# J.B. INSTITUTE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)



**ACADEMIC YEAR** 

2013-14

http://www.jbiet.edu.in



# **COURSE PLAN**

2013-14

Regulation: R11

FACULTY DETAILS:

Name of the Faculty:: V.SUBHASHINI

Designation: ASSISTANT PROFESSOR

Department:: CSE

**COURSE DETAILS** 

Name Of The Programme:: Designation:: B.Tech 13-14 Batch::

Year Semester

Department:: CSE

Title of The Subject COMPUTER Subject Code

PROGRAMMING &

DATA STRUCTURES

No of Students 116



#### **COURSE PLAN**

2013-14

**Regulation: R11** 

| E | ۸( | ŀ  | II - | ΓV | DI | ΕТ | Λ١ | LS  |
|---|----|----|------|----|----|----|----|-----|
| г | нι | ار | ᇿ    | 11 | U  | ᄗ  | ΑI | LO. |

Name of the Faculty:: V.SUBHASHINI

Designation: ASSISTANT PROFESSOR

Department:: CSE

| 4 | <br>$^{n}$ | $\sim$ |  |
|---|------------|--------|--|
|   |            |        |  |
|   |            |        |  |

a) Percentage Pass 90

b) Percentage I class 60

#### 2. COURSE PLAN

(Please write how you intend to cover the contents: i.e., coverage of Units by lectures, guest lectures, design exercises, solving numerical problems, demonstration of models, model preparation, or by assignments, etc.)

A. COVERAGE OF UNITS BY LECTURES B. Solving numerical problems

C. ASSIGNMENTS D. DESIGN EXERCISES

#### METHOD OF EVALUATION

- 3.1. Continuous Assessment Examinations (CAE 1, CAE 2)
- 3.2. Assignments / Seminars
- 3.3. Mini Projects
- 3.5. Term End Examination
- 3.6. Others
- 4. List out any new topic(s) or any innovation you would like to introduce in teaching the subject in this Semester.

Graphics programming, Mouse programming.

Signature of HOD Date:

Signature of Faculty Date:





#### **GUIDELINES TO STUDY THE SUBJECT**

Regulation: R11

**FACULTY DETAILS:** 

Name of the Faculty:: V.SUBHASHINI

Designation: ASSISTANT PROFESSOR

Department:: CSE

Guidelines for Preparing the Course:

#### Course Description:

A program is a set of step-by-step instructions that directs the computer to do the tasks you want it to do and produce the results you want.

A set of rules that provides a way of telling a computer what operations to perform is called a programming language. There is not, however, just one programming language; there are many. Data structure:

- •how to store a collection of objects in memory,
- •what operations we can perform on that data,
- •the algorithms for those operations, and how time and space efficient those algorithms are. A data structure is an arrangement of data in a computer's memory or even disk storage. An example of several common data structures are arrays, linked lists, queues, stacks, binary trees, and hash tables.

#### **Course Objectives:**

- Continue developing a disciplined approach to problem solving methods and algorithm development. Provide a clear understanding of the concepts of abstract data types.
- To teach a number of the basic algorithms and data structures used in computer science.
- On completion of this course, students must have a basic understanding of the concepts of abstract data types and object oriented programming methods. Data structures such as lists, stacks, queues, strings, and trees must be understood. The student will have working knowledge of the concepts of classes and objects, operator overloading, constructors, destructors, and generics. The concepts of dynamic data structures and recursion must be well understood.

#### **Learning Outcomes:**

Students will be able to apply and compare the basic abstract data structures used in computer science. These include strings, sets, stacks, queues, lists, and binary trees. Students will understand and demonstrate their ability to construct abstract data types and solve problems using an object oriented programming language. This will include demonstrated understanding of recursion, dynamic memory management, generics, and operator overloading.



# **COURSE OBJECTIVES**

2013-14

Regulation: R11

FACULTY DETAILS:

Name of the Faculty:: V.SUBHASHINI

Designation: ASSISTANT PROFESSOR

Department:: CSE

On completion of this Subject / Course the student shall be able to:

| S.No. | Objectives                                                                                 | Outcomes |
|-------|--------------------------------------------------------------------------------------------|----------|
| 1.    | To understand the various steps in Program development.                                    | A,E      |
| 2.    | To understand the basic concepts in C Programming Language.                                | A,B,E    |
| 3.    | To learn how to write modular and readable C Programs                                      | A,C,D,E  |
| 4.    | To learn to write programs (using structured programming approach) in C to solve problems. | E,F,G,H  |
| 5.    | To learn to write programs (using structured programming approach) in C to solve problems. | G,I,J    |
| 6.    | To learn to write programs (using files programming approach) in C to solve problems.      | C,E,G,K  |
| 7.    | To introduce the students to basic data structures such as lists, stacks and queues        | I,J,K    |
| 8.    | To make the student understand simple sorting and searching methods.                       | D,G,J,K  |
|       |                                                                                            |          |

# Signature of Faculty

X

Note: For each of the OBJECTIVE indicate the appropriate OUTCOMES to be achieved. Kindly refer Page 16, to know the illustrative verbs that can be used to state the objectives.



#### **COURSE OUTCOMES**

2013-14

Regulation: R11

FACULTY DETAILS:

Name of the Faculty:: V.SUBHASHINI

Designation: ASSISTANT PROFESSOR

Department:: CSE

The expected outcomes of the Course / Subject are:

The expected outcomes of the Course / Subject are:

| S.No. | General Categories of Outcomes                                                                                                                                                                                               | Specific Outcomes of the Course                                                                                                                                  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A.    | An ability to apply knowledge of mathematics, science, and engineering                                                                                                                                                       | identify and describe the major literary movements of the 20th century                                                                                           |
| В.    | An ability to design and conduct experiments, as well as to analyze and interpret data                                                                                                                                       | perform close readings of literary texts                                                                                                                         |
| C.    | An ability to design a system, component, or process to meet desired needs within realistic Constraints such as economic, environmental, social, political, ethical, health and safety, Manufacturability and sustainability | evaluate a literary work based on selected and articulated standards                                                                                             |
| D.    | An ability to function on multi-disciplinary teams                                                                                                                                                                           | dentify key measurement problems involved in the design and evaluation of social interventions and suggest appropriate solutions                                 |
|       | An ability to identify, formulate, and solve                                                                                                                                                                                 | assess the strengths and weaknesses of alternative strategies for collecting,                                                                                    |
| E.    | engineering problems                                                                                                                                                                                                         | analyzing and interpreting data from needs analyses and evaluations in direct practice, program and policy interventions                                         |
| F.    | An understanding of professional and ethical responsibility                                                                                                                                                                  | analyze qualitative data systematically by selecting appropriate interpretive or quantified content analysis strategies                                          |
| G.    | An ability to communicate effectively                                                                                                                                                                                        | articulate implications of research findings for explanatory and practice theory development and for practice/program implementation                             |
| Н.    | The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context                                                                                   | the impact of research and other accomplishments in space technology on our understanding of scientific theories and principles and on other fields of endeavour |
| l.    | A recognition of the need for, and an ability to engage in life-long learning                                                                                                                                                | plan ways to model and/or simulate an answer to the questions chosen                                                                                             |
| J.    | A knowledge of contemporary issues                                                                                                                                                                                           | predict the appearance and motion of visible celestial objects                                                                                                   |
| К.    | An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.                                                                                                                   | communicate scientific ideas, procedures, results, and conclusions using appropriate SI units, language, and formats                                             |

The Schedule for the whole Course / Subject is:: C Programming and Data Structures

Objectives – Outcome Relationship Matrix (Indicate the relationships by ⊠ mark).

| 00,000,000             | 0 0.100 | o reductions |   | ( |   | pe 2) <u> </u> |   |   |   |   |   |
|------------------------|---------|--------------|---|---|---|----------------|---|---|---|---|---|
| Outcomes<br>Objectives | Α       | В            | С | D | Е | F              | G | Н | I | J | K |
| 1.                     |         |              |   |   |   |                |   |   |   |   |   |
| 2.                     |         |              |   |   |   |                |   |   |   |   |   |
| 3.                     |         |              |   |   |   |                |   |   |   |   |   |
| 4.                     |         |              |   |   |   |                |   |   |   |   |   |
| 5.                     |         |              |   |   |   |                |   |   |   |   |   |
| 6.                     |         |              |   |   |   |                |   |   |   |   |   |
| 7.                     |         |              |   |   |   |                |   |   |   |   |   |
| 8.                     |         |              |   |   |   |                |   |   |   |   |   |
| 9.                     |         |              |   |   |   |                |   |   |   |   |   |
| 10.                    |         |              |   |   |   |                |   |   |   |   |   |



