J.B. INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)

COURSE PLAN

20123-14

Regulation: R11

FACULTY DETAILS:							
		Name of the Facul Designatio Departmen	ty:: on: nt::	A.Ramesh Babu Associate Professor Computer Science & Engineerii	ng		
COURSE DETAILS							
Nar	me Of T	The Programme::	B.T	ech		Batch::	2012
		Designation::	B.T	ech			
	Year	II B.Tech		Sem	ester	1	
		Department::	Cor	mputer Science and Engineering			
	Tit	le of The Subject	D	Digital Logic Design	Subje	ect Code	6753024
		No of Students	65				

COURSE PLAN

Regulation: R11

FACULTY DETAILS:

 Name of the Faculty::
 A.Ramesh Babu

 Designation:
 Associate Professor

 Department::
 Computer Science and Engineering

1. TARGET

a) Percentage Pass	100%

b) Percentage I class 85%

2. COURSE PLAN

(Please write how you intend to cover the contents: i.e., coverage of Units by lectures, guest lectures, design exercises, solving numerical problems, demonstration of models, model preparation, or by assignments, etc.)

- a) Coverage of units by lectures
- b) Design exercises
- c) Assignments

3. METHOD OF EVALUATION

3.1. Continuous Assessment Examinations (CAE 1, CAE 2)

- 3.2. Assignments / Seminars
- 3.3. Mini Projects
- 3.4. 🗌 Quiz
- 3.5. Term End Examination
- 3.6. Others

4. List out any new topic(s) or any innovation you would like to introduce in teaching the subject in this Semester.

Signature of HOD Date:

Signature of Faculty Date:

GUIDELINES TO STUDY THE SUBJECT

2012-13

Regulation: R11

FACULTY DETAILS:

Name of the Faculty:: Designation:

Department::

A.Ramesh Babu Associate Professor CSE

Guidelines for Preparing the Course:

Course Description:

Introduction to information representation and number systems. Boolean algebra and switching theory. Manipulation and minimization of completely and incompletely specified Boolean functions. The map method, Four-variable map, Five-Variable map, product of sums simplification Don't-care conditions, NAND and NOR implementation other Two-level implementations, Exclusive – Or function, Hardware Description language (HDL)., propagation delay, timing diagrams, and tri-state drivers. Combinational circuit analysis and design, multiplexers, decoders, comparators, and adders. Sequential circuit analysis and design, basic flip-flops, clocking and timing diagrams. Registers, counters, Introduction to RAM, Asynchronous Sequential Logic

Course Objectives:

- 1. explain how digital circuit of large complexity can be built in a methodological way
- 2. Binary Systems
- 3. To apply the principles of Boolean algebra to manipulate and minimize logic expressions.
- 4. To use K-maps to minimize and optimize two-level logic functions up to 5 variables.
- 5. Two-level logic functions with AND, OR, NAND, NOR and XOR gates with minimum number of gate delays or literals.
- 6. To design combinational circuits using decoders, MUX, Encoder.
- 7. The operation of latches, flip-flops, counters, registers, and registers transfers.
- 8. To analyze the operation of sequential circuits built with various flip-flops.
- 9. To design combinational circuits using decoders, ROM and transmission gates.
- 10. The operation of state-of-the-art components to design and build complex digital systems.such as memories, PLA, PALs and programmable logic devices (such as FPGAs).

Learning Outcomes:

- 1. Students should be able to solve basic binary math operations using Binary number.
- 2. Students should be able to solve basic binary math operations using the logic gates
- 3. Students should be able to apply knowledge of the of Boolean algebra to simplify Boolean functi
- 4. Students should be able to apply knowledge of the map method to simplify Boolean functions
- 5. Students should be able to apply knowledge of the logic design course to solve problems of Designing of control units of different input/output devices
- 6. Students should be able to design different Combinational Circuits
- 7. Students should be able to analyze different Combinational Circuit
- 8. The operation of latches, flip-flops, To analyze the operation of sequential circuits built with various flip-flops.
- 9. Students should be able to design different Sequential Circuits
- 10. Students should be able to design registers, registers transfers., counters
- 11. student shall be able to design combinational circuit using PAL,ROM,PLA
- 12. student shall be able to design sequential circuits using SPLD
- 13. Student shall be able to analyze Asynchronous Sequential circuits circuit
- 14. Student shall be able to design Asynchronous Sequential circuits circuit

FACULTY DETAILS:

Name of the Faculty::A.Ramesh BabuDesignation:Associate ProfessorDepartment::CSE

On completion of this Subject / Course the student shall be able to:

S.No.	Objectives	Outcomes
1.		
	Introduction to information representation and number systems	1,2
2.		
	To apply the principles of Boolean algebra to manipulate and minimize logic expressions	3
3.		
	To use K-maps to minimize and optimize two-level logic functions up to 5 variables	
	, product of sums simplification Don't-care conditions, NAND and NOR implementation other I wo- level implementations, Exclusive – Or function, Hardward Description language (HDL).	4,5
4.		
	To design Combinational Circuits, Analysis procedure Design procedure, Binary Adder-Subtractor	
	Decimal Adder, Binary multiplier, magnitude comparator, Decoders, Encoders, Multiplexers, HDL	67
5.		0,7
	The operation of latches, flip-flops .To analyzes the operation of sequential circuits built with	
	various flip-flops.	8,9
6.		
	The operation of registers, and registers transfers, shift Registers, Ripple counters synchronous	10
	counters, other counters, HDL for Registers and counters.	10
7.	The ensuring of state of the out components to design and build complex disited surfaces and	
	ine operation of state-of-the-art components to design and build complex digital systems. Such	11 12
8	as memories, FLA, FALS and programmable logic devices (such as FFOAs).	11,12
0.		
	Introduction, Analysis Procedure, Circuits with Latches,	13
9.		
	Design Procedure, Reduciton of state and Flow Tables, Race-Free state Assignment Hazards,	
	Design Example.	14
10.		
		14
	Design Examples Of Asynchronous Sequential Circuit	

Signature of Faculty

Date:

Note: For each of the OBJECTIVE indicate the appropriate OUTCOMES to be achieved. Kindly refer Page 16, to know the illustrative verbs that can be used to state the objectives.

