
UNIT-4

Advanced PHP Programming

I. PHP and Web Forms

There are two common methods for
passing data from one script to another:
GET and POST.
Although GET is the default, users want to
use POST because it’s capable of handling
considerably more data, an important
characteristic when using forms to insert
and modify large blocks of text.

A Simple Example

The following script renders a form that
prompts the user for his name and e-mail
address. Once completed and submitted,
the script (named subscribe.php) displays
this information back to the browser
window.

<?php
// If the name field is filled in
if (isset($_POST['name']))
{
$name = $_POST['name'];
$email = $_POST['email'];
printf("Hi %s!
", $name);
printf("The email address is %s
",
$email);
}
?>
<form action="subscribe.php"
method="post">
<p>
Name:

<input type="text" id="name"
name="name" size="20" maxlength="40" />
</p>
<p>
Email Address:

<input type="text" id="email"
name="email" size="20" maxlength="40" />
</p>
<input type="submit" id="submit" name =
"submit" value="Go!" />
</form>

Assuming that the user completes both
fields and clicks the Go! button, output
similar to the following will be displayed:

Hi Arifa!
The email address is arifa@jbiet.edu.in

II. Working with Files

1. The Concept of a Resource

The term resource is commonly used to
refer to any entity from which an input or
output stream can be initiated.
Standard input or output, files, and network
sockets are all examples of resources.

2. Recognizing Newline Characters
The newline character, represented by the
\n character sequence (\r\n on Windows),
denotes the end of a line within a file.

3. Recognizing the End-of-File Character

The feof() function determines whether a
resource’s EOF has been reached. It is used
quite commonly in file I/O operations. Its
prototype follows:

int feof(string resource)

An example follows:
<?php
// Open a text file for reading purposes
$fh = fopen('/www/data/users.txt', 'r');

mailto:arifa@jbiet.edu.in

// While the end-of-file hasn't been
reached, retrieve the next line
while (!feof($fh)) echo fgets($fh);

// Close the file
fclose($fh);
?>

For opening and Closing a File users need to
create a handle before anything can be
done with file’s contents.

4. Opening and closing a File
a. Opening a File

The fopen() function binds a file to a
handle.

 Its prototype follows:

resource fopen(string resource, string
mode [, int use_include_path [, resource
context]])

While fopen() is most commonly used to
open files for reading and manipulation, it’s
also capable of opening resources via a
number of protocols, including HTTP,
HTTPS, and FTP.

The mode, assigned at the time a resource
is opened, determines the level of access
available to that resource.

Mode Description

R Read-only. The file pointer is placed at
the beginning of the file.

r+ Read and write. The file pointer is
placed at the beginning of the file.

W Write only. Before writing, delete the
file contents and return the file

pointer to the beginning of the file. If
the file does not exist, attempt to
create it.

w+ Read and write. Before reading or
writing, delete the file contents and
return the file pointer to the
beginning of the file. If the file does
not exist, attempt to create it.

A Write only. The file pointer is placed
at the end of the file. If the file does
not exist, attempt to create it. This
mode is better known as Append.

a+ Read and write. The file pointer is
placed at the end of the file. If the file
does not exist, attempt to create it.
This process is known as appending to
the file.

x Create and open the file for writing
only. If the file exists, fopen() will fail
and an error of level E_WARNING will
be generated.

x+ Create and open the file for writing
and writing. If the file exists, fopen()
will fail and an error of level
E_WARNING will be generated.

If the resource is found on the local file
system, PHP expects it to be available by
the path prefacing it.

Alternatively, you can assign fopen()’s
use_include_path parameter the value of 1,
which will cause PHP to look for the
resource within the paths specified by the
include_path configuration directive.

The final parameter, context, is used for
setting configuration parameters specific to
the file or stream and for sharing file- or
stream-specific information across multiple
fopen() requests.

b. Closing a File
Good programming practice dictates that
pointers should be destroyed to any
resources when finished working with
them.
The fclose() function closes the previously
opened file pointer specified by a file
handle, returning TRUE on success and
FALSE otherwise. Its prototype follows:

boolean fclose(resource filehandle)

The filehandle must be an existing file
pointer opened using fopen() or
fsockopen().

5. Reading from a File
a. Reading a File into an Array
The file() function is capable of reading a
file into an array, separating each element
by the newline character, with the newline
still attached to the end of each element. Its
prototype follows:

array file(string filename [int
use_include_path [, resource context]])

users.txt
Alice alice@example.com
Nicole nicole@example.com
Laura laura@example.com

The following script reads in users.txt and
parses and converts the data into a
convenient Web based format.

<?php

// Read the file into an array
$users = file('users.txt');

// Cycle through the array
foreach ($users as $user) {

// Parse the line, retrieving the name and e-
mail address list($name, $email) = explode('
', $user);

// Remove newline from $email
$email = trim($email);

// Output the formatted name and e-mail
address echo "<a href = \ " mailto : $email
\">$name
 ";
}
?>

This script produces the following HTML
output:
Alice

Nicole

Laura

b. Reading File Contents into a String
Variable
The file_get_contents() function reads the
contents of a file into a string. Its prototype
follows:

string file_get_contents(string filename [,
int use_include_path [, resource context [,
int offset [, int maxlen]]]])

<?php
// Read the file into a string variable
$userfile= file_get_contents('users.txt');
// Place each line of $userfile into array
$users = explode("\n", $userfile);
// Cycle through the array

foreach ($users as $user) {
c. Reading a CSV File into an Array
The convenient fgetcsv() function parses
each line of a file marked up in CSV format.
Its prototype follows:

array fgetcsv(resource handle [, int length
[, string delimiter [, string enclosure]]])

d. Reading a Specific Number of Characters
The fgets() function returns a certain
number of characters read in through the
opened resource handle, or everything it
has read up to the point when a newline or
an EOF character is encountered. Its
prototype follows:

string fgets(resource handle [, int length])