#### **COURSE SCHEDULE**

2013-14

Regulation: R11

**FACULTY DETAILS:** 

Name of the Faculty:: V.SUBHASHINI

Designation: ASSISTANT PROFESSOR

Department:: CSE

The Schedule for the whole Course / Subject is:: COMPUTER PROGRAMMING & DATA STRUCTURES

| S. No. | Description                           |          | Duration (Date) |            |  |
|--------|---------------------------------------|----------|-----------------|------------|--|
|        | Description                           | From     | То              | of Periods |  |
| 1.     | Introduction to computers             |          |                 | 12         |  |
|        |                                       |          |                 |            |  |
|        |                                       | 1.10.13  | 18.10.13        |            |  |
| 2.     | Introduction to C Language            |          |                 | 24         |  |
|        |                                       |          |                 |            |  |
|        |                                       | 19.10.13 | 30.10.13        |            |  |
| 3.     | Designing structured programs, Arrays |          |                 | 21         |  |
|        |                                       |          |                 |            |  |
|        |                                       | 1.11.13  | 14.12.13        |            |  |
| 4.     | Pointers, Strings                     | 111110   | 1 1112110       | 19         |  |
|        |                                       |          |                 |            |  |
|        |                                       | 18.12.13 | 29.12.13        |            |  |
| 5.     | Derived types – structures,           |          |                 | 12         |  |
|        |                                       |          |                 |            |  |
|        |                                       | 2.1.14   | 31.1.14         |            |  |
| 6.     | Input and output -Concept of a file   |          |                 | 1.2        |  |
|        |                                       | 2 2 1 4  |                 | 13         |  |
|        | h                                     | 3.2.14   | 21.2.14         |            |  |
|        | Searching and sorting                 |          |                 |            |  |
| 7      |                                       | 2 2 1 4  | 05 2 14         |            |  |
|        |                                       | 3.3.14   | 25.3.14         | 10         |  |
|        | Data structures                       |          |                 |            |  |
| 8      |                                       | 1 4 1 4  | 05 4 1 4        |            |  |
|        |                                       | 1.4.14   | 25.4.14         | 21         |  |

Hours / Periods

Total No. of Instructional periods available for the course:

#### **Text Books:**

- 1. B. A. Fouruzan and R. F. Gilberg (2006), Computer Science: A structured programming approach using C, 3<sup>rd</sup> Edition, Thomson Publications, New Delhi.
- 2. Yashawanth Kanethkar (2008), Let us C, 8<sup>th</sup> Edition, Jones & Bartlett Publishers, India.

#### **Text Books:**

1. Horowitz, Ellis, Sahni, Sartaj, Anderson-Freed, Susan (2008), Fundamentals of Data Structure in C, 2 Edition, University Press, India.

2. Richard F. Gilberg, Behrouz A. Forouzan (2005), Data Structures: A Pseudo code approach with C, 2 Edition, Thomson, India.

#### **Reference Books:**

- Herbert Schildt (2000), C: The Complete Reference, 4<sup>th</sup> Edition, New Delhi, Osborne Mc Graw Hill.
   B. W. Kerninghan and Dennis M. Ritche (1988), The C Programming Language, 2<sup>nd</sup> Edition, Prentice Hall Software Series, India.
- 3. Stephen G.Kochan (2004), Programming in C, 3<sup>rd</sup> Edition, Pearson Education Private Limited.



# SCHEDULE OF INSTRUCTIONS UNIT - I

2013-14

**Regulation: R11** 

FACULTY DETAILS:

Name of the Faculty:: V.SUBHASHINI

Designation: ASSISTANT PROFESSOR

Department:: **CSE** 

The Schedule for the whole Course / Subject is:: COMPUTER PROGRAMMING & DATA STRUCTURES

| SI. |          | No. of           |                                             | Objectives &        | References                            |
|-----|----------|------------------|---------------------------------------------|---------------------|---------------------------------------|
| No  |          | t<br>Period<br>s | Topics / Sub - Topics                       | Outcom<br>e<br>Nos. | (Text Book,<br>Journal)<br>Page No to |
| 1   | 1.10.13  | 3                | Introduction to Computers, computer systems | 1                   | T1:1                                  |
| 2   | 4.10.13  | 1                | Computing Environments,                     | 2                   | T1:1                                  |
| 3   | 5.10.13  |                  | Computer languages                          | 3                   | T1:1.1                                |
|     | 7.10.13  |                  | Creating and running programmes             | 4                   | T1:1.1                                |
| 5   | 8.10.13  |                  | Software Development Method                 | 5                   | T1:1.2                                |
| 6   | 11.10.13 | 1                | Algorithms                                  | 1                   | T1:1.3                                |
| 7   | 12.10.13 | 2                | Pseudo code, flowcharts                     | 1                   | T1:1.3                                |
| 8   | 18.10.13 | 1                | Applying the software                       | 1                   | T1:1.2                                |

Signature of Faculty Date

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED.

- 2. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED BOLDLY.
- 3. MENTION THE CORRESPONDING COURSE OBJECTIVE AND OUT COME NUMBERS AGAINST EACH TOPIC.



UNIT - II

2013-14

**Regulation: R11** 

FACULTY DETAILS:

Name of the Faculty:: V.SUBHASHINI

Designation: ASSISTANT PROFESSOR

Department:: CSE

The Schedule for the whole Course / Subject is:: COMPUTER PROGRAMMING & DATA STRUCTURES

| SI.<br>No | Date         | No.<br>of<br>Peri<br>ods | Topics / Sub - Topics                                              | Objectives &<br>Outcom<br>e<br>Nos. | References (Text Book, Journal) Page No to |
|-----------|--------------|--------------------------|--------------------------------------------------------------------|-------------------------------------|--------------------------------------------|
| 1         | 19.10.1<br>3 | 2                        | Introduction to c language-Background                              | 1                                   | T1:1.4                                     |
| 2         | 21.10.1<br>3 | 1                        | Simple C programme, identifiers                                    | 2                                   | T1:1.4                                     |
| 3         | 22.10.1<br>3 | 2                        | Basic data types, Varaiable, Constants                             | 2                                   | T1:1.5                                     |
| 4         | 22.10.1<br>3 | 4                        | Input/Output, Operators, Expression Evalution                      | 2                                   | T1:1.6<br>T1:2.1,                          |
| 5         | 23.10.1<br>3 | 1                        | Type conversions, Bit wise operators                               | 2                                   | T1:2.1, T1:2.2                             |
| 6         | 24.10.1<br>3 | 2                        | Statements, Simple C Programming Examples                          | 2                                   | Т1:2.3                                     |
| 7         | 25.10.1<br>3 | 2                        | Selection statement- If and Switch Statements                      | 2                                   | T1: 3.1.1-3.1.3                            |
| 8         | 28.10.1<br>3 | 1                        | Simple C Programming Examples                                      | 3                                   | T1:3.2.1-3.2.2                             |
| 9         | 39.10.1<br>3 | 2                        | Selection statement- If and Switch Statements                      | 2                                   | T1: 3.1.1-3.1.3                            |
| 10        | 29.10.1<br>3 |                          | Repetition Statement-while, For,do-while statements, Loop examples | 3                                   | T1: 3.4                                    |

| 11 | 30.10.1<br>3 | 2 | Other Statements related to loopind-break    | 3 | T1: 3.4        |
|----|--------------|---|----------------------------------------------|---|----------------|
| 12 | 30.10.1<br>3 | 2 | Continue,goto, Simple C Programming examples | 4 | T1:3.2.1-3.2.2 |

Signature of Faculty Date

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED.

2. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED BOLDLY.

 ${\bf Mention\ the\ corresponding\ course\ objective\ and\ out\ come\ numbers\ against\ each\ topic.}$ 