4

COURSE OUTCOMES

2012-13

Regulation: R11

FACULTY DETAILS:

Name of the Faculty:: A.Ramesh Babu Designation: Associate Professor Department:: CSE

The expected outcomes of the Course / Subject are:

S.No.	General Categories of Outcomes	Specific Outcomes of the Course
Α.	An ability to apply knowledge of mathematics, science, and engineering	
В.	An ability to design and conduct experiments, as well as to analyze and interpret data	
C.	An ability to design a system, component, or process to meet desired needs within realistic Constraints such as economic, environmental, social, political, ethical, health and safety, Manufacturability and sustainability	
D.	An ability to function on multi-disciplinary teams	
E.	An ability to identify, formulate, and solve engineering problems	
F.	An understanding of professional and ethical responsibility	
G.	An ability to communicate effectively	
Н.	The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	
I.	A recognition of the need for, and an ability to engage in life-long learning	
J.	A knowledge of contemporary issues	
к.	An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.	

Objectives – Outcome Relationship Matrix (Indicate the relationships by Zmark).

			-				,				
Outcomes Objectives	Α	В	С	D	Е	F	G	Н	I	J	К
1.											
2.											
3.											
4.											
5.											
6.											
7.											
8.											
9.											
10.											

Regulation: R11

FACULTY DETAILS:

Name of the Faculty:: A.Ramesh Babu Designation: Associate Professor Department:: CSE The Schedule for the whole Course / Subject is:: 76

S No	Description	Duratio	Total No.	
5. NO.	Description	From	То	of Periods
1.				
	BINARY SYSTEMS	4-07-13	16-07-13	9
2.				
	BOOLEAN ALGEBRA AND LOGIC GATES	17-07-13	1-08-13	10
3.				
	GATE – LEVEL MINIMIZATION	2-08-13	20-08-13	12
4.				
	COMBINATIONAL LOGIC	21-08-13	6-09-13	10
5.				
	SYNCHRONOUS SEQUENTIAL LOGIC	9-9-13	18-09-13	10
6.				
	REGISTERS, COUNTERS	19-09-13	01-10-13	9
7				
/	INTRODUCTION TO RAM	2-10-13	11-10-13	8
8	ASYNCHRONOUS SEQUENTIAL LOGIC	21-10-13	26-10-13	8

Total No. of Instructional periods available for the course: 76 Hours / Periods

2012-13

UNIT - I

Regulation: R11

FACULTY DETAILS:

Name of the Faculty:: A.Ramesh Babu Designation: Associate Professor Department:: CSE e Course / Subject is:: 9

The Schedule for the whole Course / Subject is:: 9

SI. No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcome	References (Text Book, Journal) Page Noto
				1103.	
1	4-07-13	1	Introduction to Digital Systems	1	1T1,(1-2)
2	5-07-13	1	Binary Numbers	2	1 ^{T1,(3-5)}
3	8-07-13	1	, Number base conversions	2 2	T1,(5-8)
4	9-07-13	1	Octal and Hexadecimal Numbers	2 2	T1,(8,9)
5	10-07-13	1	complements	1,2 2	T1,(9-13)
6	11-07-13	1	Signed binary numbers	2	2 ^{T1,(13-16)}
7	12-07-13	1	Binary codes	2	2 ^{T1,(17-23)}
8	15-07-13	1	Binary Storage and Registers	2 2	2 T1,(24-26)
9	16-07-13	1	Binary logic	2 2	2 T1,(27-31)

T1: Digital Logic Design, M.Morris Mano, Michael D.cilleti, Pearson 4th Edition

Signature of Faculty Date

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED.

2. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED **BOLDLY**.

2012-13

UNIT - II

Regulation: R11

FACULTY DETAILS:

Name of the Faculty:: A.Ramesh Babu Designation: Associate Professor Department:: CSE e Course / Subject is:: 10

The Schedule for the whole Course / Subject is:: 10

SI. No.	Date	No. of Periods	Topics / Sub - Topics	Ot	ojectives & Outcome Nos.	References (Text Book, Journal) Page No to
1	17712	1		2	2	T1(88-89)
1	1/-/-13	1	Basic Definitions of Boolean Algebra	3	3	
						T1(90-92)
2	18-7-13	1	Axiomatic definition of Boolean Algebra	3	3	
						T1(93-94)
3	19-7-13	1	Basic theorems	3	3	× /
						T1(95-96)
4	22-7-13	1	properties of Boolean algebra	3	3	、 <i>,</i>
						T1(96-99)
5	23-7-13	2	Boolean functions minimizations	3	3	、 <i>/</i>
						T1(100-106)
6	24-7-13	1	canonical and standard forms	3	3	()
						T1(107-108)
7	25-7-13	1	other logic operations	3	3	、 ,
						T1(109-113)
8	29-7-13	1	Digital logic gates	3	3	```'
						T1(114-117)
9	1-8-13	1	integrated circuits	3	3	

T1: Digital Logic Design ,M.Morris Mano,Michael D.cilleti, Pearson 4th Edition

Signature of Faculty Date

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED.

2. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED **BOLDLY**.

