelligence, Artificial Intelligence, Ontology, Inference engines, Software Agents, Berners-Lee www, Semantic Road Map, Logic on the semantic Web.

Unit III:

Unit IV:
Ontology Engineering, Constructing Ontology, Ontology Development Tools, Ontology Methods, Ontology Sharing and Merging, Ontology Libraries and Ontology Mapping.

Unit V
Logic, Rule and Inference Engines. Semantic Web applications and services, Semantic Search, e-learning, Semantic Bioinformatics, Knowledge Base

Unit VI:
XML Based Web Services, Creating an OWL-S Ontology for Web Services, Semantic Search Technology, Web Search Agents and Semantic Methods,

Unit VII:
What is social Networks analysis, development of the social networks analysis, Electronic Sources for Network Analysis – Electronic Discussion networks.

Unit VIII
Blogs and Online Communities, Web Based Networks, Building Semantic Web Applications with social network features.

TEXT BOOKS:

REFERENCE BOOKS:

99
UNIT – I Introduction to PERL and Scripting
Scripts and Programs, Origin of Scripting, Scripting Today, Characteristics of Scripting Languages, Uses for Scripting Languages, Web Scripting, and the universe of Scripting Languages. PERL - Names and Values, Variables, Scalar Expressions, Control Structures, arrays, list, hashes, strings, pattern and regular expressions, subroutines.

UNIT – II Advanced perl
Finer points of looping, pack and unpack, filesystem, eval, datastructures, packages, modules, objects, interfacing to the operating system, Creating Internet ware applications, Dirty Hands Internet Programming, security Issues.

UNIT – III PHP Basics

UNIT – IV Advanced PHP Programming
PHP and Web Forms, Files, PHP Authentication and Methodologies - Hard Coded, File Based, Database Based, IP Based, Login Administration, Uploading Files with PHP, Sending Email using PHP, PHP Encryption Functions, the Mcrypt package, Building Web sites for the World.

UNIT - V TCL
TCL Structure, syntax, Variables and Data in TCL, Control Flow, Data Structures, input/output, procedures, strings, patterns, files, Advance TCL - eval, source, exec and uplevel commands, Name spaces, trapping errors, event driven programs, making applications internet aware, Nuts and Bolts Internet Programming, Security Issues, C Interface.

UNIT VI Tk
Tk-Visual Tool Kits, Fundamental Concepts of Tk, Tk by example, Events and Binding, Perl-Tk.

UNIT – VII Python
Introduction to Python language, python-syntax, statements, functions, Built-in-functions and Methods, Modules in python, Exception Handling.

UNIT - VIII

TEXT BOOKS:
1. The World of Scripting Languages, David Barron, Wiley Publications.

REFERENCE BOOKS:
1. Open Source Web Development with LAMP using Linux, Apache, MySQL, Perl and PHP, J. Lee and B. Ware (Addison Wesley) Pearson Education.
2. Programming Python, M. Lutz, SPD.
4. PHP 5.1, I. Bayross and S. Shah, The X Team, SPD.
5. Core Python Programming, Chun, Pearson Education.
7. Perl by Example, E. Quigley, Pearson Education.
8. Programming Perl, Larry Wall, T. Christiansen and J. Orwant, O'Reilly, SPD.
9. Tcl and the Tk Tool Kit, Ousterhout, Pearson Education.
10. PHP and MySQL by Example, E. Quigley, Prentice Hall (Pearson).
12. PHP Programming solutions, V. Vaswani, TMH.
UNIT - I

UNIT - II
Fundamental concepts in video and digital audio: Types of video signals, analog video, digital video, digitization of sound, MIDI, quantization and transmission of audio.

UNIT III

UNIT IV
Basic Video compression techniques, Case study: MPEG Video Coding I, Basic Audio compression techniques, Case study: MPEG Audio compression.

UNIT V
Web 2.0
What is web 2.0, Search, Content Networks, User Generated Content, Blogging, Social Networking, Social Media, Tagging, Social Marking, Rich Internet Applications, Web Services, Mashups, Location Based Services, XML, RSS, Atom, JSON, and VoIP, Web 2.0 Monetization and Business Models, Future of the Web.

