

UNIT-III

COMPUTER ARTHIMETIC

INTRODUCTION

Arithmetic Instructions in digital computers manipulate data to

produce results necessary for the of activity solution of

computational problems. These instructions perform arithmetic

calculations and are responsible for the bulk of activity involved in

processing data in a computer. The four basic arithmatic

operations are addition,subtracton,multiplication,division. From

these basic operations, it is possible to formulate other arithmatic

functions and solve scientific problems by means of numerical

analysis methods . An arithmetic processor is the part of a pro

cessor unit that execute arithmatic operations .

The data type assumed to residein prosser registers during the

execution of an arithmetic instructions is specified in the definition

of the instruction . An arithmetic instructions may specify binary or

decimal data, and in each case the data may be in fixed point or

floating-point form . Fixed-point numbers may represent integer or

fractions. Negative numbers may be in signed – magnitude or

signed – complement representation. The arithmetic processor is

very simple if only a binary fixed-point add instructons is included.

It would be more complicated if it includes all four arithmetic

operations for binary and decimal data in fixed-point and floating –

point representation.

The four

basic arithmetic operations are

• ADDITION
• SUBTRACTION
• MULTIPLICATION
• DIVISION

ADDITION AND SUBTRACTION

There are three ways of representing
negative fixed point binary numbers :

• Signed Magnitude

• Sig ed s o ple e t

• Sig ed s o ple e t

Most o puter use the sig ed s o pli e t
representation when performing arithmetic
operations with integers . For floating point
operations , most computers use the signed
magnitude representation.

Arithmetic Addition and Subtraction in fixed
point representation

• Simply add the two numbers and discard any leftmost
carry out bit.

• Negati e u ers are i s o ple e t

– Including the result!

A-B=A+(-B)

B i s o ple e t for

Example

+7 0000 0111 -7 1111 1001

+11 0000 1011 +11 0000 1011

+18 0001 0010 +4 0000 0100

+7 0000 0111 -7 1111 1001

-11 1111 0101 -11 1111 0101

-4 1111 1100 -18 1110 1110

s o ple e t Co td.,

• The s o ple e t a e for ed lea i g all least sig ifi a t s a d

the first u ha ged, a d the repla i g s s a d s s i all

other higher significant bits.

• Identify the rightmost 1 and complement all the bits on its left.

• E . The s o ple e t of

• E . The s o ple e t of

1101100 = 0010100

1101111 = 0010001

MULTIPLICATION ALGORITHMS

Multiplication of two fixed point binary numbers in
signed magnitude representation is done with
paper and pencil by a process of successive shift
adds operations. This process is best illustrated
with a numerical example . the process consist of
looking at successive bits of the multiplier , least

significant bit first . If the multiplier bit is a 1 . the
multiplicand is copied do ; other ise , zero s are

copied down . the number copied down in
successive lines are shifted one position to the
left from the previous number . Finally ,the
numbers are added their sum forms are product.

EXAMPLE

23 10111 Multiplicand

19 x 10011 Multiplier

10111

10111

00000 +

00000

10111

437 110110101 Product

Booths Alogritham for Multiplication

• Decide which operand will be the multiplier and
which will be the multiplicand

• Convert both operands to two's

complement representation using X bits
– X must be at least one more bit than is

required for the binary representation of the
numerically larger operand

• Begin with a product that consists of the

multiplier with an additional X leading zero bits

Example

• In the week by week, there is an example of
multiplying 2 x (-5)

• For our example, let's reverse the operation, and

multiply (-5) x 2
– The numerically larger operand (5) would require 3 bits

to represent in binary (101). So we must use AT
LEAST 4 bits to represent the operands, to allow for

the sign bit.
• Let's use 5-bit 2's complement:

– -5 is 11011 (multiplier)
– 2 is 00010 (multiplicand)

Beginning Product

• The multiplier is:

11011

• Add 5 leading zeros to the multiplier
to get the beginning product:

00000 11011

Step 1 for each pass

• Use the LSB (least significant bit) and the previous LSB
to determine the arithmetic action.
– If it is the FIRST pass, use 0 as the previous LSB.

• Possible arithmetic actions:

– 00  no arithmetic operation
– 01  add multiplicand to left half of product
– 10  subtract multiplicand from left half of product
– 11  no arithmetic operation

Step 2 for each pass

• Perform an arithmetic right shift
(ASR) on the entire product.

• NOTE: For X-bit operands, Booth's

algorithm requires X passes.

Example

• Let's continue with our example of multiplying (-
5) x 2

• Remember:

– -5 is 11011 (multiplier)

– 2 is 00010 (multiplicand)

• And we added 5 leading zeros to the multiplier
to get the beginning product:

00000 11011

Example continued

• Initial Product and previous LSB

00000 11011 0

(Note: Since this is the first pass, we use 0 for the
previous LSB)

• Pass 1, Step 1: Examine the last 2 bits

00000 11011 0

The last two bits are 10, so we need to:

subtract the multiplicand from left half of product

Example: Pass 1 continued

• Pass 1, Step 1: Arithmetic action

(1) 00000

-00010

11110

(left half of product)

(mulitplicand)

(uses a phantom borrow)

• Place result into left half of product

11110 11011 0

Example: Pass 1 continued

• Pass 1, Step 2: ASR (arithmetic shift right)
– Before ASR

11110 11011 0

– After ASR

11111 01101 1

(left-most bit was 1, so a 1 was shifted in on the left)

• Pass 1 is complete.

• Repeat this process for bit count, here bit
count is 5 so we need to repeat the process
up to 5 times to get result.

Final Product

• We have completed 5 passes on the
5-bit operands, so we are done.