2012-13

UNIT - III

Regulation: R11

FACULTY DETAILS:

Name of the Faculty::A.Ramesh BabuDesignation:Associate ProfessorDepartment::CSE

The Schedule for the whole Course / Subject is:: 12

SI. No.	Date	No. of Periods	Topics / Sub - Topics	0	ojectives & Outcome	References (Text Book, Journal)
				_	Nos.	Page Noto
						T1(143-147)
1	2-08-13	1	The map method	4	4	
						T1(147-148)
2	5-08-13	1	Simplification of Boolean functions using k-map	4	4	
						T1(148-149)
3	6-08-13	1	3-Variable K-Map	4	4	``´´
						T1(150-154)
4	7-08-13	1	4-Variable K-Map	4	4	· · · ·
5	8-08-13	1	5-Variable K-Map	4	4	T1(155-156)
_						T1(157)
6	9-08-13	1	Other simplification method	4	4	
7	12-08-13	1	product of sums simplification Don't-care conditions	4	4	T1(157-162)
						T1(163-170)
8	14-08-13	2	NAND and NOR implementation	5	5	、 <i>、 、 、</i>
						T1(171-174)
9	16-08-13	1	other Two-level implementations	5	5	· · · ·
						T1(175-180)
10	19-08-13	1	Exclusive – Or function	5	5	
						T1(196-205)
11	20-08-13	1	Hard ware Description language (HDL).	5	5	ļ

T1: Digital Logic Design, M.Morris Mano, Michael D.cilleti, Pearson 4th Edition

Signature of Faculty Date

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED.

2. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED **BOLDLY**.

2012-13

UNIT - IV

Regulation: R11

FACULTY DETAILS:

Name of the Faculty:: A.Ramesh Babu

Designation: Associate Professor Department:: CSE

The Schedule for the whole Course / Subject is:: 10

SI.	Date	No. of	Topics / Sub - Topics	Objectives & Outcome	References (Text Book, Journal)
INO.		renous		Nos.	Page No to
					T1(241-242)
1	21-8-13	1	Introduction to Combinational Circuits	66	
					T1(242-244)
2	22-8-13	1	Analysis procedure	6 7	
2	00 0 10	1			T1(245-248)
3	23-8-13	1	Design procedure	6 6	
	20.0.12	1		<i>.</i>	T1(248-249)
4	29-8-13	1	Half-adder, Full –Adder	6 6	
_	00 0 10				T1(249-260)
5	30-8-13	1	Binary Adder- Subtractor	6 6	
					T1(261-265)
6	2-9-13	1	Decimal Adder, Binary multiplier	66	
					T1(266-267)
7	3-9-13	1	magnitude comparator	66	
					T1(268-273)
8	4-9-13	1	Decoders, Encoders	67	
					T1(274-279)
9	5-9-13	1	Multiplexers.	66	
					T1(280-295)
10	6-9-13	1	HDL for combinational circuits	67	

T1: Digital Logic Design ,M.Morris Mano,Michael D.cilleti, Pearson 4th Edition

Signature of Faculty Date

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED.

2. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED **BOLDLY**.

2012-13

UNIT - V

Regulation: R11

FACULTY DETAILS:

Name of the Faculty:: A.Ramesh Babu Designation: Associate Profes

Designation: Associate Professor Department:: CSE

The Schedule for the whole Course / Subject is:: 10

SI.	Date	No. of Poriodo	Topics / Sub - Topics	C	bjectives & Outcome	References (Text Book, Journal)
NU.		renous			Nos.	Page No to
						T1(345-346)
1	9-9-13	1	Sequential circuits	8	8	
						T1(347-350)
2	10-9-13	1	latches	8	8	
						T1(351-357)
3	11-9-13	1	SR- Flip-Flops, JK- Flip-Flops	8	8	
						T1(357-358)
4	12-9-13	1	T- Flip-Flops, D- Flip-Flops	8	8	
						T1(358-368)
5	13-9-13	2	Analysis of clocked sequential circuits	8	9	
						T1(369-380)
6	16-9-13	1	HDL for sequential circuits	8	9	
						T1(381-383)
7	17-9-13	1	State Reduction	8	9	
						T1(384-385)
8	18-9-13	1	State Assignment	8	9	
						T1(386-394)
9	18-9-13	1	Design Procedure	8	9	

T1: Digital Logic Design , M. Morris Mano, Michael D. cilleti, Pearson 4th Edition

Signature of Faculty Date

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED.

2. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED **BOLDLY**.

2012-13

UNIT - VI

Regulation: R11

FACULTY DETAILS:

Name of the Faculty:: A.Ramesh Babu

Designation: Associate Professor

Department:: CSE The Schedule for the whole Course / Subject is:: 9

SI.	Date	No. of Periods	Topics / Sub - Topics	0	bjectives & Outcome	References (Text Book, Journal)
INU.		renous			Nos.	Page No to
						T1(437-438)
1	19-9-13	1	The operation of registers,	7	10	
						T1(438-439)
2	20-9-13	1	registers transfers	7	10	
						T1(439-445)
3	23-9-13	1	shift Registers	7	10	
						T1(446-451)
4	24-9-13	1	Serial adder	7	10	
			Ripple counters.			T1(452-463)
5	25-9-13	1		7	10	
						T1(463-465)
6	25-9-13	1	Decimal counter	7	10	
						T1(466-471)
7	27-9-13	1	synchronous counters	7	10	
						T1(472-476)
8	30-9-13	1	other counters	7	10	
						T1(477-482)
9	1-10-13	1	HDL for Registers and counters	7	10	

T1: Digital Logic Design , M. Morris Mano, Michael D. cilleti, Pearson 4th Edition

Signature of Faculty Date

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED.

2. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED **BOLDLY**.

