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     UNIT – I 

 
Introduction of Algorithm 

                                          

Informal Definition: 

  An Algorithm is any well-defined computational procedure that takes some value 

or set of values as Input and produces a set of values or some value as output. Thus algorithm is 

a sequence of computational steps that transforms the i/p into the o/p. 

 

Formal Definition: 

  An Algorithm is a finite set of instructions that, if followed, accomplishes a 

particular task. In addition, all algorithms should satisfy the following criteria. 

 

1. INPUT    Zero or more quantities are externally supplied. 

2. OUTPUT  At least one quantity is produced. 

3. DEFINITENESS  Each instruction is clear and unambiguous. 

4. FINITENESS  If we trace out the instructions of an algorithm, then for all cases, the 

algorithm terminates after a finite number of steps. 

5. EFFECTIVENESS  Every instruction must very basic so that it can be carried out, in 

principle, by a person using only pencil & paper. 

 

Issues or study of Algorithm: 

 

 How to device or design an algorithm  creating and algorithm. 

 How to express an algorithm  definiteness. 

 How to analysis an algorithm  time and space complexity. 

 How to validate an algorithm  fitness. 

 Testing the algorithm  checking for error. 

                                          

Algorithm Specification: 

 

 Algorithm can be described in three ways. 

 

1. Natural language like English: 

 When this way is choused care should be taken, we                                                             

should ensure that each & every statement is definite. 

 

2. Graphic representation called flowchart: 

                                                     This method will work well when the algorithm 

is small& simple. 

 

3. Pseudo-code Method: 

                                   In this method, we should typically describe algorithms as program, 

which resembles language like Pascal & algol. 
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Pseudo-Code Conventions: 

 

1. Comments begin with // and continue until the end of line. 

 

2. Blocks are indicated with matching braces {and}. 

 

3. An identifier begins with a letter. The data types of variables are not explicitly declared. 

 

4. Compound data types can be formed with records. Here is an example, 

Node. Record 

{ 

   data type – 1   data-1; 

 . 

 . 

 . 

    data type – n  data – n; 

    node * link; 

  } 

 

  Here link is a pointer to the record type node. Individual data items of a record 

can be accessed with  and period. 

 

5. Assignment of values to variables is done using the assignment statement. 

<Variable>:= <expression>; 

 

6. There are two Boolean values TRUE and FALSE. 

 

 Logical Operators       AND, OR, NOT 

Relational Operators   <, <=,>,>=, =, != 

 

7. The following looping statements are employed. 

 

For, while and repeat-until 

While Loop: 

  While < condition > do 

  { 

   <statement-1> 

    . 

    . 

    . 

 

   <statement-n> 

   } 

 

For Loop: 

 For variable: = value-1 to value-2 step step do 
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{ 

 <statement-1> 

  . 

  . 

  . 

<statement-n> 

} 

repeat-until: 

 

  repeat 

   <statement-1> 

    . 

    . 

    . 

 <statement-n> 

  until<condition> 

 

8. A conditional statement has the following forms. 

 

 If <condition> then <statement> 

 If <condition> then <statement-1>  

     Else <statement-1> 

 

Case statement: 

 

Case 

{ 

 : <condition-1> : <statement-1> 

    . 

    . 

    . 

 : <condition-n> : <statement-n> 

 : else : <statement-n+1> 

} 

 

9. Input and output are done using the instructions read & write. 

 

10. There is only one type of procedure: 

Algorithm, the heading takes the form, 

 

 Algorithm Name (Parameter lists) 

 

 As an example, the following algorithm fields & returns the maximum of „n‟ given 

numbers: 
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1. algorithm Max(A,n) 

2. // A is an array of size n 

3. { 

4. Result := A[1]; 

5. for I:= 2 to n do 

6.    if A[I] > Result then 

7.          Result :=A[I]; 

8.   return Result; 

9. } 

 

 

In this algorithm (named Max), A & n are procedure parameters. Result & I are Local 

variables. 

 

 Next we present 2 examples to illustrate the process of translation problem into an 

algorithm. 

 

Recursive Algorithms: 

 

 A Recursive function is a function that is defined in terms of itself. 

 Similarly, an algorithm is said to be recursive if the same algorithm is invoked in 

the body. 

 An algorithm that calls itself is Direct Recursive. 