• Dropping the previous LSB,

the resulting final product is:

11111 10110

Verification

• To confirm we have the correct answer,
convert the 2's complement final
product back to decimal.

• Final product: 11111 10110

• Decimal value: -10

which is the CORRECT product of:

(-5) X 2

DIVISION ALGORITHM

Division of two fixed-point binary numbers is signed –
magnitude representation is done with paper and
pencil by a process of successive compare , shift,
subtract operations . Binary divisionsis simpiler than
decimal division because the quotient degit are either
0 or 1 and there is no need to estimate how many
time the dividend or partial remainders fits into the
divisor . The division is simpler then decimal division
because the quotient degit are either 0 or 1 and there
is no need to estimate how many times the dividend
or partial remainders fits into the divisor . the division
processs is illustrated by a numerical example :-

A restoring-division example

Initially 0 0 0 0 0 1 0 0 0

 0 0 0 1 1

Shift 0 0 0 0 1 0 0 0

Subtract 1 1 1 0 1

Set q0 1 0

Restore 1 1

 0 0 0 0 1 0 0 0 0

Shift 0 0 0 1 0 0 0 0

Subtract 1 1 1 0 1

Set q0 1 1

Restore 1 1

 0 0 0 1 0 0 0 0 0

Shift 0 0 1 0 0 0 0 0

Subtract 1 1 1 0 1

Set q0 0 0 0 1 0 0 0 0 1

Shift 0 0 0 1 0 0 0 1

Subtract 1 1 1 0 1

Set q0 1 1 1 1 1

Restore 1 1

 0 0 0 1 0 0 0 1 0

First cycle

Second cycle

Third cycle

Fourth cycle

Quotient

remainder 26

Algorithms for Division

The restoring-division algorithm:

S1: DO n times

Shift A and Q left one binary position.

Subtract M from A, placing the answer back in A.

If the sign of A is 1, set q0 to 0 and add M back to A (restore A); otherwise, set q0 to 1.

27

5) Algorithms for Division

The non-restoring division algorithm:

S1: Do n times

If the sign of A is 0, shift A and Q left one binary position and subtract M from A;
otherwise, shift A and Q left and add M to A.

S2: If the sign of A is 1, add M to A.

28

Floating Point Representation

 A floating point is always interpreted to represent a number
in the following form: 



 m.r
e
 

 r is base (radix) 


 e is exponent 

 O l the a tissa a d the e po e t e are ph sicall
represented in the register(including their sign)

A floating-point binary number is said to
benormalizedif theost sig ifi a t digit of the a tissa
is o zero.

Floating Point Representation (Contd.,)

 Normalized numbers provide the maximum possible precision for
the floating-point number. 





 A zero cannot be normalized because it does not have a nonzero digit. 

It is usuall represe ted i the floati g poi t all s i the a tissa a d exponent.

 Decimal number +6132.789 is represented in floating point with a
fraction and an exponent as follows: 

Mantissa: +.6132789 Exponent:+04

Floating Point Representation (Contd.,)

 Binary number +1001.11 is represented with an 8-bit fraction and a six
bit exponent as follows: 

Mantissa: 01001110 Exponent: 0000100

• The fraction has a zero in the leftmost position to denote positive.

• The binary point of the fraction follows the sign bit but is not shown in

the register.
• The floating point number is equivalent to

• m  2
e
 = + (.10001110)2  2

+4
.

Floating Point Representation (Contd.,)

• Arithmetic operations with floating-point numbers are more complicated
than arithmetic with fixed point numbers and their execution takes
longer and requires more complex hardware.

• However, floating point representation is a must for scientific

computations because of the scaling problems involved with

fixed-point computations.

Two representations

Single precision and double precision or 32 bit representation and 64
bit representation.

• The basic format allows representation
in single and double precision

• 1. Basic: single (32 bits) and double (64 bits)
• single: Sign(1),Exponent(8),mantissa(23)
• double: Sign (1) Exponent(11) mantissa(52)

Floating point addition and subtraction

• BASIC ALGORITHM

• Subtract exponents (d = Ex - Ey).
Align mantissa

• Shift right d positions the mantissa of

the operand with the smallest exponent.

• Select as exponent of the result the

largest exponent.

• Add (Subtract) mantissa and produce sign

of result.

• Normalization of result. Three situations can occur:

(a) The result already normalized: no action is
needed 1.10011111 0.00101011

1.11001010

Effective operation addition: there might be an overflow of the
significand. The normalization consists in

– Shift right the significand one position

Increment by one the exponent
1.1001111 0.0110110

10.0000101

1.00000101

• Effective operation subtraction: the result might have leading zeros. Normalize:
Shift left the mantissa by a number of positions corresponding to the

number of leading zeros.

Decrement the exponent by the number of leading
zeros. 1.1001111 1.1001010

0.0000101 NORM
1.0100000

• 5. Round:

According to the specified mode. Might require an addition. If overflow
occurs, normalize by a right shift and increment the exponent.

• 6. Determine exception flags and special values : exponent overflow (special
value infinity), exponent underflow (special value gradual under-flow), inexact,
and the special value zero.

Floating point multiplication

x and y - normalized operands represented
by (Sx,Mx,Ex) and (Sy,My,Ey)

1. Multiply mantissas add exponents, and
determine sign of the result.

2. Normalize result and update exponent
3. Round
4. Determine exception flags and special values

Floating point Division

x and y - normalized operands represented
by (Sx,Mx,Ex) and (Sy,My,Ey)

1. divide mantissas and subtract exponents,
and determine sign of the result

2. Normalize result and update exponent
3. Round
4. Determine exception flags and special values