<?php
// Open a handle to users.txt
$fh = fopen('/home/www/data/users.txt',
'r');
// While the EOF isn't reached, read in
another line and output it
while (!feof($fh)) echo fgets($fh);
// Close the handle
fclose($fh);
?>

e. Stripping Tags from Input
The fgetss() function operates similarly to
fgets(), except that it also strips any HTML
and PHP tags from the input. Its prototype
follows:

string fgetss(resource handle, int length [,
string allowable_tags])

f. Reading a File One Character at a Time
The fgetc() function reads a single character
from the open resource stream specified by
handle. If the EOF is encountered, a value of
FALSE is returned. Its prototype follows:

string fgetc(resource handle)

g. Ignoring Newline Characters
The fread() function reads length characters
from the resource specified by handle.
Reading stops when the EOF is reached or
when length characters have been read. Its
prototype follows:

string fread(resource handle, int length)

Note that unlike other read functions,
newline characters are irrelevant when
using fread(), making it useful for reading
binary files. Therefore, it’s often convenient
to read the entire file in at once using
filesize() to determine the number of
characters that should be read in:

h. Reading in an Entire File
The readfile() function reads an entire file
specified by filename and immediately
outputs it to the output buffer, returning
the number of bytes read. Its prototype
follows:

int readfile(string filename [, int
use_include_path])

i.Reading a File According to a Predefined
Format
The fscanf() function offers a convenient
means for parsing a resource in accordance
with a predefined format. Its prototype
follows:

mixed fscanf(resource handle, string
format [, string var1])

6.Writing a String to a File
The fwrite() function outputs the contents
of a string variable to the specified
resource. Its prototype follows:

int fwrite(resource handle, string string [,
int length])

If the optional length parameter is
provided, fwrite() will stop writing when
length characters have been written.
Otherwise, writing will stop when the end
of the string is found.

7. Moving the File Pointer

a. Moving the File Pointer to a Specific
Offset
The fseek() function moves the pointer to
the location specified by a provided offset
value. Its prototype follows:
int fseek(resource handle, int offset [, int
whence])

If the optional parameter whence is
omitted, the position is set offset bytes
from the beginning of the file. Otherwise,
whence can be set to one of three possible
values, which affect the pointer’s position:
SEEK_CUR: Sets the pointer position to the
current position plus offset bytes.
SEEK_END: Sets the pointer position to the
EOF plus offset bytes. In this case,
offset must be set to a negative value.
SEEK_SET: Sets the pointer position to
offset bytes. This has the same effect as
omitting whence.

b.Retrieving the Current Pointer Offset
The ftell() function retrieves the current
position of the file pointer’s offset within
the resource. Its prototype follows:

int ftell(resource handle)

c. Moving the File Pointer Back to the
Beginning of the File
The rewind() function moves the file pointer
back to the beginning of the resource. Its
prototype follows:

int rewind(resource handle)

8. Reading Directory Contents
The process required for reading a
directory’s contents is quite similar to that
involved in reading a file.

a.Opening a Directory Handle
Just as fopen() opens a file pointer to a
given file, opendir() opens a directory
stream specified by a path.Its prototype
follows:

resource opendir(string path [, resource
context])

b. Closing a Directory Handle
The closedir() function closes the directory
stream. Its prototype follows:

void closedir(resource directory_handle)

c.Parsing Directory Contents
The readdir() function returns each element
in the directory. Its prototype follows:

string readdir([resource directory_handle])

d.Reading a Directory into an Array
The scandir() function, introduced in PHP 5,
returns an array consisting of files and
directories found in directory or returns
FALSE on error. Its prototype follows:

array scandir(string directory [,int
sorting_order [, resource context]])

Setting the optional sorting_order
parameter to 1 sorts the contents in
descending order, overriding the default of
ascending order.

III. PHP Authentication
Methodologies
There are several ways you can implement
authentication via a PHP script. In doing so,
you should always consider the scope and
complexity of your authentication needs.
This section discusses four implementation
methodologies:

 hard-coding a login pair directly into
the script,

 using file-based authentication,

 using database-based
authentication,

 using PEAR’s HTTP authentication

Hard-Coded Authentication
The simplest way to restrict resource access
is by hard-coding the username and
password directly into the script

if (($_SERVER['PHP_AUTH_USER'] != 'client')
||
($_SERVER['PHP_AUTH_PW'] != 'secret')) {
header('WWW-Authenticate: Basic
Realm="Secret Stash"');
header('HTTP/1.0 401 Unauthorized');
print('You must provide the proper
credentials!');
exit;
}

In this example, if
$_SERVER['PHP_AUTH_USER'] and
$_SERVER['PHP_AUTH_PW'] are equal to
client and secret, respectively, the code

block will not execute, and anything
ensuing that block will execute.
Otherwise, the user is prompted for the
username and password until either the
proper information is provided or a 401
Unauthorized message is displayed due to
multiple authentication failures.

Advantage:
Authentication against hard-coded values is
very quick and easy to configure.

Disadvantages:

1. All users requiring access to that
resource must use the same
authentication pair. In most real-
world situations, each user must be
uniquely identified so that user-
specific preferences or resources
can be provided.

2. Changing the username or password
can be done only by entering the
code and making the manual
adjustment.

File-Based Authentication
Often you need to provide each user with a
unique login pair in order to track user-
specific login times, movements, and
actions. This is easily accomplished with a
text file, much like the one commonly used
to store information about Unix users
(/etc/passwd).

Each line contains a username and an
encrypted password pair, with the two
elements separated by a colon.