UNIT V - VI
Rich Internet Applications (RIAs) with Adobe Flash: Adobe Flash - Introduction, Flash Movie Development, Learning Flash with Hands-on Examples, Publish your flash movie, Creating special effects with Flash, Creating a website splash screen, action script, web sources.

UNIT VI - VII
Rich Internet Applications (RIAs) with Flex 3 - Introduction, Developing with Flex 3, Working with Components, Advanced Component Development, Visual Effects and Multimedia,

UNIT VIII

TEXT BOOKS:
1. Fundamentals of Multimedia by Ze-Nian Li and Mark S. Drew PHI Learning, 2004

REFERENCES:
UNIT I
Introduction to Ad Hoc Wireless Networks
Characteristics of MANETs, Applications of MANETs, Challenges.

UNIT II
Routing in MANETs

UNIT III
Data Transmission in MANETs
The Broadcast Storm, Multicasting, Geocasting
TCP over Ad Hoc Networks
TCP Protocol overview, TCP and MANETs, Solutions for TCP over Ad Hoc

UNIT IV
Basics of Wireless Sensors and Applications
The Mica Mote, Sensing and Communication Range, Design Issues, Energy consumption, Clustering of Sensors, Applications

UNIT V
Data Retrieval in Sensor Networks
Classification of WSNs, MAC layer, Routing layer, High-level application layer support, Adapting to the inherent dynamic nature of WSNs.

UNIT VI
Security

UNIT VII
Sensor Network Platforms and Tools
Sensor Network Hardware, Sensor Network Programming Challenges, Node-Level Software Platforms

UNIT VIII
Operating System – TinyOS
Imperative Language: nesC, Dataflow style language: TinyGALS, Node-Level Simulators, ns-2 and its sensor network extension, TOSSIM

TEXT BOOKS:

REFERENCE BOOKS:
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

IV Year B.Tech. CSE - II Sem
6758040

STORAGE AREA NETWORKS
(ELECTIVE – IV)

Unit I:
Review data creation and the amount of data being created and understand the value of data to a business, challenges in data storage and data management, Solutions available for data storage, Core elements of a data center infrastructure, role of each element in supporting business activities

Unit II:
Hardware and software components of the host environment, Key protocols and concepts used by each component, Physical and logical components of a connectivity environment, Major physical components of a disk drive and their function, logical constructs of a physical disk, access characteristics, and performance Implications.

Unit III:
Concept of RAID and its components, Different RAID levels and their suitability for different application environments: RAID 0, RAID 1, RAID 3, RAID 4, RAID 5, RAID 0+1, RAID 1+0, RAID 6, Compare and contrast integrated and modular storage systems, High-level architecture and working of an intelligent storage system

Unit IV:
Evolution of networked storage, Architecture, components, and topologies of FC-SAN, NAS, and IP-SAN, Benefits of the different networked storage options, Understand the need for long-term archiving solutions and describe how CAS fulfills the need, Understand the appropriateness of the different networked storage options for different application environments

Unit V:
List reasons for planned/unplanned outages and the impact of downtime, Impact of downtime, Differentiate between business continuity (BC) and disaster recovery (DR), RTO and RPO, Identify single points of failure in a storage infrastructure and list solutions to mitigate these failures.

Unit VI:
Architecture of backup/recovery and the different backup/recovery topologies, replication technologies and their role in ensuring information availability and business continuity, Remote replication technologies and their role in providing disaster recovery and business continuity capabilities

Unit VII:
Identify key areas to monitor in a data center, Industry standards for data center monitoring and management, Key metrics to monitor for different components in a storage infrastructure, Key management tasks in a data center, Information security, Critical security attributes for information systems, Storage security domains, List and analyzes the common threats in each domain

Unit VIII:
Virtualization technologies, block-level and file-level virtualization technologies and processes.

Case Studies
The technologies described in the course are reinforced with EMC examples of actual solutions. Realistic case studies enable the participant to design the most appropriate solution for given sets of criteria.

TEXT BOOKS:
1. EMC Corporation, Information Storage and Management, Wiley.

