
 
 
 
 
 
 
 
 
 
 
 
 

UNIT-III 

 
 
 
 

 

COMPUTER ARTHIMETIC 



 
 
 
 

INTRODUCTION 
 

Arithmetic Instructions in digital computers manipulate data to 

produce results necessary for the of activity solution of 

computational problems. These instructions perform arithmetic 

calculations and are responsible for the bulk of activity involved in 

processing data in a computer. The four basic arithmatic 

operations are addition,subtracton,multiplication,division. From 

these basic operations, it is possible to formulate other arithmatic 

functions and solve scientific problems by means of numerical 

analysis methods . An arithmetic processor is the part of a pro 

cessor unit that execute arithmatic operations . 



 

The data type assumed to residein prosser registers during the 

execution of an arithmetic instructions is specified in the definition 

of the instruction . An arithmetic instructions may specify binary or 

decimal data, and in each case the data may be in fixed point or 

floating-point form . Fixed-point numbers may represent integer or 

fractions. Negative numbers may be in signed – magnitude or 

signed – complement representation. The arithmetic processor is 

very simple if only a binary fixed-point add instructons is included. 

It would be more complicated if it includes all four arithmetic 

operations for binary and decimal data in fixed-point and floating – 

point representation. 



The four 

basic arithmetic operations are 

 
 
 
 
 
 
 

• ADDITION   
• SUBTRACTION   
• MULTIPLICATION   
• DIVISION  



ADDITION AND SUBTRACTION 

 
 
 
 
 
 
 

There are three ways of representing 
negative fixed point binary numbers : 

 
 
 
 

 

•  Signed Magnitude 

 

• Sig ed s o ple e t 

• Sig ed s o ple e t 



 
 
 
 

 

Most o puter use the sig ed s o pli e t 
representation when performing arithmetic 
operations with integers . For floating point 
operations , most computers use the signed 
magnitude representation. 



Arithmetic Addition and Subtraction in fixed 
point representation 

 
 

 

• Simply add the two numbers and discard any leftmost 
carry out bit.  

 
 
 
 

• Negati e  u   ers are i   s o  ple  e t 
 

– Including the result! 
 

A-B=A+(-B) 
 

B i   s o  ple  e t for 



Example 

 
 
 
 

+7 0000 0111 -7  1111 1001 

+11 0000 1011 +11 0000 1011 

+18 0001 0010 +4 0000 0100 
      

 
 
 
 
 

+7 0000 0111 -7 1111 1001 

-11 1111 0101 -11 1111 0101 

-4 1111 1100 -18 1110 1110 



s  o  ple  e t Co td., 

 
 
 

 

•   The  s o ple e t a e for ed lea i g all least sig ifi a t s a d 

the first u  ha ged, a d the repla i g  s s a d  s s i all 

other higher significant bits. 
 

 

• Identify the rightmost 1 and complement all the bits on its left. 
 
 
 

 

• E . The s o ple e t of 

• E . The s o ple e t of 

 
 
 
 

1101100 = 0010100 
 

1101111 = 0010001 



MULTIPLICATION ALGORITHMS 

 
 
 
 
 

Multiplication of two fixed point binary numbers in 
signed magnitude representation is done with 
paper and pencil by a process of successive shift 
adds operations. This process is best illustrated 
with a numerical example . the process consist of 
looking at successive bits of the multiplier , least 
 

significant bit first . If the multiplier bit is a 1 . the 
multiplicand is copied do ; other ise , zero s are 
 

copied down . the number copied down in 
successive lines are shifted one position to the 
left from the previous number . Finally ,the 
numbers are added their sum forms are product. 



EXAMPLE 

 

23 10111 Multiplicand 

19 x 10011 Multiplier 

 
10111 

 

 
10111 

 

 
00000 + 

 
00000 

 

 
10111 

 
 

437 110110101 Product 



Booths Alogritham for Multiplication 

 
 
 
 
 
 
 

 

• Decide which operand will be the multiplier and 
which will be the multiplicand  

 
• Convert both operands to two's 

complement representation using X bits   
– X must be at least one more bit than is 

required for the binary representation of the 
numerically larger operand  

 
• Begin with a product that consists of the 

multiplier with an additional X leading zero bits  



Example 

 
 
 
 
 
 

• In the week by week, there is an example of 
multiplying 2 x (-5)  

 
• For our example, let's reverse the operation, and 

multiply (-5) x 2   
– The numerically larger operand (5) would require 3 bits 

to represent in binary (101). So we must use AT 
LEAST 4 bits to represent the operands, to allow for 

the sign bit.   
• Let's use 5-bit 2's complement:   

–  -5 is 11011 (multiplier)   
–  2 is 00010 (multiplicand)  



Beginning Product 

 
 
 
 
 
 
 
 

•  The multiplier is: 

 

11011 

 
 
 
 
 
 
 

• Add 5 leading zeros to the multiplier 
to get the beginning product:  

 

00000 11011 



Step 1 for each pass 

 
 
 
 

 

• Use the LSB (least significant bit) and the previous LSB 
to determine the arithmetic action.   
–  If it is the FIRST pass, use 0 as the previous LSB.  