# SCHEDULE OF INSTRUCTIONS UNIT - III

2013-14

**Regulation: R11** 

#### FACULTY DETAILS:

Name of the Faculty:: V.SUBHASHINI

Designation: ASSISTANT PROFESSOR

Department:: CSE

The Schedule for the whole Course / Subject is:: COMPUTER PROGRAMMING & DATA STRUCTURES

| SI.<br>No. | Date         | No. of<br>Periods | Topics / Sub - Topics                                     | Objectives & Outcome Nos. | References<br>(Text Book, Journal)<br>Page No to |
|------------|--------------|-------------------|-----------------------------------------------------------|---------------------------|--------------------------------------------------|
| 1          |              |                   |                                                           |                           |                                                  |
|            |              |                   | Designing structured Programmers,                         |                           | T1:3.2.3                                         |
|            | 1.11.13      | 2                 | Functions, basics                                         | 1                         |                                                  |
| 2          |              |                   | User defined functions,inter function                     |                           | T1.3.2.4                                         |
|            | 1.11.13      | 2                 | communication                                             | 3                         |                                                  |
| 3          |              |                   |                                                           |                           | T1:3.2.4                                         |
|            | 4.11.13      | 1                 | Standard functions Scope                                  | 3                         |                                                  |
|            | 4.11.13      | 1                 | Standard functions ,Scope Storage classes-auto, register, | 3                         | T1.3.2.5                                         |
| 4          |              |                   | Static, extern, scope rules                               |                           | 11.5.2.5                                         |
|            | 5.11.13      | 2                 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                   | 3                         |                                                  |
| 5          |              |                   | Towns and life and an arrange are assumed.                |                           | T1.3.2.5                                         |
|            | 7.11.13      | 3                 | Type qualifiers. recursion-recursive functions            | 3                         |                                                  |
| -          | ,,,,,,,,     |                   |                                                           |                           | T1:5.2                                           |
| 6          | <b>-</b>     |                   | Preprocessor commands, Example C                          | ,                         |                                                  |
|            | 7.11.13      | 3                 | programmers<br>I                                          | 4                         | T1: 4.1                                          |
| 7          |              |                   | Arrays –Concept, Using arrays in C,inter                  |                           | 11: 4.1                                          |
|            | 8.11.13      | 2                 | function communication                                    | 1                         |                                                  |
| 8          | 11 10 1      |                   |                                                           |                           | T1:4.2                                           |
|            | 11.12.1<br>3 | 2                 | Array applications                                        | 2                         |                                                  |
|            |              |                   | , way applications                                        | 2                         | T1:5.1                                           |
| 9          | 12.11.1      |                   |                                                           | _                         |                                                  |
|            | 3            | 1                 | Two-Dimensional arrays                                    | 3                         | T4 5 4                                           |
| 10         | 12.11.1      |                   |                                                           |                           | T1:5.1                                           |
|            | 3            | 1                 | Multidimenisional arrays                                  | 3                         |                                                  |
| 11         |              |                   |                                                           |                           | T1:5.1                                           |
|            | 14.11.1<br>3 | 1                 | C Programmo ovample                                       | 5                         |                                                  |
|            | 3            | 1                 | C Programme example                                       | J                         |                                                  |

| 12 | 14.12.1 |   |            |   | T1:5.2 |
|----|---------|---|------------|---|--------|
|    | 3       | 1 | Assignment | 5 |        |

Signature of Faculty Date

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED.

2. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED BOLDLY.

MENTION THE CORRESPONDING COURSE OBJECTIVE AND OUT COME NUMBERS AGAINST EACH TOPIC.



2013-14

**UNIT - IV** 

**Regulation: R11** 

FACULTY DETAILS:

Name of the Faculty:: V.SUBHASHINI

Designation: ASSISTANT PROFESSOR

Department:: CSE

The Schedule for the whole Course / Subject COMPUTER PROGRAMMING & DATA STRUCTURES

is::

| SI.<br>No | Date     | No. of<br>Period | Topics / Sub - Topics                              | Objectives & Outcome | References<br>(Text Book,<br>Journal) |
|-----------|----------|------------------|----------------------------------------------------|----------------------|---------------------------------------|
|           | 26.10    | S                | , opioo / Cas Topioo                               | Nos.                 | Page No to                            |
| 1         |          |                  | Pointer-Introduction (Basic concepts)              |                      | T1.7.1.6                              |
|           | 18.12.13 | 1                |                                                    | 1                    |                                       |
| 2         |          |                  | Ponters for inter function communication           |                      | T1.7.1.6                              |
|           | 19.12.13 | 1                |                                                    | 2                    |                                       |
| 3         |          |                  | Pointer to pointers, Compatibility                 |                      | T1:7.2                                |
|           | 21.12.13 | 2                |                                                    | 2                    |                                       |
| 4         |          |                  | Memory allocation functions, Array of Pointers,    |                      | T1:7.3                                |
|           | 22.12.13 |                  | Programming applications                           | 3                    |                                       |
| 5         |          |                  | Pointers to void,Pointers to functions, Command –  |                      | T1:5.4                                |
|           | 25.12.13 | 3                | line argument,                                     | 2                    |                                       |
| 6         |          |                  | Stings- Concepts, C strings, String Input/output   |                      | T1:7.1.1-7.1.2                        |
|           | 26.12.13 |                  | functions,                                         | 1                    |                                       |
| 7         |          |                  | Arrays of Strings, Strings manipulation functions, |                      | T1:7.1.3-7.1.4                        |
|           | 28.12.13 |                  | String/data conversion                             | 2                    |                                       |
| 8         |          |                  | C Programme example, Assignment                    |                      | T1:7.1.5                              |
|           | 29.12.13 | 1                |                                                    | 4                    |                                       |

Signature of Faculty Date

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED.

2. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED BOLDLY.

MENTION THE CORRESPONDING COURSE OBJECTIVE AND OUT COME NUMBERS AGAINST EACH TOPIC.



2013-14

UNIT - V

**Regulation: R11** 

FACULTY DETAILS:

Name of the Faculty:: V.SUBHASHINI

Designation: ASSISTANT PROFESSOR

Department:: CSE

The Schedule for the whole Course / Subject COMPUTER PROGRAMMING & DATA STRUCTURES

is::

| SI.<br>No. | Date        | No. of<br>Periods | Topics / Sub - Topics                       | Objectives &<br>Outcome<br>Nos. | References<br>(Text Book, Journal)<br>Page No to |
|------------|-------------|-------------------|---------------------------------------------|---------------------------------|--------------------------------------------------|
| 1          | 2.1.        |                   | Derived types-Structures-Declaration        | 1100.                           | T1:7.4                                           |
|            | 14          | 1                 |                                             | 1                               |                                                  |
| 2          | 6.1.        |                   | Definition and initialization of Structures |                                 | T1:7.4                                           |
|            | 0.1.<br>14  | 1                 |                                             | 2                               |                                                  |
| 3          | 7 1         |                   | Accessing structures                        |                                 | T1:6.1                                           |
|            | 7.1.<br>14  | 1                 |                                             | 2                               |                                                  |
| 4          | 0.1         |                   | Nested structures                           |                                 | T1:6.1                                           |
| '          | 9.1.<br>14  | 1                 |                                             | 2                               |                                                  |
| 5          |             |                   | Arrays of Structures                        |                                 | T1:6.2                                           |
|            | 21.1<br>.14 | 1                 |                                             | 2                               |                                                  |
|            |             |                   | Structures and functions                    |                                 | T1:6.2                                           |
| 6          | 23.1        | 1                 |                                             | 2                               |                                                  |
|            | .14         | 1                 | Pointers to structures                      | 3                               | T1:6.3                                           |
| 7          | 24.1        |                   | omiters to structures                       |                                 |                                                  |
|            | .14         | 1                 |                                             | 2                               | 71.00                                            |
| 8          | 27.1        |                   | Self referential structures                 |                                 | T1:6.3                                           |
|            | .14         | 1                 |                                             | 3                               |                                                  |
| 9          | 20.1        |                   | Unions, Types def, bit fields               |                                 | T1:6.3                                           |
|            | 28.1<br>.14 | 2                 |                                             | 1                               |                                                  |
| 1.5        |             |                   | Enumerated types                            |                                 | T1:6.3                                           |
| 10         | 31.1        |                   |                                             | _                               |                                                  |
|            | .14         | 1                 |                                             | 2                               | T4.6.2                                           |
| 11         | 31.1        |                   | C Programming examples, Assignment          |                                 | T1:6.3                                           |
|            | .14         | 1                 |                                             | 4                               |                                                  |

Signature of Faculty Date

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED.

2. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED BOLDLY.



UNIT - VI

2013-14

**Regulation: R11** 

FACULTY DETAILS:

Name of the Faculty:: V.SUBHASHINI

Designation: ASSISTANT PROFESSOR

Department:: CSE

The Schedule for the whole Course / Subject is:: COMPUTER PROGRAMMING & DATA STRUCTURES

|     |         | No.         |                                       | Objectives & | References           |
|-----|---------|-------------|---------------------------------------|--------------|----------------------|
| SI. | Date    | of<br>Perio | Topics / Sub - Topics                 | Outcome      | (Text Book, Journal) |
| No. |         | ds          |                                       | Nos.         | Page No to           |
| 1   | 3.2.14  |             | Input and output –Concepts of a file  |              | T2:6.4               |
|     |         | 1           |                                       | 1            |                      |
| 2   |         |             | Streams                               |              | T2:6.4               |
|     | 4.2.14  | 1           |                                       | 1            |                      |
| 3   |         |             | Standard input/output functions       |              | T1:8.2               |
|     | 6.2.14  | 2           |                                       | 2            |                      |
| 4   |         |             | Formatted input/out functions         |              | T1:8.2               |
|     | 7.2.14  | 2           |                                       | 2            |                      |
| 5   |         |             | Text files and a binary files         |              | T1: 8.6              |
|     | 11.2.14 | 2           |                                       | 3            |                      |
| 6   |         |             | File input/out operations             |              | T1:8.4               |
|     | 13.2.14 | 1           |                                       | 3            |                      |
| 7   |         |             | File status functions(error handling) |              | T1:8.5               |
|     | 14.2.14 | 1           |                                       | 3            |                      |
| 8   |         |             | C Programme examples                  |              | T1:8.6               |
|     | 18.2.14 | 1           |                                       | 4            |                      |
| 9   |         |             | Example                               |              | T1:8.6               |
|     | 20.2.14 | 1           |                                       | 4            |                      |
| 10  |         |             | Assignment                            |              | T1:8.6               |
|     | 21.2.14 | 1           |                                       | 5            |                      |

Signature of Faculty Date

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED.

2. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED BOLDLY.



2013-14

**UNIT - VII** 

**Regulation: R11** 

FACULTY DETAILS:

Name of the Faculty:: V.SUBHASHINI

Designation: ASSISTANT PROFESSOR

Department:: CSE

The Schedule for the whole Course / Subject is:: COMPUTER PROGRAMMING & DATA STRUCTURES

| SI.<br>No. | Date               | No. of<br>Periods | Topics / Sub - Topics                    | Objectives & Outcome Nos. | References<br>(Text Book, Journal)<br>Page No to |
|------------|--------------------|-------------------|------------------------------------------|---------------------------|--------------------------------------------------|
| 1          |                    |                   | Searching and sorting –Sorting selection |                           | T2:13.1,13.2                                     |
|            |                    |                   | sort                                     |                           |                                                  |
|            | 3.3.14             | 1                 |                                          | 1                         |                                                  |
| 2          |                    |                   | Bubble sort                              |                           | T2: 12.2-12.4                                    |
|            | 4014               |                   |                                          |                           |                                                  |
|            | 4.3.14             | 1                 |                                          | 4                         |                                                  |
| 3          |                    |                   | Insertion sort                           |                           | T2: 12.2-12.4                                    |
|            | (214               | 1                 |                                          | 1                         |                                                  |
|            | 6.3.14             | 1                 |                                          | 4                         | TO: 40 0 40 4                                    |
| 4          | 721/1              |                   | Quick sort                               |                           | T2: 12.2-12.4                                    |
|            | 7.3.14,1<br>0.3.14 | 2                 |                                          | 5                         |                                                  |
|            | 0.5.14             |                   | N.A. uma a suit                          | 3                         | T2: 12.2-12.4                                    |
| 5          |                    |                   | Merge sort                               |                           | 12. 12.2-12.4                                    |
|            | 14.3.14            | 1                 |                                          | 4                         |                                                  |
|            | 11.3.11            | -                 | Searching –Liner Search                  | '                         | T2:13.1,13.2                                     |
| 6          | 21.3.14,           |                   | 2                                        |                           | 311,121                                          |
|            | 23.3.14            | 2                 |                                          | 4                         |                                                  |
|            |                    |                   | Binary search method                     |                           | T2:13.1,13.2                                     |
| 7          | 24.3.14            |                   | ,                                        |                           |                                                  |
|            | 25.3.14            | 2                 |                                          | 5                         |                                                  |

Signature of Faculty Date

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED.

2. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED BOLDLY.

 $\label{thm:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:memory:equation:m$ 



**UNIT - VIII** 

2013-14

**Regulation: R11** 

**FACULTY DETAILS:** 

Name of the Faculty:: V.SUBHASHINI

Designation: ASSISTANT PROFESSOR

Department:: CSE

The Schedule for the whole Course / Subject is:: COMPUTER PROGRAMMING & DATA STRUCTURES

| SI. |           | No. of  |                                          | Objectives & | References            |
|-----|-----------|---------|------------------------------------------|--------------|-----------------------|
| No. | Date      | Periods | Topics / Sub - Topics                    | Outcome      | (Text Book, Journal)  |
|     |           |         | Data structure-Introduction to data      | Nos.         | Page No to<br>T2: 1.1 |
| 1   |           |         |                                          |              | 12. 1.1               |
|     | 1.4.14    | 1       | structures,                              | 1            |                       |
|     | 1.1.11    |         | Abstract data types                      | 1            | T2: 1.1               |
| 2   |           |         | 7,600                                    |              |                       |
|     | 4.4.14    | 1       |                                          | 1            |                       |
| 3   |           |         | Linear list –Singly linked list          |              | T2: 2.1               |
| 3   |           |         | implementation                           | _            |                       |
|     | 7.4.14    | 2       |                                          | 2            | 70.74.70              |
| 4   |           |         | Insert, deletion and searching operation |              | T2: 5.1,5.2           |
|     | 0 1 11    | 2       | on liner list                            | 2            |                       |
|     | 8.4.14    | 2       | Stacks-Operations                        |              | T2:3.1,3.2            |
| 5   |           |         | Stacks-Operations                        |              | 12.3.1,3.2            |
|     | 11.4.14   | 2       |                                          | 2            |                       |
|     |           |         | Array and Linked representations of      |              | T2: 5.1,5.2           |
| 6   |           |         | stacks                                   |              |                       |
|     | 14.4.14   | 3       |                                          | 3            |                       |
| 7   |           |         | Stack application –infix to postfix      |              | T2:3.5                |
| ,   |           |         | conversion                               |              |                       |
|     | 15.4.14   | 3       |                                          | 3            | T0 0 5                |
| 8   |           |         | Postfix expression evaluation            |              | T2:3.5                |
|     | 18.4.14   | 2.      |                                          | 2            |                       |
|     | 10, 1,1 T |         | Recursion implementation                 |              | T2: 2.1-2.2           |
| 9   |           |         |                                          |              |                       |
|     | 21.4.14   | 2       |                                          | 3            |                       |
| 10  |           |         | Queues – Operations                      |              | T2: 4.1,4.2           |
| 10  | 22 4 4 4  |         |                                          | _            |                       |
|     | 22.4.14   | 2       | <u> </u>                                 | 4            | T0, 5 4 5 0           |
| 11  |           |         | Array and linked representation          |              | T2: 5.1,5.2           |
|     | 25.4.14   | 1       |                                          | 5            |                       |
|     | 23.7.17   | 1       |                                          | 3            |                       |

Signature of Faculty Date



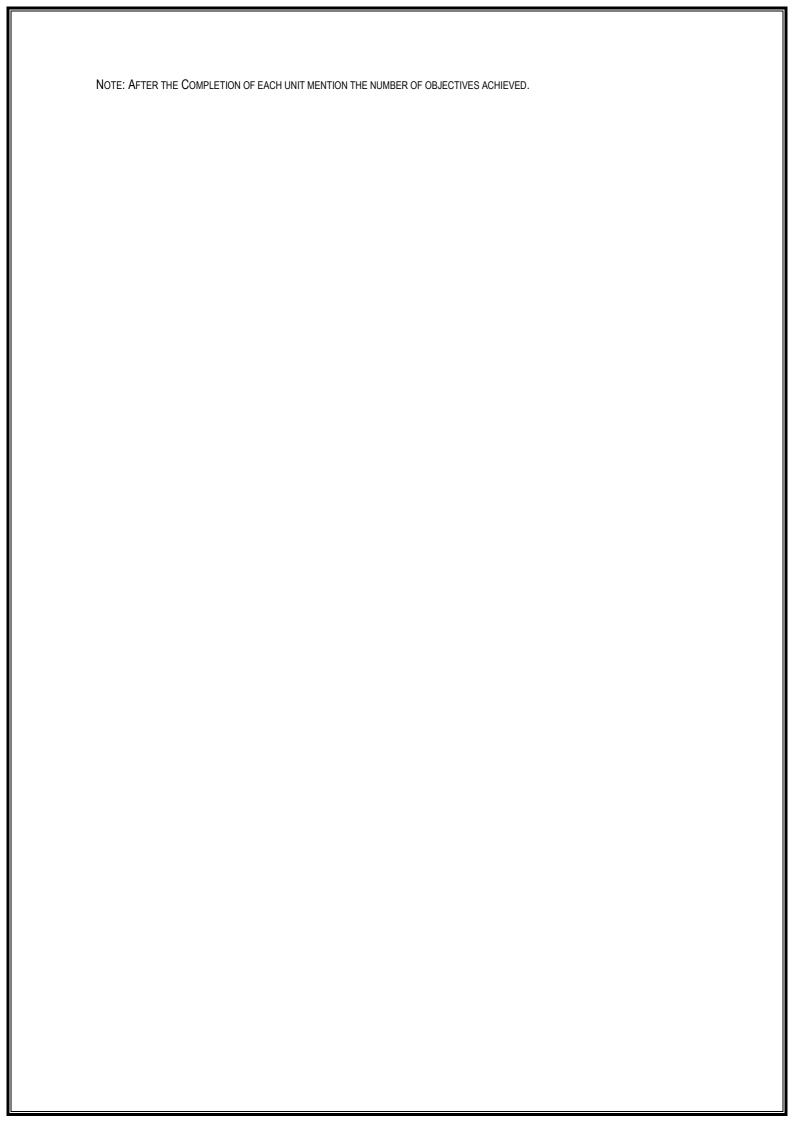
# **COURSE COMPLETION STATUS**

2013-14

Regulation: R11

FACULTY DETAILS:

Name of the Faculty:: V.SUBHASHINI
Subject:: COMPUTER PROGRAMMING
& DATA STRUCTURES
Department:: CSE


Subject Code

Actual Date of Completion & Remarks, if any

|        |                                  | 1 1        |
|--------|----------------------------------|------------|
|        |                                  | Nos. of    |
| Units  | Remarks                          | Objectives |
|        |                                  | Achieved   |
|        | Completed as per                 |            |
| 11-4   | the course plan                  |            |
| Unit 1 | prepaired                        |            |
|        |                                  | 1,2        |
| Unit 2 |                                  |            |
|        | Completed as per                 |            |
|        | the course plan prepaired        | 2,3        |
|        | Completed as per                 | 2,3        |
|        | the course plan                  |            |
| Unit 3 | prepaired                        |            |
|        |                                  |            |
|        |                                  | 4,5        |
|        | Completed as per the course plan |            |
| Unit 4 | prepaired                        |            |
|        |                                  |            |
|        |                                  | 4,5,6      |
|        | Completed as per                 |            |
| Unit 5 | the course plan prepaired        |            |
| Onico  | propuned                         | 5,6        |
|        |                                  | -,0        |
|        | It's being                       |            |
| Unit 6 | continued.                       | 4,5,6      |
| UIIILO | continued.                       | +,⊅,∪      |
|        |                                  |            |
|        | It has to be                     |            |
| Unit 7 | complted                         | 6,7,8      |
|        |                                  |            |
|        | It has to be                     | 7.0        |
| Unit 8 | complted                         | 7,8        |

Signature of Dean of School Date:

Signature of Faculty Date:





#### **TUTORIAL SHEETS - I**

2013-14

Regulation: R11

**FACULTY DETAILS:** 

Name of the Faculty:: V.SUBHASHINI

Designation: ASSISTANT PROFESSOR

Department:: CSE

The Schedule for the whole Course / Subject is:: COMPUTER PROGRAMMING & DATA STRUCTURES

Date:

This Tutorial corresponds to Unit Nos.1,2

Time:

- Q1. Define algorithm and flowchart. Write an algorithm and flowchart for finding argest among the three given numbers.
- Q2. Write about creating and running of a program with a neat diagram.
- Q3. Explain in detail the Structure of a C program with the help of a neat diagram
- Q4. Write various operators and write a C program using switch case statement for bit wise operators.
- Q5. Explain while and do....while statements syntax and a simple example. Write e program to print Prime number using for loop.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the objectives to which these questions / Problems are related.

Signature of Dean of School

Signature of Faculty Date:

Date:



#### **TUTORIAL SHEETS - II**

2013-14

Regulation: R11

**FACULTY DETAILS:** 

Name of the Faculty:: V.SUBHASHINI

Designation: ASSISTANT PROFESSOR

Department:: CSE

The Schedule for the whole Course / Subject is:: COMPUTER PROGRAMMING & DATA STRUCTURES

Date:

This Tutorial corresponds to Unit Nos.3,4,5

Time:

- Q1. 1. (a) What is inter function communication?
  - (b) Explain different methods for transferring data between calling and called function.
- 2. How to Pass Array Individual Elements to Functions? Explain with example program. How can we pass the Whole Array to Functions? Explain with example program.
- 3. How to use pointers as arguments in a function? Write a program that uses a function pointer as a function argument.
- 4. (a) Write the syntax and representations for the conversion of String to Data.
  - (b) Write a program for conversion of string to data.
- 5. a) Explain about typedef with syntax and examples.
  - b) Write a program using typedef definition.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the objectives to which these questions / Problems are related.

Signature of Dean of School

Signature of Faculty

Date:

Date:



#### TUTORIAL SHEETS - III

2013-14

Regulation: R11

**FACULTY DETAILS:** 

Name of the Faculty:: V.SUBHASHINI

Designation: ASSISTANT PROFESSOR

Department:: CSE

Date:

This Tutorial corresponds to Unit Nos.6,7,8

Time:

- 1. Q1. A ) What is the syntax of fgetc() and fputc() functions and write examples for each.
  - B) Write C-Program to copy the contents of one file into another file.
- 2. A)Explain bubble sort procedure with an algorithm.
  - B ) Illustrate the results of bubble sort for each pass, for the following array elements.

23 78 45 8 32 56

- 3. A) What is a data structure? Explain the various types of data structures with suitable example.
- 4. Define sorting? Mention the different types of sorting techniques?
- 5. What is the difference between linked list and an array?

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the objectives to which these questions / Problems are related.

Signature of Dean of School Date:

Signature of Faculty

Date:



# ILLUSTRATIVE VERBS FOR STATING INSTRUCTIONAL OBJECTIVES

2013-14

Regulation: R11

These verbs can also be used while framing questions for Continuous Assessment Examinations as well as for End – Semester (final) Examinations.

# **ILLUSTRATIVE VERBS FOR STATING GENERAL OBJECTIVES**

| Know       | Understand | Analyze | Generate |
|------------|------------|---------|----------|
| Comprehend | Apply      | Design  | Evaluate |

# **ILLUSTRATIVE VERBS FOR STATING SPECIFIC OBJECTIVES:**

#### A. Cognitive Domain

|           | <u>-</u>                       | 1 1                          | 1 4                              | · •                               | •          |
|-----------|--------------------------------|------------------------------|----------------------------------|-----------------------------------|------------|
| 1         | 2                              | 3                            | 4                                | 5                                 | 6          |
| Knowledge | Comprehension<br>Understanding | Application                  | Analysis                         | Synthesis                         | Evaluation |
|           | _                              | of knowledge & comprehension | of whole w.r.t. its constituents | combination of ideas/constituents | judgement  |
|           |                                |                              |                                  |                                   |            |
| Define    | Convert                        | Change                       | Breakdown                        | Categorize                        | Appraise   |
| Identify  | Defend                         | Compute                      | Differentiate                    | Combine                           | Compare    |
| Label     | Describe (a                    | Demonstrate                  | Discriminate                     | Compile                           | Conclude   |
| List      | procedure)                     | Deduce                       | Distinguish                      | Compose                           | Contrast   |
| Match     | Distinguish                    | Manipulate                   | Separate                         | Create                            | Criticize  |
| Reproduce | Estimate                       | Modify                       | Subdivide                        | Devise                            | Justify    |
| Select    | Explain why/how                | Predict                      |                                  | Design                            | Interpret  |
| State     | Extend                         | Prepare                      |                                  | Generate                          | Support    |
|           | Generalize                     | Relate                       |                                  | Organize                          |            |
|           | Give examples                  | Show                         |                                  | Plan                              |            |
|           | Illustrate                     | Solve                        |                                  | Rearrange                         |            |
|           | Infer                          |                              |                                  | Reconstruct                       |            |
|           | Summarize                      |                              |                                  | Reorganize                        |            |
|           |                                |                              |                                  | Revise                            |            |

| B. Affective | Domain  |             | C. Psychomotor Domain (skill development) |                |         |            |  |
|--------------|---------|-------------|-------------------------------------------|----------------|---------|------------|--|
| Adhere       | Resolve | Bend        | Dissect                                   | Insert         | Perform | Straighten |  |
| Assist       | Select  | Calibrate   | Draw                                      | Keep           | Prepare | Strengthen |  |
| Attend       | Serve   | Compress    | Extend                                    | Elongate       | Remove  | Time       |  |
| Change       | Share   | Conduct     | Feed                                      | Limit          | Replace | Transfer   |  |
| Develop      |         | Connect     | File                                      | Manipulate     | Report  | Type       |  |
| Help         |         | Convert     | Grow                                      | Move precisely | Reset   | Weigh      |  |
| Influence    |         | Decrease    | Handle                                    | Operate Run    |         |            |  |
| Initiate     |         | Demonstrate | Increase                                  | Paint          | Set     |            |  |



# LESSON PLAN Unit-1

2013-14

**Regulation: R11** 

Name of the Faculty: V.SUBHASHINI

Subject COMPUTER PROGRAMMING & DATA Subject Code

STRUCTURES

Unit

**INSTRUCTIONAL OBJECTIVES:** 

| Session<br>No | Topics to be covered                 | Time  | Ref      | Teaching<br>Method |
|---------------|--------------------------------------|-------|----------|--------------------|
| 1             | Introduction to computers            | 50min | Fourozan | Chalk&board        |
| 2             | COMPUTER SYSTEMS                     | 50min | Fourozan | Chalk&board        |
| 3             | COMPUTING ENVIRONMENT                | 50min | Fourozan | Chalk&board        |
| 4             | Computer languages                   | 50min | Fourozan | Chalk&board        |
| 5             | Creating and running programs        | 50min | Fourozan | Chalk&board        |
| 6             | Software development method          | 50min | Fourozan | Chalk&board        |
| 7             | Algorithms                           | 50min | Fourozan | Chalk&board        |
| 8             | Pseudo code                          | 50min | Fourozan | Chalk&board        |
| 9             | flowcharts                           | 50min | Fourozan | Chalk&board        |
| 10            | Applying Software development method | 50min | Fourozan | Chalk&board        |

On completion of this lesson the student shall be able to(Outcomes)

- 1. define program and programming.
- 2 briefly understand complier, interpreter, linkers and loader functions.
  - 3. Learning different place of stating algorithms-step-form, flowchart, etc.
  - 4. Knowing software applications.