REFERENCE BOOKS:
DATA BASE SECURITY

J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

IV Year B.Tech. CSE - II Sem
6758041
L T/P/D C
3 1/-/- 3

UNIT I
Introduction to Databases
Security Problems in Databases
Security Controls
Conclusions

UNIT II
Security Models -1
Introduction Access Matrix Model Take-Grant Model Acten Model PN Model Hartson and Hsiao's Model Fernandez's Model Bussolati and Martella's Model for Distributed databases

UNIT III
Security Models -2
Bell and LaPadula's Model Biba's Model Dion's Model Sea View Model Jajodia and Sandhu's Model The Lattice Model for the Flow Control conclusion

UNIT IV
Security Mechanisms

UNIT V
Security Software Design

UNIT VI
Statistical Database Protection & Intrusion Detection Systems
Introduction Statistics Concepts and Definitions Types of Attacks Inference Controls evaluation Criteria for Control Comparison .Introduction IDES System RETISS System ASES System Discovery

UNIT VII
Models For the Protection Of New Generation Database Systems -1
Introduction A Model for the Protection of Frame Based Systems A Model for the Protection of Object-Oriented Systems SORION Model for the Protection of Object-Oriented Databases

UNIT VIII
Models For the Protection Of New Generation Database Systems -2

TEXT BOOKS:

1. Database Security by Castano *Pearson Edition* (1/e)
J.B.INSTITUTE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

IV Year B.Tech. CSE - II Sem
6758042

EMBEDDED SYSTEMS
(ELECTIVE --IV)

Unit - I

Unit - II
The **8051 Architecture** : Introduction, 8051 Microcontroller Hardware, Input/Output Ports and Circuits, External Memory, Counter and Timers, Serial data Input/Output, Interrupts. (Chapter 3 from Text Book 2, Ayala).

Unit - III
Basic Assembly Language Programming Concepts : The Assembly Language Programming Process, Programming Tools and Techniques, Programming the 8051, Data Transfer and Logical Instructions. (Chapters 4,5 and 6 from Text Book 2, Ayala).

Unit - IV
Arithmetic Operations, Decimal Arithmetic, Jump and Call Instructions, Further Details on Interrupts. (Chapter 7and 8 from Text Book 2, Ayala)

Unit - V
Applications : Interfacing with Keyboards, Displays, D/A and A/D Conversions, Multiple Interrupts, Serial Data Communication. (Chapter 10 and 11 from Text Book 2, Ayala).

Unit - VI
Introduction to Real – Time Operating Systems : Tasks and Task States, Tasks and Data, Semaphores, and Shared Data; Message Queues, Mailboxes and Pipes, Timer Functions, Events, Memory Management, Interrupt Routines in an RTOS Environment. (Chapter 6 and 7 from Text Book 3, Simon).

Unit - VII

Unit - VIII
Introduction to advanced architectures : ARM and SHARC, Processor and memory organization and Instruction level parallelism; Networked embedded systems: Bus protocols, I2C bus and CAN bus; Internet-Enabled Systems, Design Example-Elevator Controller. (Chapter 8 from Text Book 1, Wolf).

TEXT BOOKS :

REFERENCES :
1. Embedding system building blocks, Labrosse, via CMP publishers.
2. Embedded Systems, Raj Kamal, TMH.
3. Micro Controllers, Ajay V Deshmukhi, TMH.
5. Microcontrollers, Raj kamal, Pearson Education.
6. An Embedded Software Primer, David E. Simon, Pearson Education.
Industry Oriented Mini Project

<table>
<thead>
<tr>
<th>Course Code</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6758617</td>
<td>0</td>
<td>-/-</td>
<td>2</td>
</tr>
</tbody>
</table>

Seminar

<table>
<thead>
<tr>
<th>Course Code</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6758618</td>
<td>0</td>
<td>-/6/-</td>
<td>2</td>
</tr>
</tbody>
</table>

Project Work

<table>
<thead>
<tr>
<th>Course Code</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6758619</td>
<td>0</td>
<td>-/15/-</td>
<td>10</td>
</tr>
</tbody>
</table>

Comprehensive Viva

<table>
<thead>
<tr>
<th>Course Code</th>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6758620</td>
<td>0</td>
<td>-/-</td>
<td>2</td>
</tr>
</tbody>
</table>