 
 
• Possible arithmetic actions:   

– 00   no arithmetic operation   
– 01   add multiplicand to left half of product   
– 10   subtract multiplicand from left half of product   
– 11   no arithmetic operation  



Step 2 for each pass 

 
 
 
 
 
 
 
 
 
 
 

• Perform an arithmetic right shift 
(ASR) on the entire product.  

         
• NOTE: For X-bit operands, Booth's  

algorithm requires X passes. 



Example 

 
 
 
 
 
 
 

• Let's continue with our example of multiplying (-   
5) x 2   

• Remember:  
 

–  -5 is 11011 (multiplier) 
 

– 2 is 00010 (multiplicand)  

 
 
 

 

• And we added 5 leading zeros to the multiplier 
to get the beginning product:  

 

00000 11011 



Example continued 

 
 
 
 
 
 
 

•  Initial Product and previous LSB 
 

00000 11011 0 

 

(Note: Since this is the first pass, we use 0 for the 
previous LSB) 

 
 
 
 

•  Pass 1, Step 1: Examine the last 2 bits 
 

00000 11011 0 

 

The last two bits are 10, so we need to: 
 

subtract the multiplicand from left half of product 



Example: Pass 1 continued 

 
 
 
 
 
 

 

•  Pass 1, Step 1: Arithmetic action 

 
 

(1) 00000 

 

-00010 

 

11110 

 

 

(left half of product) 

 

(mulitplicand) 

 

(uses a phantom borrow) 

 
 
 

 

•  Place result into left half of product 
 

11110 11011 0 



Example: Pass 1 continued 

 
 
 
 
 

 

• Pass 1, Step 2:  ASR (arithmetic shift right)   
– Before ASR  

 

11110 11011 0 

 

– After ASR 
 

11111 01101 1 

 

(left-most bit was 1, so a 1 was shifted in on the left) 
 

 

•  Pass 1 is complete. 



 
 
 
 
 

 

• Repeat this process for bit count, here bit 
count is 5 so we need to repeat the process 
up to 5 times to get result.  



Final Product 

 
 
 
 
 
 
 
 

 

• We have completed 5 passes on the 
5-bit operands, so we are done.  

      
• Dropping the previous LSB, 

the resulting final product is:  
 

11111 10110 



Verification 

 
 
 
 
 
 
 
 
 

• To confirm we have the correct answer, 
convert the 2's complement final 
product back to decimal.  

 

•  Final product: 11111 10110 

 

•  Decimal value:     -10 
 

which is the CORRECT product of: 
 

(-5) X 2 



DIVISION ALGORITHM 

 
 
 
 

Division of two fixed-point binary numbers is signed – 
magnitude representation is done with paper and 
pencil by a process of successive compare , shift, 
subtract operations . Binary divisionsis simpiler than 
decimal division because the quotient degit are either 
0 or 1 and there is no need to estimate how many 
time the dividend or partial remainders fits into the 
divisor . The division is simpler then decimal division 
because the quotient degit are either 0 or 1 and there 
is no need to estimate how many times the dividend 
or partial remainders fits into the divisor . the division 
processs is illustrated by a numerical example :- 





A restoring-division example 
 
 
 

Initially 0 0 0 0 0 1 0 0 0 

 0 0 0 1 1  

Shift 0 0 0 0 1 0 0 0 

Subtract 1 1 1 0 1  

Set q0 1  0  

Restore    1 1   

 0 0 0 0 1   0 0 0 0 

Shift 0 0 0 1 0 0 0 0 

Subtract 1 1 1 0 1  

Set q0 1  1  

Restore    1 1   

 0 0 0 1 0   0 0 0 0 

Shift 0 0 1 0 0 0 0 0 

Subtract 1 1 1 0 1  
   

    

Set q0 0 0 0 1 0 0 0 0 1 

Shift 0 0 0 1 0 0 0 1 

Subtract 1 1 1 0 1  

Set q0 1 1 1 1 1  

Restore    1 1   

 0 0 0 1 0   0 0 1 0 

 
 
 
 
 
 
 
 
 
 
 

 

First cycle 
 
 
 
 
 
 
 
 
 

Second cycle 
 
 
 
 
 
 
 
 

Third cycle 
 
 
 
 

Fourth cycle 
 

 

Quotient 
 

remainder 26 
 

 
 



Algorithms for Division 

 
 
 
 

 

The restoring-division algorithm: 

 

S1: DO n times 
 

Shift A and Q left one binary position. 
 