#### ASSIGNMENT Unit-I

2013-14

**Regulation: R11** 

#### **Assignment / Questions**

- 1. Explain the stages by which the program written in a high level language is converted to an executable file.
- 2. What is an Algorithm? Write an Algorithm and draw a flowchart for printing fibno. Series .
- 3. A)Write an Algorithm to check if a given number is Prime or not.
- 4. b) Use Program Development Methodology for converting temperature in Fahrenheit to Centigrade.
- 5. a)Expalin the basic structure of a C Program.
- b)Explain the process of creating and running programs.
- 6. What are the Basic (H/W) components of a computer? And explain each one with an

Example

7. Write a program to accept the basic pay = Rs 10000/- of an employee and display the gross pay using the following formula

Gross pay = Basic pay +DA+ HRA+ TA

DA= 32% of the Basic pay

HRA = 18 % the Basic pay

TA = 10 % of the Basic pay

Signature of Faculty

Note: Mention for each question the relevant objectives and outcomes.



# LESSON PLAN Unit-II

2013-14

**Regulation: R11** 

Name of the Faculty: V.SUBHASHINI

Subject COMPUTER PROGRAMMING & DATA Subject Code

**STRUCTURES** 

Jnit **ll** 

INSTRUCTIONAL OBJECTIVES:

| Session<br>No | Topics to be covered                                      | Time  | Ref      | Teaching<br>Method |
|---------------|-----------------------------------------------------------|-------|----------|--------------------|
| 1             | Introduction to C language-Background, simple C language  | 50min | Fourozan | Chalk&board        |
| 2             | Basic data types , identifiers                            | 50min | Fourozan | Chalk&board        |
| 3             | Variables, Constants                                      | 50min | Fourozan | Chalk&board        |
| 4             | Input/output, Operators                                   | 50min | Fourozan | Chalk&board        |
| 5             | Expressions, precedence and order of evaluation.          | 50min | Fourozan | Chalk&board        |
| 6             | Type conversions                                          | 50min | Fourozan | Chalk&board        |
| 7             | bit-wise operators, statements                            | 50min | Fourozan | Chalk&board        |
| 8             | Selection statements- if and switch statements            | 50min | Fourozan | Chalk&board        |
| 9             | Repetition statements- while, do-while and for statements | 50min | Fourozan | Chalk&board        |
| 10            | Other statements related to looping-break, goto, continue | 50min | Fourozan | Chalk&board        |

On completion of this lesson the student shall be able to(Outcomes)

- 1. The basic structure of a program in C.
- 2. Use of header files.
- 3. Why data type is specified for a variable declaration.
- 4. What is associative? When should a type cast be used or not used.



# ASSIGNMENT Unit-II

2013-14

**Regulation: R11** 

#### **Assignment / Questions**

1. Write a program to print the following pattern.

\*\*\*\*\*\*\*\*

- Write a program to display the square and cube of first n natural numbers (1,2,3...) using
  do.... while() loop. The output should be displayed as follows. n to be taken as input from user.
  Number Square Cube
- 3. a)What is Ternary operator? Write a program using ternary operator to find the largest of 10 user given numbers.
  - b) Write a program to find the sum of x-x<sup>2</sup>+x<sup>3</sup>-x<sup>4</sup>+....-x<sup>10</sup>
- 4. a)Explain Bitwise operators in C with examples.
  - b) Explain 'break' and 'continue' statements with examples.
- 5. Explain the following with general form and flow chart?
  - a) Simple if statement
  - b) If ...Else statement
  - c) Nested if statement
  - d) If .... else , if... else ladder

Signature of Faculty

Note: Mention for each question the relevant objectives and outcomes.



# LESSON PLAN Unit-III

2013-14

**Regulation: R11** 

Name of the Faculty: V.SUBHASHINI

Subject ASSISTANT PROFESSOR Subject Code

Unit III

INSTRUCTIONAL OBJECTIVES: COMPUTER PROGRAMMING & DATA STRUCTURES

| Session<br>No | Topics to be covered                                 | Time  | Ref      | Teaching<br>Method |
|---------------|------------------------------------------------------|-------|----------|--------------------|
| 1             | Designing structured Programmers                     | 50min | Fourozan | Chalk&board        |
| 2             | Functions, basics                                    | 50min | Fourozan | Chalk&board        |
| 3             | User defined functions, inter function communication | 50min | Fourozan | Chalk&board        |
| 4             | Standard functions ,Scope                            | 50min | Fourozan | Chalk&board        |
| 5             | Storage classes-auto, register                       | 50min | Fourozan | Chalk&board        |
| 6             | Static, extern, scope rules                          | 50min | Fourozan | Chalk&board        |
| 7             | Type qualifiers. recursion-recursive functions       | 50min | Fourozan | Chalk&board        |
| 8             | Pre-processor commands,                              | 50min | Fourozan | Chalk&board        |
| 9             | Example C programmers                                | 50min | Fourozan | Chalk&board        |
| 10            | Arrays –Concept                                      | 50min | Fourozan | Chalk&board        |
| 11            | Using arrays in C, inter function communication      | 50min | Fourozan | Chalk&board        |
| 12            | Array applications                                   | 50min | Fourozan | Chalk&board        |
| 13            | Two-Dimensional arrays                               | 50min | Fourozan | Chalk&board        |
| 14            | Multi dimensional arrays ,C Programme example        | 50min | Fourozan | Chalk&board        |

On completion of this lesson the student shall be able to(Outcomes)

- 1. Why do we use functions?
- 2. What is the use of recursive and non recursive functions
- 3. Accessing array elements.
- 4. How to pass individual elements and then how to pass the hole array.



# ASSIGNMENT Unit-III

2013-14

**Regulation: R11** 

#### Assignment / Questions

- 1. (a) What is a function? Why we use functions in C language? Give an example
  - (b) Distinguish between Library functions and User defined functions in C and Explain with examples.
- 2. (a) Write some properties and advantages of user defined functions in C?
  - (b) Explain the various categories of user defined functions in C with examples?
- 3. (a) What is inter function communication?
- (b) Explain different methods for transferring data between calling and called function.
- 4. Explain the Parameter Passing Mechanisms in C-Language with examples.
- 5. (a) Differentiate actual parameters and formal parameters.
  - (b) Write a C program for exchanging of two numbers using call by reference mechanism.
- 6. (a) Discuss the Standard library functions in 'C' language.
  - (b) Define scope? Explain local and global variable with examples?
- 7. (a) What are different types of storage classes in 'C'?
  - (b) Explain briefly auto and static storage classes with examples?
- 8. (a) Enumerate the scope rules in C.
  - (b) Explain extern and register storage classes with example programs.
- 9. Explain the preprocessor commands in C language with examples?
- 10. (a) What is recursive function? Write syntax for recursive functions.
  - (b) Write a program to find factorial of a number using recursion
- 11. (a) Differentiate between recursion and non-recursion.
  - (b) Write a program to calculate GCD of two numbers using recursion
- 12. Write a program to generate Fibonacci series using recursive and non-recursive functions.
- 13. What is an array? How to declare and initialize arrays? Explain with examples
- 14. What is single dimensional array? Write a program to find the sum of 10 different natural

numbers using arrays?

- 15. How to Pass Array Individual Elements to Functions? Explain with example program.
- 16. How can we pass the Whole Array to Functions? Explain with example program.
- 17. (a) Define multi-dimensional arrays? How to declare multi-dimensional arrays?
  - (b) Write a program for addition of two matrices.
- 18. Explain how two dimensional arrays can be used to represent matrices. Write C code to perform transpose of given matrix.
- 19. (a) How to initialize two-dimensional arrays of fixed length?
  - (b) Write a program for multiplication of two matrices.
- 20. (a) How to initialize two-dimensional arrays of variable length?
  - (b) Write a program to find transpose of given matrix.
- 21. Write a program to find sum of elements in a given matrix. Take elements for this matrix using variable length initialization.