2012-13

UNIT - VII

Regulation: R11

FACULTY DETAILS:

Name of the Faculty:: A.Ramesh Babu

Designation: Associate Professor

Department:: CSE The Schedule for the whole Course / Subject is:: 8

SI. No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcome		References (Text Book, Journal)
				-	INOS.	T1(510)
1	2-10-13	1	Introduction to memory	9	11	11(517)
2	3-10-13	1	Random-Access Memory	9	11	T1(520-525)
3	4-10-13	1	Memory Decoding	9	11	T1(526-530)
						T1(531-533)
4	7-10-13	1	Error Detection and correction	9	11	
						T1(534-539)
5	8-10-13	1	Read-only memory	9	12	
						T1(540-543)
6	9-10-13	1	Programmable Logic Array	9	12	
						T1(544-547)
7	10-10-13	1	Programmable Array Logic	9	12	
						T1(548-563)
8	11-10-13	1	Sequential Programmable Devices	9	12	

T1: Digital Logic Design , M. Morris Mano, Michael D. cilleti, Pearson 4th Edition

Signature of Faculty Date

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED.

2. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED **BOLDLY**. MENTION THE CORRESPONDING COURSE OBJECTIVE AND OUT COME NUMBERS AGAINST EACH TOPIC.

2012-13

UNIT - VIII

Regulation: R11

FACULTY DETAILS:

Name of the Faculty:: A.Ramesh Babu

Designation: Associate Professor Department:: CSE

Department:: CSE The Schedule for the whole Course / Subject is:: 8

SI. No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcome Nos.		References (Text Book, Journal) Page No to
						T1(610-611)
1	21-10-13	1	Introduction Asynchronous Sequential Logic	10	13	
2	22-10-13	1	Analysis Procedure	10	13	T1(612-618)
3	22-10-13	1	Circuits with Latches	10	13	T1(619-626)
4	23-10-13	1	Design Procedure	10	13	T1(627-632)
5	23-10-13	1	Reduction of state and Flow Tables,	10	14	T1(633-639)
6	24-10-13	1	Race-Free state Assignment.	10	14	T1(640-644)
7	25-10-13	1	Hazards	10	14	T1(645-649)
8	26-10-13	1	, Design Example	10	14	T1(650-655)

T1: Digital Logic Design , M. Morris Mano, Michael D. cilleti, Pearson 4th Edition

Signature of Faculty Date

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED.

2. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED **BOLDLY**.

COURSE COMPLETION STATUS

2012-13

Regulation: R11

FACULTY DETAILS:

N	ame of the Faculty::	A.Ramesh Babu		
Subject::	Digital Logic Design	Subjec	t Code 6	3753024
-	Department::	CSE		
Actual Date of Completion & R	emarks, if any			

		Nos. of
Units	Remarks	Objectives
		Achieved
Unit 1		
	Completed as per schedule	1,2
Unit 2		
	Completed as per schedule	3
Unit 3		
	Completed as per schedule	4,5
Unit 4		
	Completed as per schedule	6
Unit 5		
	Completed as per schedule	7
Unit 6	Completed as per schedule	8
Unit 7	Completed as per schedule	9
Unit 8	Completed as per schedule	10

T1: Digital Logic Design , M. Morris Mano, Michael D. cilleti, Pearson 4th Edition

Signature of Dean of School Date:

Signature of Faculty Date:

NOTE: AFTER THE COMPLETION OF EACH UNIT MENTION THE NUMBER OF OBJECTIVES ACHIEVED.

TUTORIAL SHEETS - I

2012-13

Regulation: R11

FAC T	CULTY DETAILS: Name of the Faculty:: A.Ramesh Babu Designation: Associate Professor Department:: CSE The Schedule for the whole Course / Subject is:: 76	
Th	Date: nis Tutorial corresponds to Unit Nos. I,II Time:	
1.	 Q1. A) Perform the following subtraction in binary and check by converting the numbers to i) 111.11 - 101.1 ii) 1101.1 - 1010.01 b) Perform the following subtraction by using 10's complement. i) 1020-2056 ii) 60-1308 	
2.	Q2. A) Perform the following using BCD arithmetic and excess-3 arithmetic .Verify the result. i. 127310 + 958710 ii. 776210 + 383810 (b) Convert the following. i. (977)10 = ()16 v. Given that (292)10 =(1204)b determine `b'	
3.	 Q3. (a) Simplify the following Boolean expressions i. A'C' + ABC + AC' to three literals iii. A'B(D' + C'D) + B(A + A'CD) to one literal iv. (A' + C)(A' + C')(A + B + C'D) to four literal (b) Obtain the complement of the following Boolean expressions. i. B'C'D + (B + C + D)' + B 'C'D'E ii. A'B'C' + ABC' + AB'C' + ABC' iv. AB + (AC)' + (AB + C) 	rals
4.	 Q4. (a) What is the gray code equivalent of the Hex Number 3A7 (b) Find the biquinary of number code for the decimal numbers from 0 to 9 (c) Find 9's complement (25.639)10 (d) Find (72532 -03250) using 9's complement 	
5.	Q5. Simplify the following Boolean expressions	
	i) $Xyz+x'y+xyz'$ ii) [(CD)'+A]'+A+CD+AB iii) (A+C+D)(A+C+D')(A+C'+D)(A+B')	
	iv) $f(A,B,C,D) = AB+AC+C+AD+ABC+ABC$ v) $f(ABCD) = AC+ABC+BC$	

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the objectives to which these questions / Problems are related.

Signature of Dean of School Date:

Signature of Faculty Date:

TUTORIAL SHEETS - II

Regulation: R11

Date: Time:

FACULTY DETAILS:

Name of the Faculty::	A.Ramesh Babu
Designation:	Associate Professor
Department::	CSE
The Schedule for the whole Course / Subject is::	76

This Tutorial corresponds to Unit Nos. III,IV,V

Q1.

- (a) Construct K-map for the following expression and obtain minimal SOP expression. Implement the function with 2-level NAND -NAND form. $f(A,B,C,D) = (A + C + D) (A + B + D^{1})(A + B + C^{1})(A^{1} + B + D^{1})(A^{1} +$
 - (b) Implement the following Boolean function F using the two level form: i. NAND-AND ii. AND-NOR iii. NAND-NAND IV) AND-OR v.OR-AND vi) NOR-NOR vii) NOR-OR vii) OR-NAND F (A,B,C,D) = $\sum (0, 1, 2, 3, 4, 8, 9, 12)$

Q2.