The authenticationFile.txt File Containing
Encrypted Passwords
jason:60d99e58d66a5e0f4f89ec3ddd1d9a8
donald:d5fc4b0e45c8f9a333c0056492c191c
mickey:bc180dbc583491c00f8a1cd134f751

A crucial security consideration regarding
authenticationFile.txt is that this file should
be stored outside the server document
root. If it’s not, an attacker could discover
the file through brute-force guessing,
revealing half of the login combination.

The PHP script required to parse this file
and authenticate a user against a given
login pair is only a tad more complicated
than the script used to authenticate against
a hard-coded authentication pair. The
difference lies in the script’s additional duty
of reading the text file into an array, and
then cycling through that array searching
for a match. This involves the use of several
functions, including the following:

 file(string filename): The file()
function reads a file into an array,
with each element of the array
consisting of a line in the file.

 explode(string separator, string
string [, int limit]): The explode()
function splits a string into a series
of substrings, with each string
boundary determined by a specific
separator.

 md5(string str): The md5() function
calculates an MD5 hash of a string,
using RSA Security Inc.’s MD5
Message-Digest algorithm
(www.rsa.com). Because the
passwords are stored using the
same encrypted format, you first use
the md5() function to encrypt the
provided password, comparing the
result with what is stored locally.

<?php
// Preset authentication status to false
$authorized = FALSE;
if (isset($_SERVER['PHP_AUTH_USER']) &&
isset($_SERVER['PHP_AUTH_PW'])) {
// Read the authentication file into an array

$authFile =
file("/usr/local/lib/php/site/authenticate.txt
");
// Search array for authentication match
// If using Windows, use \r\n
if (in_array($_SERVER['PHP_AUTH_USER'].
":"
.md5($_SERVER['PHP_AUTH_PW'])."\n",
$authFile))
$authorized = TRUE;
}
// If not authorized, display authentication
prompt or 401 error
if (! $authorized) {
header('WWW-Authenticate: Basic
Realm="Secret Stash"');
header('HTTP/1.0 401 Unauthorized');
print('You must provide the proper
credentials!');
exit;
}
// restricted material goes here...
?>

Disadvantage:
This strategy can quickly become
inconvenient when you’re handling a large
number of users; when users are regularly
being added, deleted, and modified; or
when you need to incorporate an
authentication scheme into a larger
information infrastructure such as a
preexisting user table. Such requirements
are better satisfied by implementing a
database-based solution.

Database-Based Authentication

Implementing a database driven solution is
the most powerful because it not only
enhances administrative convenience and
scalability, but also can be integrated into a
larger database infrastructure

CREATE TABLE logins (
id INTEGER UNSIGNED NOT NULL
AUTO_INCREMENT PRIMARY KEY,
username VARCHAR(255) NOT NULL,
pswd CHAR(32) NOT NULL
);

A few lines of sample data follow:
id username password
1 wjgilmore
098f6bcd4621d373cade4e832627b4f6
2 mwade
0e4ab1a5a6d8390f09e9a0f2d45aeb7f
3 jgennick
3c05ce06d51e9498ea472691cd811fb6

<?php
/* Because the authentication prompt
needs to be invoked twice,
embed it within a function.
*/
function authenticate_user() {
header('WWW-Authenticate: Basic
realm="Secret Stash"');
header("HTTP/1.0 401 Unauthorized");
exit;
}
/* If $_SERVER['PHP_AUTH_USER'] is blank,
the user has not yet been
prompted for the authentication
information.
*/
if (! isset($_SERVER['PHP_AUTH_USER'])) {
authenticate_user();
} else {
$db = new mysqli("localhost", "webuser",
"secret", "chapter14");
$stmt = $db->prepare("SELECT username,
pswd FROM logins WHERE username=?
AND pswd=MD5(?)");
$stmt->bind_param('ss',
$_SERVER['PHP_AUTH_USER'],
$_SERVER['PHP_AUTH_PW']);

$stmt->execute();
$stmt->store_result();
if ($stmt->num_rows == 0)
authenticate_user();
}
?>

Although database authentication is more
powerful than the previous two
methodologies described, it is really quite
trivial to implement. Simply execute a
selection query against the logins table,
using the entered username and password
as criteria for the query. Of course, such a
solution is not dependent upon specific use
of a MySQL database; any relational
database could be used in its place.

Taking Advantage of PEAR: Auth_HTTP

While the approaches to authentication
discussed thus far work just fine, it’s always
nice to hide some of the implementation
details within a class. The PEAR class
Auth_HTTP satisfies this desire quite nicely,
taking advantage of Apache’s
authentication mechanism and prompt to
produce an identical prompt but using PHP
to manage the authentication information.
Auth_HTTP encapsulates many of the messy
aspects of user authentication, exposing the
information and features you’re looking for
by way of a convenient interface.
Furthermore, because it inherits from the
Auth class, Auth_HTTP also offers a broad
range of authentication storage
mechanisms, some of which include the DB
database abstraction package, LDAP, POP3,
IMAP, RADIUS, and SAMBA.

Installing Auth_HTTP

To take advantage of Auth_HTTP‘s features,
you need to install it. Therefore, invoke
PEAR and pass it the following arguments:
%>pear install -o auth_http

Authenticating Against a MySQL Database
Because Auth_HTTP subclasses the Auth
package, it inherits all of Auth‘s capabilities.
Because Auth subclasses the DB package,
Auth_HTTP can take advantage of this
popular database abstraction layer to store
authentication information in a database
table. To store the information, this
example uses a table identical to one used
earlier in this chapter:

CREATE TABLE logins (
id INTEGER UNSIGNED NOT NULL
AUTO_INCREMENT PRIMARY KEY,
username VARCHAR(255) NOT NULL,
pswd CHAR(32) NOT NULL
);

Next, you need to create a script that
invokes Auth_HTTP, telling it to refer to a
MySQL database.