Signature of Faculty

Note: Mention for each question the relevant objectives and outcomes.



# LESSON PLAN Unit-IV

2013-14

**Regulation: R11** 

Name of the Faculty: V.SUBHASHINI

Subject COMPUTER PROGRAMMING & DATA Subject Code

STRUCTURES

Unit IV

**INSTRUCTIONAL OBJECTIVES:** 

| Session<br>No | Topics to be covered                             | Time  | Ref      | Teaching<br>Method |
|---------------|--------------------------------------------------|-------|----------|--------------------|
| 1             | Pointer-Introduction (Basic concepts)            | 50min | Fourozan | Chalk&board        |
| 2             | Pointers for inter function communication        | 50min | Fourozan | Chalk&board        |
| 3             | Pointer to pointers, Compatibility               | 50min | Fourozan | Chalk&board        |
| 4             | Memory allocation functions                      | 50min | Fourozan | Chalk&board        |
| 5             | Array of Pointers                                | 50min | Fourozan | Chalk&board        |
| 6             | Programming applications                         | 50min | Fourozan | Chalk&board        |
| 7             | Pointers to void, Pointers to functions          | 50min | Fourozan | Chalk&board        |
| 8             | Command –line argument,                          | 50min | Fourozan | Chalk&board        |
| 9             | Strings- Concepts, C strings                     | 50min | Fourozan | Chalk&board        |
| 10            | String Input/output functions, Arrays of Strings | 50min | Fourozan | Chalk&board        |
| 11            | Strings manipulation functions                   | 50min | Fourozan | Chalk&board        |
| 12            | String/data conversion                           | 50min | Fourozan | Chalk&board        |
| 13            | C Programme example                              | 50min | Fourozan | Chalk&board        |

On completion of this lesson the student shall be able to (Outcomes)

- 1. Different types of compatibility.
- 2. Arithmetic operations on pointers
- 3. Usage of memory allocation functions.
- 4. Reading and writing strings, string input and output functions.



# ASSIGNMENT Unit-IV

2013-14

**Regulation: R11** 

#### **Assignment / Questions**

- 1 a) What is a pointer? Explain the process of declaring and initializing pointers. Give an example.
- b) Explain the features of pointers?
- 2 a) Write a program to show pointer of any data type that occupies same space?
  - b) Write a program to display the value of variable and its location-using pointer.
  - c) Write a program to add two numbers through variables and their pointers
- 3 (a) Describe pointers to void with example.
  - (b) Write a 'C' function using pointers to exchange the values stored in two locations in the memory.
- 4 How to use pointers as arguments in a function? Write a program that uses a function pointer as a function argument.
- 5 What is a pointer to pointer? Write syntax and explain with example program.
- 6 Explain the size compatibility in 'C' language with an example.
- 7 What is static and dynamic memory allocation? Differentiate between static and dynamic memory allocation?
- 8. a) Write a program for pointers to void? b) Write a program for array of pointers
- 9 (a) Write the syntax and representations for the conversion of String to Data
  - (b) Write a program for conversion of string to data.
- 10. Explain about the following string handling functions with example programs.
  - (i) strlen ( ) (ii) strcpy ( )

Signature of Faculty

Note: Mention for each question the relevant objectives and outcomes.



# LESSON PLAN Unit-V

2013-14

**Regulation: R11** 

Name of the Faculty: V.SUBHASHINI

Subject COMPUTER PROGRAMMING & DATA Subject Code

STRUCTURES

Unit \

INSTRUCTIONAL OBJECTIVES:

| Session<br>No | Topics to be covered                        | Time  | Ref      | Teaching<br>Method |
|---------------|---------------------------------------------|-------|----------|--------------------|
| 1             | Derived types-Structures-Declaration        | 50min | Fourozan | Chalk&board        |
| 2             | Definition and initialization of Structures | 50min | Fourozan | Chalk&board        |
| 3             | Accessing structures                        | 50min | Fourozan | Chalk&board        |
| 4             | Nested structures                           | 50min | Fourozan | Chalk&board        |
| 5             | Arrays of Structures                        | 50min | Fourozan | Chalk&board        |
| 6             | Structures and functions                    | 50min | Fourozan | Chalk&board        |
| 7             | Pointers to structures                      | 50min | Fourozan | Chalk&board        |
| 8             | Self referential structures                 | 50min | Fourozan | Chalk&board        |
| 9             | Unions                                      | 50min | Fourozan | Chalk&board        |
| 10            | Types def, bit fields                       | 50min | Fourozan | Chalk&board        |
| 11            | Enumerated types                            | 50min | Fourozan | Chalk&board        |
| 12            | C Programming examples                      | 50min | Fourozan | Chalk&board        |

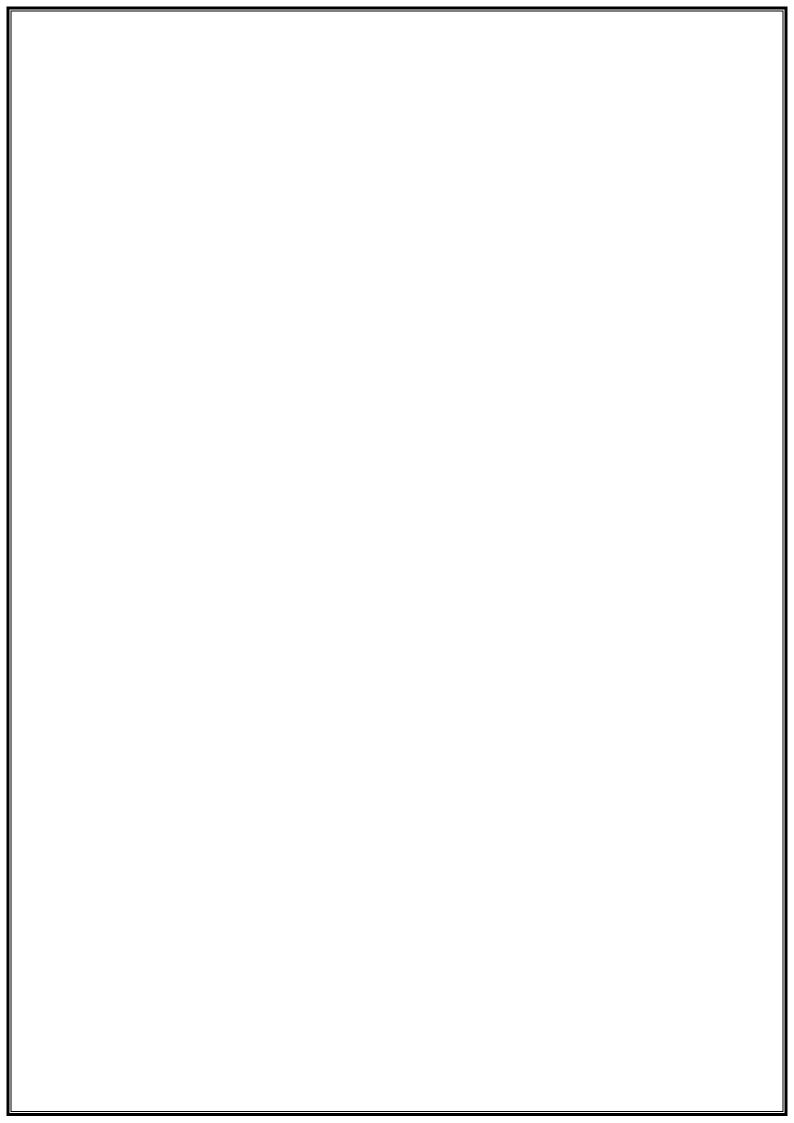
On completion of this lesson the student shall be able to (Outcomes)

- 1. passing structure through pointers
- 2. accessing structures
- 3. operations on structures.
- 4. diffent between structure and union.



#### ASSIGNMENT Unit-V

2013-14


**Regulation: R11** 

#### **Assignment / Questions**

- 1. a) How to initialize structures in 'C'? Write example.
  - b) Define a structure type *personal*, that would contain person name, date of joining and salary. Write a program to initialize one person data and display the same.
- 2. a) How to access the data for structure variables using member ('.') operator?

Explain with an example.

- b) Define a structure type *book*, that would contain book name, author, pages and price. Write a program to read this data using member operator ('.') and display the same.
- 3. a) What is structure within structure? Give an example for it.
  - b) Write a C program to illustrate the concept of structure within structure.
- 4. a) What is an array of structure? Declare a variable as array of structure and initialize it?
- b) Write a C program to calculate student-wise total marks for three students using array of structure.
- 5. Write a C program using nested structures to read 3 employees details with the Following fields; emp-id, name, designation, address, da, hra and calculate gross salary of each employee.
- 6. What is a pointer to structure? Write a program to read and display student details using pointer to structures.
- 7. How to pass a structure member as an argument of a function? Write a program to explain it.
- 8.a) What is self referential structure? Explain through example.
  - b) Write a C program using structure to create a library catalogue with the following fields: Access number, author's name, Title of the book, year of publication, publisher's name, and price.
- 9. Explain unions in C language? Differentiate structures and unions.
- 10.. a) Explain about typedef with syntax and examples.
  - b) Write a program using typedef definition.
- 11. What is enumerated type? Write syntax for declaration of enumerated types and write a program using enumerated types.