- a) Simplify the function using K- map method
 - $F(A,B,C,D) = \sum m (4,5,7,12,14,15) + \sum d(3,8,10).$
- b) Derive Boolean expression for a 2input Ex-OR gate to realize with 2 input NAND gates without using Complemented variables and draw the circuit.
- c) Give the minimum two-level SOP realization of the following switching function using only NAND gates. $F(x,y,z) = \sum m (0,3,4,5,7)$
- d) Minimise the following expression using Karnaugh -map $f(A,B,C,D) = \sum m(1,4,7,10,13) + \sum d(5,14,15)$

Q3.

- a) Implementation Half adder using 4 NAND gates
- (b) Implementation Full subtracter using NAND gates only.

Q4.

- a) Explain carry propagation in parallel adder with a neat diagram
- b) Explain the Analysis and design procedure of a combinational circuit with example. Also design a binary multiplier.

Q5.

- a) Draw the circuit diagram of J-K flip flop with NAND gates with positive edge triggering and explain its operation with the help of truth table. How race around condition is eliminated?
- b) Realize D-latch using R-S latch. How is it different from D-flip flop? Draw the circuit using NAND gates and explain.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the objectives to which these questions / Problems are related.

Signature of Dean of School Date:

Signature of Faculty Date:

TUTORIAL SHEETS - II

Regulation: R11

FACULTY DETAILS:	Name of the Faculty:: Designation: Department::	A.Ramesh Babu Associate Professor CSE	
			Date:
This Tutorial corresp	onds to Unit Nos. VI,VII,VIII		Time:
Q1.			
Explain about the	e Following		
(a) Serial Transfe	er in 4-bit shift Registers	(b) Binary Ripple Counter	(c) HDL for Synchronous Counter
Q2.a) Design a Mb) Design an 8Q3.	odulo-12 up Synchronous o 3-bit counter using eight D-	counter Using T-Flip Flops and flip-flops.	draw theCircuit diagram?
a) Show how Output OR b) Explain how	to make an 8-to-1 MUX usi gate may have up to four A w Hamming code is useful f	ng a PAL. Assume that PAL has ND terms as input. or correcting and detecting the	14 outputs and assume that each
Q4.			
a. Explain the	difference between asyncl	hronous and synchronous sequ	ential circuits.
b. Define fund	damental-mode operation		
c. Explain the	difference between stable	and unstable states	
d. What is the	e difference between an int	ernal state and a total state?	
Q5.			
a) Design a co	ombinational circuit using	a ROM. The circuit accepts a	3-bit number and generates an output
binary num	ber equal to the square of	the input number.	
h) Design a co	nde converter circuit that c	onverts Gray code to BCD using	

Design a code converter circuit that converts Gray code to BCD using PALS

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the objectives to which these questions / Problems are related.

Signature of Dean of School Date:

Signature of Faculty Date:

ILLUSTRATIVE VERBS FOR STATING INSTRUCTIONAL OBJECTIVES

Regulation: R11

These verbs can also be used while framing questions for Continuous Assessment Examinations as well as for End – Semester (final) Examinations.

ILLUSTRATIVE VERBS FOR STATING GENERAL OBJECTIVES

Know	
Comprehend	

Understand Apply Analyze Design Generate Evaluate

ILLUSTRATIVE VERBS FOR STATING SPECIFIC OBJECTIVES:

A. Cognitive Domain

1	2	3	4	5	6
Knowledge	Comprehension Understanding	Application	Analysis	Synthesis	Evaluation
		of knowledge & comprehension	of whole w.r.t. its constituents	combination of ideas/constituents	judgement
Define	Convert	Change	Breakdown	Categorize	Appraise
Identify	Defend	Compute	Differentiate	Combine	Compare
Label	Describe (a	Demonstrate	Discriminate	Compile	Conclude
List	procedure)	Deduce	Distinguish	Compose	Contrast
Match	Distinguish	Manipulate	Separate	Create	Criticize
Reproduce	Estimate	Modify	Subdivide	Devise	Justify
Select	Explain why/how	Predict		Design	Interpret
State	Extend	Prepare		Generate	Support
	Generalize	Relate		Organize	
	Give examples	Show		Plan	
	Illustrate	Solve		Rearrange	
	Infer			Reconstruct	
	Summarize			Reorganize	
				Revise	

B. Affective Domain		C. Psychomotor Domain (skill development)					
Adhere	Resolve	Bend	Dissect	Insert	Perform	Straighten	
Assist	Select	Calibrate	Draw	Кеер	Prepare	Strengthen	
Attend	Serve	Compress	Extend	Elongate	Remove	Time	
Change	Share	Conduct	Feed	Limit	Replace	Transfer	
Develop		Connect	File	Manipulate	Report	Туре	
Help		Convert	Grow	Move preciselyRe	eset	Weigh	
Influence		Decrease	Handle	Operate	Run		
Initiate		Demonstrate	Increase	Paint	Set		

	LESSON PLAN		2012-13	
	Unit-1		Regulation: R11	
Name of the Faculty:	A.Ramesh Babu			
Subject	Digital Logic Design	Subject Code	6753024	
Unit	l	-		
INSTRUCTIONAL OBJECTIVES:	9			

Session No	Topics to be covered	Time	Ref	Teaching Method
1	Introduction to Digital Systems	50min	T1	Black Board
2	Binary Numbers	50min	T1	Black Board
3	Number base conversions	50min	T1	Black Board
4	Octal and Hexadecimal Numbers	50min	T1	Black Board
5	complements	50min	T1	Black Board
6	Signed binary numbers	50min	T1	Black Board
7	Binary codes	50min	T1	Black Board
8	Binary Storage and Registers	50min	T1	Black Board
9	Binary logic	50min	T1	Black Board