<?php
require_once("Auth/HTTP.php");
// Designate authentication credentials,
table name,
// username and password columns,
password encryption type,
// and query parameters for retrieving
other fields
$dblogin = array (
'dsn' =>
"mysqli://webuser:secret@localhost/chapt
er14",
'table' => "logins",
'usernamecol' => "username",
'passwordcol' => "pswd",
'cryptType' => "md5",
'db_fields' => "*"

);
// Instantiate Auth_HTTP
$auth = new Auth_HTTP("MDB2", $dblogin)
or die("Can't connect!");
// Message to provide in case of
authentication failure
$auth->setCancelText('Authentication
credentials not accepted!');
// Begin the authentication process
$auth->start();
// Check for credentials. If not available,
prompt for them
if($auth->getAuth())
echo "Welcome, {$auth-
>getAuthData('username')}
";
?>

Executing the script and passing along
information matching that found in the
logins table allows the user to pass into the
restricted area. Otherwise, the error
message supplied in setCancelText() is
displayed.

IV. User Login Administration
When you incorporate user logins into your
application, providing a sound
authentication mechanism is only part of
the total picture. How do you ensure that
the user chooses a sound password of
sufficient difficulty that attackers cannot
use it as a possible attack route?
Furthermore, how do you deal with the
inevitable event of the user forgetting his
password?

Testing Password Guessability with the
CrackLib Library

In an ill-conceived effort to prevent
forgetting their passwords, users tend to
choose something easy to remember, such
as the name of their dog, their mother’s

maiden name, or even their own name or
age.
Ironically, this practice often doesn’t help
users to remember the password and, even
worse, offers attackers a rather simple
route into an otherwise restricted system,
either by researching the user’s background
and attempting various passwords until the
correct one is found, or by using brute force
to discern the password through numerous
repeated attempts. In either case, the
password typically is broken because the
user has chosen a password that is easily
guessable, resulting in the possible
compromise of not only the user’s personal
data, but also the system itself.
Reducing the possibility that easily
guessable passwords could be introduced
into your system is quite simple; you turn
the procedure of unchallenged password
creation into one of automated password
approval. PHP offers a wonderful means for
doing so via the CrackLib library, created by
Alec Muffett (www.crypticide.com).
CrackLib is intended to test the strength of
a password by setting certain benchmarks
that determine its guessability, including:

 Length: Passwords must be longer
than four characters.

 Case: Passwords cannot be all
lowercase.

 Distinction: Passwords must contain
adequate different characters. In
addition, the password cannot be
blank.

 Familiarity: Passwords cannot be
based on a word found in a
dictionary. In addition, passwords
cannot be based on the reverse
spelling of a word found in the
dictionary.

 Standard numbering: Because
CrackLib’s author is British, he
thought it a good idea to check

against patterns similar to what is
known as a National Insurance (NI)
number. The NI number is used in
Britain for taxation, much like the
Social Security number (SSN) is used
in the United States. Coincidentally,
both numbers are nine characters
long, allowing this mechanism to
efficiently prevent the use of either,
if a user is naive enough to use such
a sensitive identifier for this
purpose.

Using the CrackLib Extension
Using PHP’s CrackLib extension is quite
easy.

<?php
$pswd = "567hejk39";
/* Open the dictionary. Note that the
dictionary
filename does NOT include the extension.
*/
$dictionary =

crack_opendict('/usr/lib/cracklib_dict');

// Check password for guessability
$check = crack_check($dictionary, $pswd);
// Retrieve outcome
echo crack_getlastmessage();
// Close dictionary
crack_closedict($dictionary);
?>
In this particular example,
crack_getlastmessage() returns the string
“strong password” because
the password denoted by $pswd is
sufficiently difficult to guess. However, if
the password is weak, one of a number of
different messages could be returned.

Password Response
Mary It is too short.
12 It’s WAY too short.

1234567 It is too simplistic/systematic.
Street It does not contain enough

DIFFERENT characters.

One-Time URLs and Password Recovery
A one-time URL is commonly given to a user
to ensure uniqueness when no other
authentication mechanisms are available, or
when the user would find authentication
perhaps too tedious for the task at hand.

Ex:
http://www.example.com/newsletter/0503
.php?id=9b758e7f08a2165d664c2684fddbc
de2
Suppose the users forget his password and
thus click the Forgot password? link,
commonly found near a login prompt. The
user arrives at a page in which he is asked
to enter his e-mail address. Upon entering
the address and submitting the form, a
script similar to that shown in

<?php
$db = new mysqli("localhost", "webuser",
"secret", "chapter14");
// Create unique identifier
$id = md5(uniqid(rand(),1));
// User's email address
$address = filter_var($_POST[email],
FILTER_SANITIZE_EMAIL);
// Set user's hash field to a unique id
$stmt = $db->prepare("UPDATE logins SET
hash=? WHERE email=?");
$stmt->bind_param('ss', $id, $address);
$stmt->execute();
$email = <<< email
Dear user,
Click on the following link to reset your
password:
http://www.example.com/users/lostpassw
ord.php?id=$id
email;
// Email user password reset options

mail($address,"Password
recovery","$email","FROM:services@exam
ple.com");
echo "<p>Instructions regarding resetting
your password have been sent to
$address</p>";
?>
When the user receives this e-mail and
clicks the link, the script lostpassword.php,

Resetting a User’s Password
<?php
$db = new mysqli("localhost", "webuser",
"secret", "chapter14");
// Create a pseudorandom password five
characters in length
$pswd = substr(md5(uniqid(rand())),5);
// User's hash value
$id = filter_var($_GET[id],
FILTER_SANITIZE_STRING);
// Update the user table with the new
password
$stmt = $db->prepare("UPDATE logins SET
pswd=? WHERE hash=?");
$stmt->execute();

// Display the new password
echo "<p>Your password has been reset to
{$pswd}.</p>";
?>

V. Uploading Files with PHP
Successfully managing file uploads via PHP
is the result of cooperation between various
configuration directives, the $_FILES
superglobal, and a properly coded web
form.
PHP’s File Upload/Resource Directives

1. file_uploads = On | Off
Scope: PHP_INI_SYSTEM; Default value: On
The file_uploads directive determines
whether PHP scripts on the server can
accept file uploads.