# LESSON PLAN Unit-VI

2013-14

**Regulation: R11** 

Name of the Faculty: V.SUBHASHINI

Subject COMPUTER PROGRAMMING & DATA Subject Code

STRUCTURES

Unit V

**INSTRUCTIONAL OBJECTIVES:** 

| Session<br>No | Topics to be covered                  | Time  | Ref      | Teaching<br>Method |
|---------------|---------------------------------------|-------|----------|--------------------|
| 1             | Input and output –Concepts of a file  | 50min | Fourozan | Chalk&board        |
| 2             | Streams                               | 50min | Fourozan | Chalk&board        |
| 3             | Standard input/output functions       | 50min | Fourozan | Chalk&board        |
| 4             | Formatted input/out functions         | 50min | Fourozan | Chalk&board        |
| 5             | Text files and a binary files         | 50min | Fourozan | Chalk&board        |
| 6             | File input/out operations             | 50min | Fourozan | Chalk&board        |
| 7             | File status functions(error handling) | 50min | Fourozan | Chalk&board        |
| 8             | C Programme examples                  | 50min | Fourozan | Chalk&board        |

On completion of this lesson the student shall be able to (Outcomes)

- 1. Knowing the differences between Text and Binary files.
- 2. How to merge Files
- 3. knowing about System File Operations
- 4 converting file type.



# ASSIGNMENT Unit-VI

2013-14

**Regulation: R11** 

#### **Assignment / Questions**

- 1. a) Define a file and what are the advantages of using files?
  - b) Define a buffer and a stream? Describe various types of streams in C.
- 2. How to open a file? Write syntax and explain about various file opening modes with example.
- 3.(a) Explain the way of defining, opening and closing a file.
- (b) Write a C program to read data from the keyboard, write it to a file called INPUT, again read the same data from the INPUT file, and display it on the screen.
- 4. Distinguish between the following functions.
  - a) fgetc() and fscanf()
  - b) fprintf and fputs()
- 5. Describe the file positioning functions ftell(), rewind() and fseek() in C language.

Write examples for each.

- 6. Explain about error handling functions for files in C language.
- 7. (a) Differentiate text files and binary files
  - (b) Explain various file opening modes for binary files?
- 8. Write a C program to merge the contents of two different files in to the third file.
- 9. Write a C program that illustrates ftell(), rewind() and fseek() functions.

Signature of Faculty

Note: Mention for each question the relevant objectives and outcomes.



# LESSON PLAN Unit-VII

2013-14

**Regulation: R11** 

Name of the Faculty: V.SUBHASHINI

Subject COMPUTER PROGRAMMING & DATA Subject Code

STRUCTURES

Unit VII

**INSTRUCTIONAL OBJECTIVES:** 

| Session<br>No | Topics to be covered                          | Time  | Ref      | Teaching<br>Method |
|---------------|-----------------------------------------------|-------|----------|--------------------|
| 1             | Searching and sorting –Sorting selection sort | 50min | Fourozan | Chalk&board        |
| 2             | Bubble sort                                   | 50min | Fourozan | Chalk&board        |
| 3             | Insertion sort                                | 50min | Fourozan | Chalk&board        |
| 4             | Quick sort                                    | 50min | Fourozan | Chalk&board        |
| 5             | Merge sort                                    | 50min | Fourozan | Chalk&board        |
| 6             | Searching –Liner Search                       | 50min | Fourozan | Chalk&board        |
| 7             | Binary search method                          | 50min | Fourozan | Chalk&board        |

On completion of this lesson the student shall be able to

- 1. What is sorting
- 2. Arranging the elements in order using different sorting methods.
- 3. What is searching
- 4. Different types of searching the element in a given list.



#### ASSIGNMENT Unit-VII

2013-14

**Regulation: R11** 

#### **Assignment / Questions**

- 1. a) Explain bubble sort procedure with an algorithm.
  - b) Illustrate the results of bubble sort for each pass, for the following array elements.

23 78 45 8 32 56

- 2. Both the selection and bubble sorts exchange elements. The insertion sort does not.
  - Describe how the insertion sort sorted the data without exchanges. And write a program for insertion sort.
- 3. a) Write a program for sorting integers in descending order using selection sort.
  - b) Illustrate the results of selection sort for each pass, for the following array elements. 78 23 45 8 32 36
- 4. We have the following array elements; 23 78 45 8 32 56

After 2 passes of a sorting algorithm, the array has been rearranged as shown below.

8 23 45 78 32 56

Which sorting algorithm is being used (selection, bubble and insertion)? Defend your answer.

- 5. a) Define sorting? Mention the different types of sorting techniques?
  - b) Write a program for Bubble sort and give a suitable example?
- 6. Write a program for quick sort and explain the same with an example?
- 7. a) What is Quick sort? What are the advantages and drawbacks of quick sort? Write an algorithm for quick sort?
  - b) An array contains 2, 17, 30, 35, 46, 58, 60, 70 and 85. Trace the steps using binary search to find value 35
- 8. What is divide and conquer concept? Write a 'C' program for merge sort and explain merge sort with an example?
- 9. a) Write an algorithm and program for linear search
  - b) What are the advantages and disadvantages of linear search?

- 10. What is binary search? And write recursive algorithm and program for binary Search
- 11. a) An array contains 2, 17, 30, 35, 46, 58, 60, 70 and 85. Write a recursive program to search key value 58 in the given array using Linear Search.
  - b) Write a non-resursive program for Binary Search

Signature of Faculty

Note: Mention for each question the relevant objectives and outcomes.



# LESSON PLAN Unit-VIII

2013-14

**Regulation: R11** 

Name of the Faculty: V.SUBHASHINI

Subject COMPUTER PROGRAMMING & DATA Subject Code

**STRUCTURES** 

Unit VIII

**INSTRUCTIONAL OBJECTIVES:** 

| Session<br>No | Topics to be covered                                   | Time  | Ref      | Teaching<br>Method |
|---------------|--------------------------------------------------------|-------|----------|--------------------|
| 1             | Data structure-Introduction to data structures,        | 50min | Fourozan | Chalk&board        |
| 2             | Abstract data types                                    | 50min | Fourozan | Chalk&board        |
| 3             | Linear list –Singly linked list implementation         | 50min | Fourozan | Chalk&board        |
| 4             | Insert, deletion and searching operation on liner list | 50min | Fourozan | Chalk&board        |
| 5             | Stacks-Operations                                      | 50min | Fourozan | Chalk&board        |
| 6             | Array and Linked representations of stacks             | 50min | Fourozan | Chalk&board        |
| 7             | Stack application –infix to postfix conversion         | 50min | Fourozan | Chalk&board        |
| 8             | Postfix expression evaluation                          | 50min | Fourozan | Chalk&board        |
| 9             | Recursion implementation                               | 50min | Fourozan | Chalk&board        |
| 10            | Queues –Operations                                     | 50min | Fourozan | Chalk&board        |
| 11            | Array and linked representation                        | 50min | Fourozan | Chalk&board        |

On completion of this lesson the student shall be able to

- 1. Various types of data structures
- 2. Operations on to the stack using arrays
- 3. Operations on to the singly linked List
- 4. Queues and its various operations.



#### ASSIGNMENT Unit-VIII

2013-14

**Regulation: R11** 

#### **Assignment / Questions**

- 1.a) What is a data structure? Explain the various types of data structures with suitable example.
  - b) What is the difference between linked list and an array?
- 2. What is singly linked list? Explain the stepwise procedure to perform various insertion operations on to the singly linked List with example.
- 3. What is Dynamic Data structure? Explain the stepwise procedure to perform various deletion operations on to the singly linked List with example.
- 4. Write a C program to delete end of the element from a singly linked list and append an element to the end of the list.
- 5. Write C program to (a) Insert element at nth position
- (b) Delete element at nth position from the singly linked list.
- 6. (a) What is a stack? What are the applications of stack?
  - (b) Write a program to perform various operations on to the stack using arrays.
- 7. What is a Queue? Explain the various operations to be performed on Queues with suitable algorithms using arrays.
- 8. Declare a queue of integers. Write a C program,
- (a) To insert an element in to queue
- (b) To delete an element from queue
- (c) To display the list of elements in queue using Linked list representation.
- 9. Write a procedure to convert a given infix expression to postfix expression using stacks.
- 10. Write a procedure to evaluate given postfix expression.
- 11. What is meant by linear list? Explain the searching operation on linear list.