On completion of this lesson the student shall be able to(Outcomes)

 $1. \ {\rm Students} \ {\rm should} \ {\rm be} \ {\rm able} \ {\rm to} \ {\rm solve} \ {\rm basic} \ {\rm binary} \ {\rm math} \ {\rm operations} \ {\rm using} \ {\rm Binary} \ {\rm number}.$

2. Students should be able to solve basic binary math operations using the logic gates

3. Students should be able to demonstrate programming proficiency using the various logical elements to design practically motivated logical units

ASSIGNMENT Unit-I

2012-13

Regulation: R11

Assignment / Questions

- Convert the following numbers to decimal. (1001001.011)2, (12121)3, (1032.2)4, (4310)5, (0.342)6, (50)7, (8.3)9, (198)12
- 2. a) Subtract the following numbers using 2's and 1's complement

(i) 5250 - 321 (ii) 753 - 864
(iii) 3570 - 2100 (iv) 20 - 1000
b) Explain about binary storage and registers.

3. (a) What is the gray code equivalent of the Hex Number 3A7
(b) Find the biquinary of number code for the decimal numbers from 0 to 9
(c) Find 9's complement (25.639)10
(d) Find (72532 -03250) using 9's complement.

- 4. (a) Find the Gray-code equivalent of the octal number 527.(b) When a block of data is stored on magnetic tape, sometimes parity is computed on both the rows and columns. Create the row and column parity bits for the data group shown below using odd parity.
 - DATA 10110 10001 10101 00010 11000 00000
 - 11010

(c) Obtain the 3 bit and 4 bit Gray codes from the 2 bit Gray code by reflection.

Signature of Faculty

LESSON PLAN	2012-13
Unit-II	Regulation: R11

Name of the Faculty: A.Ramesh Babu Subject Digital Logic Design Unit II INSTRUCTIONAL OBJECTIVES: 9

Subject Code 6753024

Session No	Topics to be covered	Time	Ref	Teaching Method
10	Basic Definitions of Boolean Algebra	50min	T1	Black Board
11	Axiomatic definition of Boolean Algebra	50min	T1	Black Board
12	Basic theorems	50min	T1	Black Board
13	properties of Boolean algebra	50min	T1	Black Board
14,15	Boolean functions minimizations	100min	T1	Black Board
16	canonical and standard forms	50min	T1	Black Board
17	other logic operations	50min	T1	Black Board
18	Digital logic gates	50min	T1	Black Board
19	integrated circuits	50min	T1	Black Board

On completion of this lesson the student shall be able to

1. Students should be able to apply knowledge of the Axiomatic definition of Boolean Algebra to solve problems

2. Students should be able to apply knowledge of the of Boolean algebra to simplify Boolean functions

3. Students should be able to apply knowledge of the logic design course to solve problems of designing of control units of different input/output devices

ASSIGNMENT Unit-II

2012-13

Regulation: R11

Assignment / Questions

1. (a) Implement the following Boolean function using AND, OR and inverter gates. F = xy + x'y' + y'z. b) Using the rules of boolean algebra, simplify the expressions that follow to the Fewest total number of literals i) Xyz+x'y+xyz' ii) [(CD)'+A]'+A+CD+AB (A+C+D)(A+C+D')(A+C'+D)(A+B') iii) iv) f(A,B,C,D) = AB+AC+C+AD+ABC+ABCf(ABCD) = AC+ABC+BCiv) b) Prove the following expressions i) xy+x'+yz=x'z+xy ii) (x+y'+xy)(x+y')x'y=0 c) Determine the Canonical Sum of Products representation of the function f(x,y,z) = Z + (x'+y)(x+y')2. a) Reduce the following boolean expression to three literals

[(CD)' + A]' + A + CD + AB
b) Express the following functions in sum of minterms and product of maxterms

(i) F(x, y, z) = (xy + z)(y + xz)
(ii) F(x, y, z) = 1

3. (a) Simplify the following Boolean expressions

i. A'C' + ABC + AC' to three literals
ii. (x'y' + z)' + z + xy + wz to three literals
iii. A'B(D' + C'D) + B(A + A'CD) to one literal
iv. (A' + C)(A' + C')(A + B + C'D) to four literals
(b) Obtain the complement of the following Boolean expressions.
i. B'C'D + (B + C + D)' + B 'C'D'E
ii. AB + (AC)' + (AB + C)
i. A'B'C' + ABC' + AB'C' + ABC'
iv. AB + (AC)' + AB'

Signature of Faculty

TO NAL ACTION	LESSON PLAN	2012-13
	Unit-III	Regulation: R11

 Name of the Faculty:
 A.Ramesh Babu

 Subject
 Digital Logic Design

 Unit
 III

 INSTRUCTIONAL OBJECTIVES:
 11

Subject Code 6753024

Session No	Topics to be covered	Time	Ref	Teaching Method
20	The map method	50min	T1	Black Board
21	Simplification of Boolean functions using k-map	50min	T1	Black Board
22	3-Variable K-Map	50min	T1	Black Board
23	4-Variable K-Map	50min	T1	Black Board
24	5-Variable K-Map	50min	T1	Black Board
25	Other simplification method	50min	T1	Black Board
26	product of sums simplification Don't-care conditions	50min	T1	Black Board
27,28	NAND and NOR implementation	100min	T1	Black Board
29	other Two-level implementations	50min	T1	Black Board
30	Exclusive – Or function	50min	T1	Black Board
31	Hard ware Description language (HDL).	50min	T1	Black Board

On completion of this lesson the student shall be able to(Outcomes)

1. Students should be able to apply knowledge of the map method to simplify Boolean functions

- 2. Students should be able to apply knowledge of the 3-variable k-map method to simplify Boolean Functions
- 3. Students should be able to apply knowledge of the 4-variable k-map method to simplify Boolean Functions

Students should be able to apply knowledge of the logic design course to solve problems of

Designing of control units of different input/output devices

ASSIGNMENT **Unit-III**

2012-13

Regulation: R11

Assignment / Questions

2.