2. max_input_time = integer

Scope: PHP_INI_ALL; Default value: 60
The max_input_time directive determines
the maximum amount of time, in seconds,
that a PHP script will spend attempting to
parse input before registering a fatal error.
This is relevant because particularly large
files can take some time to upload, eclipsing
the time limit set by this directive.

3. max_file_uploads = integer
Scope: PHP_INI_SYSTEM; Default value: 20
Available since PHP 5.2.12, the
max_file_uploads directive sets an upper
limit on the number of files which can be
simultaneously uploaded.

4. memory_limit = integerM
Scope: PHP_INI_ALL; Default value: 16M
The memory_limit directive sets a
maximum allowable amount of memory in
megabytes that a script can allocate (note
that the integer value must be followed by
M for this setting to work properly). It
prevents runaway scripts from
monopolizing server memory and even
crashing the server in certain situations.

5. post_max_size = integerM
Scope: PHP_INI_PERDIR; Default value: 8M
The post_max_size places an upper limit on
the size of data submitted via the POST
method. Because files are uploaded using
POST, you may need to adjust this setting
upwards along with upload_max_filesize
when working with larger files.

6. upload_max_filesize = integerM
Scope: PHP_INI_PERDIR; Default value: 2M
The upload_max_filesize directive
determines the maximum size in megabytes
of an uploaded file. This directive should be
smaller than post_max_size because it
applies only to information passed via the
file input type and not to all information
passed via the POST instance.
upload_tmp_dir = string
Scope: PHP_INI_SYSTEM; Default value:
NULL

Because an uploaded file must be
successfully transferred to the server before
subsequent processing on that file can
begin, a staging area of sorts must be
designated for such files where they can be
temporarily placed until they are moved to
their final location. This staging location is
specified using the upload_tmp_dir
directive.

The $_FILES Array
The $_FILES superglobal stores a variety of
information pertinent to a file uploaded to
the server via a PHP script. In total, five
items are available in this array, each of
which is introduced here:

 $_FILES['userfile']['error']: This array
value offers important information
pertinent to the outcome of the upload
attempt. In total, five return values are
possible: one signifying a successful
outcome and four others denoting
specific errors that arise from the
attempt. The name and meaning of each
return value is introduced in the “Upload
Error Messages”.

 $_FILES['userfile']['name']: This
variable specifies the original name
of the file, including the extension,
as declared on the client machine.
Therefore, if you browse to a file
named vacation.png and upload it
via the form, this variable will be
assigned the value vacation.png.

 $_FILES['userfile']['size']: This
variable specifies the size, in bytes,
of the file uploaded from the client
machine. For example, in the case of
the vacation.png file, this variable
could plausibly be assigned a value
such as 5253, or roughly 5KB.

 $_FILES['userfile']['tmp_name']:
This variable specifies the temporary
name assigned to the file once it has

been uploaded to the server. This is
the name of the file assigned to it
while stored in the temporary
directory (specified by the PHP
directive upload_tmp_dir).

 $_FILES['userfile']['type']: This
variable specifies the MIME type of
the file uploaded from the client
machine. Therefore, in the case of
the vacation.png image file, this
variable would be assigned the value
image/png. If a PDF was uploaded,
the value application/pdf would be
assigned. Because this variable
sometimes produces unexpected
results, you should explicitly verify it
yourself from within the script.

PHP’s File-Upload Functions
In addition to the number of file-handling
functions made available via PHP’s file
system library, PHP offers two functions
specifically intended to aid in the fileupload
process, is_uploaded_file() and
move_uploaded_file().

Determining Whether a File Was Uploaded
The is_uploaded_file() function determines
whether a file specified by the input
parameter filename is uploaded using the
POST method. Its prototype follows:
boolean is_uploaded_file(string filename)

This function is intended to prevent a
potential attacker from manipulating files
not intended for interaction via the script in
question. For example, consider a scenario
in which uploaded files are made
immediately available for viewing via a
public site repository. Say an attacker wants
to make a file somewhat juicier than the
boring old class notes available for his
perusal, say /etc/passwd. Rather than
navigate to a class notes file as would be

expected, the attacker instead types
/etc/passwd directly into the form’s file-
upload field.

Moving an Uploaded File
The move_uploaded_file() function
provides a convenient means for moving an
uploaded file from the temporary directory
to a final location. Its prototype follows:
boolean move_uploaded_file(string
filename, string destination)
Although copy() works equally well,
move_uploaded_file() offers one additional
feature: it will check to ensure that the file
denoted by the filename input parameter
was in fact uploaded via PHP’s HTTP POST
upload mechanism. If the file has not been
uploaded, the move will fail and a FALSE
value will be returned. Because of this, you
can forgo using is_uploaded_file() as a
precursor condition to using
move_uploaded_file().

Upload Error Messages

 UPLOAD_ERR_OK: A value of 0 is
returned if the upload is successful.

 UPLOAD_ERR_INI_SIZE: A value of 1
is returned if there is an attempt to
upload a file whose size exceeds the
value specified by the
upload_max_filesize directive.

 UPLOAD_ERR_FORM_SIZE: A value
of 2 is returned if there is an
attempt to upload a file whose size
exceeds the value of the
max_file_size directive, which can
be embedded into the HTML form

 UPLOAD_ERR_PARTIAL: A value of
3 is returned if a file is not
completely uploaded.This might
happen if a network error causes a
disruption of the upload process.