Subtract M from A, placing the answer back in A. 
 

If the sign of A is 1, set q0 to 0 and add M back to A (restore A); otherwise, set q0 to 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

27 



5) Algorithms for Division 

 
 
 
 
 
 

The non-restoring division algorithm: 

 

S1: Do n times 

 

If the sign of A is 0, shift A and Q left one binary position and subtract M from A; 
otherwise, shift A and Q left and add M to A. 

 

S2: If the sign of A is 1, add M to A. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28 



Floating Point Representation 

 
 
 
 
 

 A floating point is always interpreted to represent a number 
in the following form: 



 m.r
e
 

 r is base (radix) 


 e is exponent 
 

 O l the a tissa a d the e po e t e are ph sicall 
represented in the register(including their sign) 

 

A floating-point binary number is said to 
benormalizedif theost sig ifi a t digit of the a tissa 
is o zero. 



Floating Point Representation (Contd.,) 

 
 
 
 
 

 Normalized numbers provide the maximum possible precision for 
the floating-point number. 





 A zero cannot be normalized because it does not have a nonzero digit. 
 

It is usuall represe ted i the floati g poi t all s i the a tissa a d exponent. 
 
 
 
 
 
 

 Decimal number +6132.789 is represented in floating point with a 
fraction and an exponent as follows: 

 

Mantissa: +.6132789 Exponent:+04 



Floating Point Representation (Contd.,) 

 
 
 
 
 

 Binary number +1001.11 is represented with an 8-bit fraction and a six 
bit exponent as follows: 

 

Mantissa: 01001110 Exponent: 0000100 
 
 
 

• The fraction has a zero in the leftmost position to denote positive.  
 
• The binary point of the fraction follows the sign bit but is not shown in 

the register.   
• The floating point number is equivalent to   

• m  2
e
 = + (.10001110)2  2

+4
.  



Floating Point Representation (Contd.,) 

 
 
 
 
 

• Arithmetic operations with floating-point numbers are more complicated 
than arithmetic with fixed point numbers and their execution takes 
longer and requires more complex hardware.  

 
 
 
 
• However, floating point representation is a must for scientific 

computations because of the scaling problems involved with  
 

fixed-point computations. 
 

Two representations 

 

Single precision and double precision or 32 bit representation and 64 
bit representation. 



 
 
 
 
 

 

• The basic format allows representation 
in single and double precision   

• 1. Basic: single (32 bits) and double (64 bits)   
• single: Sign(1),Exponent(8),mantissa(23)   
• double: Sign (1) Exponent(11) mantissa(52)  



Floating point addition and subtraction 

 
 

 

• BASIC ALGORITHM  
 
• Subtract exponents (d = Ex - Ey). 
Align mantissa  
 
• Shift right d positions the mantissa of 

the operand with the smallest exponent.  
 
• Select as exponent of the result the 

largest exponent.  
 
• Add (Subtract) mantissa and produce sign 

of result.  



 
 
 
 
 

• Normalization of result. Three situations can occur:  
 

(a) The result already normalized: no action is 
needed 1.10011111 0.00101011  

 
-----------------   
1.11001010  

 

Effective operation addition: there might be an overflow of the 
significand. The normalization consists in  

–    Shift right the significand one position  
 

Increment by one the exponent 
1.1001111 0.0110110 

 

--------------- 

10.0000101 

1.00000101 



 
 
 
 
 

• Effective operation subtraction: the result might have leading zeros. Normalize: 
Shift left the mantissa by a number of positions corresponding to the 

number of leading zeros. 
 

Decrement the exponent by the number of leading 
zeros. 1.1001111 1.1001010 

 

-------------- 
 

0.0000101 NORM 
1.0100000 

• 5. Round:  
 

According to the specified mode. Might require an addition. If overflow 
occurs, normalize by a right shift and increment the exponent. 

 

• 6. Determine exception flags and special values : exponent overflow (special 
value infinity), exponent underflow (special value gradual under-flow), inexact, 
and the special value zero.  



Floating point multiplication 

 
 
 

 

x and y - normalized operands represented 
by (Sx,Mx,Ex) and (Sy,My,Ey) 

 

1. Multiply mantissas add exponents, and 
determine sign of the result.   

2. Normalize result and update exponent   
3. Round   
4. Determine exception flags and special values  



Floating point Division 

 
 
 

 

x and y - normalized operands represented 
by (Sx,Mx,Ex) and (Sy,My,Ey) 

 

1. divide mantissas and subtract exponents, 
and determine sign of the result   

2. Normalize result and update exponent   
3. Round   
4. Determine exception flags and special values  
 