(a) Each of the following functions actually represents a set of four functions corresponding to the various assignments of the don?t care terms. f1 (w,x,y,z) = $\sum (1,3,4,5,9,10,11) + \sum \varphi(6,8)$ f2 (w,x,y,z) = $\sum (0,2,4,7,8,15) + \sum \phi (9,12)$ then i. Find such that f3 = f1.f2ii. Find such that f4 = f1 + f2iii. Simplify and obtain minimal sop for f3 and f4. (b) Determine the canonical sum-of-products representation of the below . Functions i. $f(x, y, z) = z + (x^{1} + y)(x + y^{1})$ ii. $f(x, y, z) = x + (x^{1}y^{1} + x^{1}z)$ (a) Construct K-map for the following expression and obtain minimal SOP expression. Implement the function with 2-level NAND -NAND form. $f(A,B,C,D) = (A + C + D) (A + B + D^{l})(A + B + C^{l})(A^{l} + B + D^{l})(A^{l} + D^{l})(A^{l} + B + D^{l})(A^{l} + B + D^{l$ (b) Implement the following Boolean function F using the two - level form: ii. AND-NOR iii. NAND-NAND IV) AND-OR i. NAND-AND v.OR-AND vi) NOR-NOR vii) NOR-OR vii) OR-NAND $F(A,B,C,D) = \sum (0, 1, 2, 3, 4, 8, 9, 12)$ 3. (a) If $F1(A,B,C) = A \Phi B \Phi C$ F2 (A,B,C) = A \oplus C \oplus B Show that = F1 = F2(b) Show that $A \oplus B \oplus AB = A + B$ (c) Obtain minimal SOP expression for the complement of the given expression: $F(A,B,C) = \pi(1, 2, 5, 7)$ And draw the circuit using NOR - gates. 4. Using the maps method, simplify the following expression using sum of the product from. a) (abc)'+a(bc)' +don't cares abc+a'bc'+a'b'c b) Abc+(ab)'c +don't cares abc'+ab'c

Signature of Faculty

Regulation: R	R11

Name of the Faculty:A.Ramesh BabuSubjectDigital Logic DesignUnitIVINSTRUCTIONAL OBJECTIVES:10

Subject Code 6753024

Session No	Topics to be covered	Time	Ref	Teaching Method
32	Introduction to Combinational Circuits	50min	T1	Black Board
33	Analysis procedure	50min	T1	Black Board
34	Design procedure	50min	T1	Black Board
35	Half-adder, Full –Adder, Binary Adder	50min	T1	Black Board
36	Binary Adder- Subtractor	50min	T1	Black Board
37	Decimal Adder, Binary multiplier	50min	T1	Black Board
38	magnitude comparator	50min	T1	Black Board
39	Decoders. Encoders	50min	T1	Black Board
40	Multiplexers.	50min	T1	Black Board
41	HDL for combinational circuits	50min	T1	Black Board

On completion of this lesson the student shall be able to (Outcomes)

 $1. \ {\rm Students} \ {\rm should} \ {\rm be} \ {\rm able} \ {\rm to} \ {\rm design} \ {\rm different} \ {\rm Combinational} \ {\rm Circuits}$

2. Students should be able to analyze different Combinational Circuit

3. Students should be able to design Half-adder, Full –Adder, Binary Adder

 $4\ {\rm Students}\ {\rm should}\ {\rm be}\ {\rm able}\ {\rm to}\ {\rm design}\ {\rm Decoders},\ {\rm Encoders},\ {\rm and}\ {\rm Multiplexers}.$

ASSIGNMENT Unit-IV

2012-13

Regulation: R11

Assignment / Questions

- (a) Implementation Half adder using 4 NAND gates
- (b) Implementation Full subtracter using NAND gates only.
- (a) Explain carry propagation in parallel adder with a neat diagram
- c) Explain the Analysis and design procedure of a combinational circuit with example. Also design a binary multiplier.

Show how a 4 x 16 decoder can be constructed with two 3 x 8 decoders

Show how a 16x1 MUX can be constructed with two 8x1 MUX

Signature of Faculty

ALL AND ALL AN	I FSSON PLAN	2012-13
	Unit-V	Regulation: R11

Name of the Faculty: A.Ramesh Babu Subject Digital Logic Design Unit V INSTRUCTIONAL OBJECTIVES: 9

Subject Code 6753024

Session No	Topics to be covered	Time	Ref	Teaching Method
42	Sequential circuits	50min	T1	Black Board
43	latches	50min	T1	Black Board
44	SR- Flip-Flops, JK- Flip-Flops	50min	T1	Black Board
45	T- Flip-Flops, D- Flip-Flops	50min	T1	Black Board
46,47	Analysis of clocked sequential circuits	100min	T1	Black Board
48	HDL for sequential circuits	50min	T1	Black Board
49	State Reduction	50min	T1	Black Board
50	State Assignment	50min	T1	Black Board
51	Design Procedure	50min	T1	Black Board

On completion of this lesson the student shall be able to(Outcomes)

- 11. The operation of latches, flip-flops, To analyze the operation of sequential circuits built with various flip-flops.
- $12. \ \mbox{Students should be able to design different Sequential Circuits}$
- $13. \,$ Students should be able to design different Flip-Flops
- $14. \ \mbox{Students should be able to Analyze of clocked sequential circuits}$