 UPLOAD_ERR_NO_FILE: A value of 4
is returned if the user submits the
form without specifying a file for
upload.

 UPLOAD_ERR_NO_TMP_DIR: A
value of 6 is returned if the
temporary directory does not exist.

 UPLOAD_ERR_CANT_WRITE:
Introduced in PHP 5.1.0, a value of 7
is returned if the file can’t be
written to the disk.

 UPLOAD_ERR_EXTENSION:
Introduced in PHP 5.2.0, a value of 8
is returned if an issue with PHP’s
configuration caused the upload to
fail.

A Simple Example
 To formalize the scenario, suppose that a
professor invites students to post class
notes to his web site, the idea being that
everyone might have something to gain
from such a collaborative effort. Of course,
credit should nonetheless be given where
credit is due, so each file upload should be
renamed to the last name of the student. In
addition, only PDF files are accepted.

<form action="listing15-1.php"
enctype="multipart/form-data"
method="post">
<label form="email">Email:</label>

<input type="text" name="email" value=""
/>

<label form="classnotes">Class
notes:</label>

<input type="file" name="classnotes"
value="" />

<input type="submit" name="submit"
value="Submit Notes" />
</form>
<?php
// Set a constant

define
("FILEREPOSITORY","/var/www/4e/15/class
notes");
// Make sure that the file was POSTed.
if
(is_uploaded_file($_FILES['classnotes']['tmp
_name'])) {
// Was the file a PDF?
if ($_FILES['classnotes']['type'] !=
"application/pdf") {
echo "<p>Class notes must be uploaded in
PDF format.</p>";
} else {
// Move uploaded file to final destination.
$name = $_POST['name'];
$result =
move_uploaded_file($_FILES['classnotes']['t
mp_name'],
FILEREPOSITORY.$_FILES['classnotes']['nam
e']);
if ($result == 1) echo "<p>File successfully
uploaded.</p>";
else echo "<p>There was a problem
uploading the file.</p>";
}
}
?>

VI. Sending E-mail Using a PHP Script
E-mail can be sent through a PHP script in
amazingly easy fashion, using the mail()
function. Its
prototype follows:
boolean mail(string to, string subject,
string message [, string addl_headers [,
string addl_params]])
The mail() function can send an e-mail with
a subject and a message to one or several
recipients.You can tailor many of the e-mail
properties using the addl_headers
parameter; you can even modify your SMTP
server’s behavior by passing extra flags via
the addl_params parameter.

On the Unix platform, PHP’s mail() function
is dependent upon the sendmail MTA. If
you’re using an alternative MTA (e.g.,
qmail), you need to use that MTA’s
sendmail wrappers. PHP’s Windows
implementation of the function depends
upon establishing a socket connection to an
MTA designated by the SMTP configuration
directive.

Sending a Plain-Text E-mail
Sending the simplest of e-mails is trivial
using the mail() function, done using just
the three required parameters, in addition
to the fourth parameter which allows you
to identify a sender. Here’s an
example:
<?php
mail("test@example.com", "This is a
subject", "This is the mail body",
"From:admin@example.com\r\n");
?>

Taking Advantage of PEAR: Mail and
Mail_Mime
While it’s possible to use the mail() function
to perform more complex operations such
as sending to multiple recipients, annoying
users with HTML-formatted e-mail, or
including attachments, doing so can be a
tedious and error-prone process. However,
the Mail
(http://pear.php.net/package/Mail) and
Mail_Mime
(http://pear.php.net/package/Mail_Mime)
PEAR packages make such tasks a breeze.
These packages work in conjunction with
one another: Mail_Mime creates the
message, and Mail sends it. This section
introduces both packages.

Installing Mail and Mail_Mime
To take advantage of Mail and Mail_Mime,
you’ll first need to install both packages. To

do so, invoke PEAR and pass along the
following arguments:
%>pear install Mail Mail_Mime

Sending an HTML-Formatted E-mail
<?php
// Include the Mail and Mime_Mail
Packages
include('Mail.php');
include('Mail/mime.php');
// Recipient Name and E-mail Address
$name = "Jason Gilmore";

$recipient = "jason@example.org";
// Sender Address
$from = "bram@example.com";
// Message Subject
$subject = "Thank you for your inquiry -
HTML Format";
// E-mail Body
$html = <<<html
<html><body>
<h3>Example.com Stamp Company</h3>
<p>
Dear $name,

Thank you for your interest in
Example.com's fine selection of
collectible stamps. Please respond at your
convenience with your telephone
number and a suggested date and time to
chat.
</p>
<p>I look forward to hearing from you.</p>
<p>
Sincerely,

Bram Brownstein

President, Example.com Stamp Supply
html;
// Identify the Relevant Mail Headers
$headers['From'] = $from;
$headers['Subject'] = $subject;
// Instantiate Mail_mime Class
$mimemail = new Mail_mime();
// Set HTML Message

$mimemail->setHTMLBody($html);
// Build Message
$message = $mimemail->get();
// Prepare the Headers
$mailheaders = $mimemail-
>headers($headers);
// Create New Instance of Mail Class
$email =& Mail::factory('mail');
// Send the E-mail Already!
$email->send($recipient, $mailheaders,
$message) or die("Can't send message!");
?>

Sending an Attachment
Mail_Mime object’s addAttachment()
method is used for passing in the
attachment name and extension, and
dentifying its content type:
$mimemail-

>addAttachment('inventory.pdf',

'application/pdf');

PHP’s Encryption Functions
Encryption over the Web is largely useless
unless the scripts running the encryption
schemes are operating on an SSL-enabled
server. Why? PHP is a server-side scripting
language, so information must be sent to
the server in plain-text format before it can

be encrypted. There are many ways that an
unwanted third party can watch this
information as it is transmitted from the
user to the server if the user is not
operating via a secured connection.

Encrypting Data with the md5() Hash
Function
The md5() function uses MD5, a third-party
hash algorithm often used for creating
digital signatures . Digital signatures can, in
turn, be used to uniquely identify the
sending party.
MD5 is considered to be a one-way hashing
algorithm, which means there is no
practical way to dehash data that has been
hashed using md5(). Its prototype looks like
this:
string md5(string str)
The MD5 algorithm can also be used as a
password verification system. Because it is
(in theory)
extremely difficult to retrieve the original
string that has been hashed using the MD5
algorithm, you could hash a given password
using MD5 and then compare that
encrypted password against those that a
user enters to gain access to restricted
information.

For example, assume that your secret
password toystore has an MD5 hash of
745e2abd7c52ee1dd7c14ae0d71b9d76.
You can store this hashed value on the
server and compare it to the MD5 hash
equivalent of the password the user
attempts to enter. Even if an intruder gets
hold of the encrypted password, it wouldn’t
make much difference because that
intruder can’t return the string to its
original format through conventional
means.

An example of hashing a string using md5()
follows:
<?php
$val = "secret";
$hash_val = md5 ($val);
// $hash_val =
"5ebe2294ecd0e0f08eab7690d2a6ee69";
?>

The MCrypt Package
MCrypt is a popular data-encryption
package available for use with PHP,
providing support for two-way encryption
(i.e., encryption and decryption). Before
you can use it, you need to follow these
installation instructions:
1. Go to http://mcrypt.sourceforge.net and
download the package source.
2. Extract the contents of the compressed
distribution and follow the installation
instructions as specified in the INSTALL
document.
3. Compile PHP with the --with-mcrypt
option.

MCrypt supports the following encryption
algorithms:

• ARCFOUR • ENIGMA • RC (2, 4)
• TEAN • ARCFOUR_IV • GOST
• RC6 (128, 192, 256) • THREEWAY
• BLOWFISH • IDEA
• RIJNDAEL (128, 192, 256) • 3DES
• CAST • LOKI97 • SAFER (64,
128, and PLUS) • TWOFISH (128, 192, and
256) • CRYPT • MARS
• SERPENT (128, 192, and 256)
• WAKE • DES • PANAMA
• SKIPJACK • XTEA

Encrypting Data with MCrypt
The mcrypt_encrypt() function encrypts the
provided data, returning the encrypted
result. The

prototype follows:
string mcrypt_encrypt(string cipher, string
key, string data, string mode [, string iv])

The provided cipher names the particular
encryption algorithm, and the parameter
key determines the key used to encrypt the
data. The mode parameter specifies one of
the six available encryption modes:

 electronic codebook,

 cipher block chaining,

 cipher feedback,

 8-bit output feedback,

 N-bit output feedback,

 special stream mode.
Each is referenced by an abbreviation: ecb,
cbc, cfb, ofb, nofb, and stream, respectively.

Finally, the iv parameter initializes cbc, cfb,
ofb, and certain algorithms used instream
mode. Consider an example:
<?php
$ivs = mcrypt_get_iv_size(MCRYPT_DES,
MCRYPT_MODE_CBC);
$iv = mcrypt_create_iv($ivs,
MCRYPT_RAND);
$key = "F925T";
$message = "This is the message I want to
encrypt.";
$enc = mcrypt_encrypt(MCRYPT_DES, $key,
$message, MCRYPT_MODE_CBC, $iv);
echo bin2hex($enc);
?>

This returns the following:
f5d8b337f27e251c25f6a17c74f93c5e9a8a2
1b91f2b1b0151e649232b486c93b36af4679
14bc7d8
You can then decrypt the text with the

mcrypt_decrypt() function.

Decrypting Data with MCrypt
The mcrypt_decrypt() function decrypts a
previously encrypted cipher, provided that

the cipher, key,and mode are the same as
those used to encrypt the data. Its
prototype follows:
string mcrypt_decrypt(string cipher, string
key, string data, string mode [, string iv])

Insert the following line into the previous
example, directly after the last statement:
echo mcrypt_decrypt(MCRYPT_DES, $key,
$enc, MCRYPT_MODE_CBC, $iv);

This returns the following:

This is the message I want to encrypt.

Building Web Sites for the World

Translating Web Sites with Gettext
Gettext (www.gnu.org/software/gettext),
one of the many great projects created and
maintained by the Free Software
Foundation, consists of a number of utilities
useful for internationalizing and localizing
software. Over the years it’s become a de
facto standard solution for maintaining
translations for countless applications and
web sites. PHP interacts with gettext
through a namesake extension, meaning
you need to download the gettext utility
and install it on your system. If you’re
running Windows,download it from
http://gnuwin32.sourceforge.net and make
sure you update the PATH environment
variable to point to the installation
directory.
Because PHP’s gettext extension isn’t
enabled by default, you probably need to
reconfigure PHP. If you’re on Linux, you can
enable it by rebuilding PHP with the --with-
gettext option. On Windows, just
uncomment the php_gettext.dll line found
in the php.ini file.

Step 1: Update the Web Site Scripts

Gettext must be able to recognize which
strings you’d like to translate. This is done
by passing all translatable output through
the gettext() function. Each time gettext() is
encountered, PHP will look to the language-
specific localization repository (more about
this in Step 2) and match the string
encompassed within the function to the
corresponding translation. The script knows
which translation to retrieve due to earlier
calls to setlocale(), which tells PHP and
gettext which language and country you
want to conform to, and then to
bindtextdomain() and textdomain(), which
tell PHP where to look for the translation
files.

Common Country and Language Code
Combinations

Combination Locale

pt_BR Brazil

fr_FR France

de_DE Germany

en_GB Great Britain

he_IL Israel

it_IT Italy

es_MX Mexico

es_ES Spain

en_US United States

Presents a simple example that seeks to
translate the string Enter your email
address: to its Italian equivalent.