ASSIGNMENT Unit-V

2012-13

Regulation: R11

Assignment / Questions

- 1. (a) Draw the circuit diagram of J-K flip flop with NAND gates with positive edge triggering and explain its operation with the help of truth table. How race around condition is eliminated?
 (b)Realize D-latch using R-S latch. How is it different from D-flip flop? Draw the circuit using NAND gates and explain.
- 2. A clocked sequential circuit is provided with a single input x and single output Z. Whenever the input produce a string of pulses 1 1 1 or 0 0 0 and at the end of the sequence it produce an output Z = 1 and overlapping is also allowed.
 - (i) Obtain state-diagram (ii) Also obtain state-table
 - (iii) Find equivalence classes using partition method and design the circuit using D-flip flops.
- 3. Design a sequential circuit with two D flip-flops A and B. and one input x. when x=0,the state of the circuit remains the same. When x=1,the circuit goes through the state transition from 00 to 11 to 11 to 10 back to 00.and repeats

Signature of Faculty

STATISTICS AND	I ESSON PLAN	2012-13
	Unit-VI	Regulation: R11

Name of the Faculty:A.Ramesh BabuSubjectDigital Logic DesignUnitVIINSTRUCTIONAL OBJECTIVES:9

Subject Code 6753024

Session No	Topics to be covered	Time	Ref	Teaching Method
52	The operation of registers,	50min	T1	Black Board
53	registers transfers	50min	T1	Black Board
54	shift Registers	50min	T1	Black Board
55	Serial adder	50min	T1	Black Board
56	Ripple counters.	50min	T1	Black Board
57	Decimal counter	50min	T1	Black Board
58	synchronous counters	50min	T1	Black Board
59	other counters	50min	T1	Black Board
60	HDL for Registers and counters	50min	T1	Black Board

On completion of this lesson the student shall be able to (Outcomes)

 $1. \ {\rm Students} \ {\rm should} \ {\rm be} \ {\rm able} \ {\rm to} \ {\rm design} \ {\rm registers}, \ {\rm registers} \ {\rm transfers}.$

2. Students should be able to design registers transfer

3. Students should be able to design counters,

Assignment / Questions

4.

- 1. Design a Modulo-12 up Synchronous counter Using T-Flip Flops and draw the Circuit diagram?
- 2. (a) Construct a 4-bit universal shift register with multiplexers and explain the features with a neat schematic.
 - (b)Write the HDL code for an Up-Down binary counter.
- 3. Design a modulo 16 counter.
 - Explain about the Following
 - iv. Serial addition in 4-bit shift register
 - v. BCD Ripple Counter
 - (c) Universal Shift Register.

Signature of Faculty

STATUS NAL SOLUTION	L FSSON PLAN	2012-13
	Unit-VII	Regulation: R11

Name of the Faculty:A.Ramesh BabuSubjectDigital Logic DesignUnitVIIINSTRUCTIONAL OBJECTIVES:8

Subject Code 6753024

Session No	Topics to be covered	Time	Ref	Teaching Method
61	Introduction to memory	50min	T1	Black Board
62	Random-Access Memory	50min	T1	Black Board
63	Memory Decoding	50min	T1	Black Board
64	Error Detection and correction	50min	T1	Black Board
65	Read-only memory	50min	T1	Black Board
66	Programmable Logic Array	50min	T1	Black Board
67	Programmable Array Logic	50min	T1	Black Board
68	Sequential Programmable Devices	50min	T1	Black Board

On completion of this lesson the student shall be able to

1. Student shall be able to solve Error Detection and correction problems

2. Student shall be able to design combinational circuit using RAM

13. student shall be able to design combinational circuit using PROM

14. student shall be able to design combinational circuit using PLA

15. student shall be able to design combinational circuit using PAL

16. student shall be able to design sequential circuits using SPLD

ASSIGNMENT Unit-VII

2012-13

Regulation: R11

Assignment / Questions

- 1. Explain about PLA in Detail?
- 2. Explain the design of Sequential circuit with an example. Show the state reduction, state assignment
- 3. Write notes on a)ROM b)RAM c)PLA d)PAL
- 4. (a) Design a combinational circuit using a ROM. The circuit accepts a 3-bit number and generates an output binary number equal to the square of the input number.

(b) Design a code converter circuit that converts Gray code to BCD using PALS.

Signature of Faculty

STORAL STORAL	LESSON PLAN Unit-VIII	2012-13		
		Regulation: R11		

Name of the Faculty: A.Ramesh Babu Subject Digital Logic Design Unit VIII INSTRUCTIONAL OBJECTIVES: 8

Subject Code 6753024

Session No	Topics to be covered	Time	Ref	Teaching Method
69	Introduction Asynchronous Sequential Logic	50min	T1	Black Board
70	Analysis Procedure	50min	T1	Black Board
71	Circuits with Latches	50min	T1	Black Board
72	Design Procedure	50min	T1	Black Board
73	Reduction of state and Flow Tables,	50min	T1	Black Board
74	Race-Free state Assignment.	50min	T1	Black Board
75	Hazards	50min	T1	Black Board
76	Design Example	50min	T1	Black Board

On completion of this lesson the student shall be able to

- 13. Student shall be able to analyze Asynchronous Sequential circuits circuit
- 14. Student shall be able to design Asynchronous Sequential circuits circuit
- 15. student shall be able to design latches
- 16. student shall be able to design Hazards
- 17. student shall be able to design Flow Tables

ASSIGNMENT Unit-VIII

2012-13

Regulation: R11

Assignment / Questions

- 1. An Asynchronous sequential circuit is described by the following excitation and output function.
 - Y=x1x2'+(x1+x2')y and Z=Y
 - a. Draw the logic diagram of the circuit.
 - b. Derive the transition table and output map.
 - c. Obtain a 2-state flow table
 - d. Describe in words the behaviour of the circuits
- (a)Explain the types of Hazards in asynchronous sequential circuits.
 (b)Taking a suitable example, explain the elimination of essential hazards in a circuit.
- 3. Explain about the following:
 - (a) latch excitation table

(b) Merging of flow tables.

Signature of Faculty