<?php
// Specify the target language
$language = 'it_IT';
// Assign the appropriate locale
setlocale(LC_ALL, $language);
// Identify the location of the translation
files
bindtextdomain('messages',
'/usr/local/apache/htdocs/locale');

// Tell the script which domain to search
within when translating text
textdomain('messages');
?>
<form action="subscribe.php"
method="post">
<?php echo gettext("Enter your e-mail
address:"); ?>

<input type="text" id="email"
name="email" size="20" maxlength="40"
value="" />
<input type="submit" id="submit"
value="Submit" />
</form>

Step 2: Create the Localization Repository
Next, you need to create the repository
where the translated files will be stored.
One directory should be created for each
language/country code combination, and
within that directory you need to create
another directory named LC_MESSAGES. So
if you plan on localizing the web site to
support English (the default), German,
Italian, and Spanish, the directory structure
would look like this:
locale/
de_DE/
LC_MESSAGES/
it_IT/
LC_MESSAGES/
es_ES/
LC_MESSAGES/

Step 3: Create the Translation Files
Next, you need to extract the translatable
strings from the PHP scripts. You do so with
the xgettext command, which is a utility
bundled with gettext. Executing the
following command will cause xgettext to
examine all of the files found in the current
directory ending in .php, producing a file
consisting of the desired strings to
translate:

%>xgettext -n *.php

The -n option results in the file name and
line number being included before each
string entry in the output file. By default,
the output file is named messages.po,
although you can change this using the --
default-domain=FILENAME option.

A sample output file follows:
SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR THE PACKAGE'S
COPYRIGHT HOLDER
This file is distributed under the same
license as the PACKAGE package.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.

#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2010-05-16 13:13-
0400\n"

"PO-Revision-Date: YEAR-MO-DA
HO:MI+ZONE\n"
"Last-Translator: FULL NAME
<EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE
<LL@li.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain;
charset=CHARSET\n"
"Content-Transfer-Encoding: 8bit\n"
#: homepage.php:12
msgid "Subscribe to the newsletter:"
msgstr ""
#: homepage.php:15
msgid "Enter your e-mail address:"
msgstr ""
#: contact.php:12
msgid "Contact us at info@example.com!"

msgstr ""

Step 4: Translate the Text
Open the messages.po file residing in the
language directory you’d like to translate,
and translate the strings by completing the
empty msgstr entries that correspond to an
extracted string. Then replace the
placeholders represented in all capital
letters with information pertinent to your
application.

Step 5: Generate Binary Files
The final required preparatory step involves
generating binary versions of the
messages.po files, which will be used by
gettext. This is done with the msgfmt
command. Navigate to the appropriate
language directory and execute the
following command:
%>msgfmt messages.po

Executing this command produces a file
named messages.mo, which is what gettext
will ultimately use for the translations.

Step 6: Set the Desired Language Within
Your Scripts
To begin taking advantage of your localized
strings, all you need to do is set the locale
using setlocale() and call the
bindtextdomain() and textdomain()
functions. The end result is the ability to use
the same code source to present your web
site in multiple languages.

Localizing Dates, Numbers, and
Times
The setlocale() function can also affect how
PHP renders dates, numbers, and times.
This is important because of the variety of
ways in which this often crucial data is
represented among different countries.

For example, suppose you are a United
States–based organization providing an
essential subscription based service to a
variety of international corporations. When
it is time to renew subscriptions, a special
message is displayed at the top of the
browser that looks like this:

Your subscription ends on 3-4-2011. Renew
soon to avoid service cancellation.

For the United States–based users, this date
means March 4, 2011. However, for
European users, this date is interpreted as
April 3, 2011. The result could be that the
European users won’t feel compelled to
renew the service until the end of March,
and therefore will be quite surprised when
they attempt to log in on March 5. This is
just one of the many issues that might arise
due to confusion over data representation.

You can eliminate such inconsistencies by
localizing the information so that it appears
exactly as the user expects. PHP makes this
a fairly easy task, done by setting the locale
using setlocale(), and then using functions
such as money_format(), number_format(),
and strftime() per usual to output the data.
For example, suppose you want to render
the renewal deadline date according to the
user’s locale.
Just set the locale using setlocale(), and run
the date through strftime() (also taking
advantage of strtotime() to create the
appropriate timestamp) like this:

<?php
setlocale(LC_ALL, 'it_IT');
printf("Your subscription ends on %s",
strftime('%x', strtotime('2011-03-04')));
?>
This produces the following:

Your subscription ends on 04/03/2011

The same process applies to formatting
number and monetary values. For instance,
the United States uses a comma as the
thousands separator; Europe uses a period,
a space, or nothing at all for the same
purpose. Making matters more confusing,
the United States uses a period for the
decimal separator and Europe uses a
comma for this purpose. As a result, the
following numbers are ultimately

considered identical:
• 523,332.98
• 523 332.98
• 523332.98
• 523.332,98

Of course, it makes sense to render such
information in a manner most familiar to
the user in order to reduce any possibility of
confusion. To do so, you can use setlocale()
in conjunction with number_format() and
another function named localeconv(), which
returns numerical formatting information
about a defined locale. Used together,
these functions can produce properly
formatted numbers, like so:

<?php
setlocale(LC_ALL, 'it_IT');
$locale = localeconv();
printf("(it_IT) Total hours spent commuting
%s
",
number_format(4532.23, 2,
$locale['decimal_point'],
$locale['thousands_sep']));
setlocale(LC_ALL, 'en_US');
$locale = localeconv();
printf("(en_US) Total hours spent
commuting %s",
number_format(4532.23, 2,
$locale['decimal_point'],

$locale['thousands_sep']));
?>

This produces the following result:
(it_IT) Total hours spent commuting
4532,23
(en_US) Total hours spent commuting

4,532.23