 Algorithm „A‟ is said to be Indirect Recursive if it calls another algorithm which 

in turns calls „A‟. 

 The Recursive mechanism, are externally powerful, but even more importantly, 

many times they can express an otherwise complex process very clearly. Or these 

reasons we introduce recursion here. 

 The following 2 examples show how to develop a recursive algorithms. 

 

 In the first, we consider the Towers of Hanoi problem, and in the 

second, we generate all possible permutations of a list of characters. 

 

1. Towers of Hanoi: 

 

 

 

 

 

 . 

 . 

 . 

 

 

 

 Tower A                                Tower B        Tower C 
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 It is Fashioned after the ancient tower of Brahma ritual. 

 According to legend, at the time the world was created, there was a diamond tower 

(labeled A) with 64 golden disks. 

 The disks were of decreasing size and were stacked on the tower in decreasing order of 

size bottom to top. 

 Besides these tower there were two other diamond towers(labeled B & C) 

 Since the time of creation, Brehman priests have been attempting to move the disks from 

tower A to tower B using tower C, for intermediate storage. 

 As the disks are very heavy, they can be moved only one at a time. 

 In addition, at no time can a disk be on top of a smaller disk. 

 According to legend, the world will come to an end when the priest have  

       completed this task. 

 A very elegant solution results from the use of recursion. 

 Assume that the number of disks is „n‟. 

 To get the largest disk to the bottom of tower B, we move the remaining „n-1‟  

     disks to tower C and then move the largest to tower B. 

 Now we are left with the tasks of moving the disks from tower C to B. 

 To do this, we have tower A and B available. 

 The fact, that towers B has a disk on it can be ignored as the disks larger than the  

      disks being moved from tower C and so any disk scan be placed on top of it. 

 

Algorithm: 

 

1. Algorithm TowersofHanoi(n,x,y,z) 

2. //Move the top „n‟ disks from tower x to tower y. 

3. { 

 

 . 

 . 

 . 

 

                        4.if(n>=1) then 

                        5. { 

                        6.  TowersofHanoi(n-1,x,z,y); 

                        7.  Write(“move top disk from tower “ X ,”to top of tower “ ,Y); 

8. Towersofhanoi(n-1,z,y,x); 

9. } 

10. } 

 

2. Permutation Generator: 

 

 Given a set of n>=1elements, the problem is to print all possible permutations of this 

set. 
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 For example, if the set is {a,b,c} ,then the set of permutation is, 

 

   { (a,b,c),(a,c,b),(b,a,c),(b,c,a),(c,a,b),(c,b,a)} 

 It is easy to see that given „n‟ elements there are n! different permutations. 

 A simple algorithm can be obtained by looking at the case of  4 statement(a,b,c,d) 

 The Answer can be constructed by writing 

 

1. a followed by all the permutations of (b,c,d) 

2. b followed by all the permutations of(a,c,d) 

3. c followed by all the permutations of (a,b,d) 

4. d followed by all the permutations of (a,b,c) 

 

Algorithm: 

 

Algorithm perm(a,k,n) 

{ 

if(k=n) then write (a[1:n]); // output permutation 

else   //a[k:n] ahs more than one permutation 

          // Generate this recursively. 

for I:=k to n do 

{ 

t:=a[k]; 

a[k]:=a[I]; 

a[I]:=t; 

perm(a,k+1,n); 

//all permutation of a[k+1:n] 

t:=a[k]; 

a[k]:=a[I]; 

a[I]:=t; 

} 

} 

 

Performance Analysis: 

 

1. Space Complexity: 

 The space complexity of an algorithm is the amount of money it needs to run 

to compilation. 

 

2. Time Complexity: 

 The time complexity of an algorithm is the amount of computer time it needs 

to run to compilation. 

 

Space Complexity: 

 

Space Complexity Example: 

 Algorithm abc(a,b,c) 
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 { 

 return a+b++*c+(a+b-c)/(a+b) +4.0; 

 } 

 

 The Space needed by each of these algorithms is seen to be the sum of the following 

component. 

 

1.A fixed part that is independent of the characteristics (eg:number,size)of the inputs and 

outputs. 

       The part typically includes the instruction space (ie. Space for the code), space for simple 

variable and fixed-size component variables (also called aggregate) space for constants, and 

so on. 

 

2. A variable part that consists of the space needed by component variables whose size is 

dependent on the particular problem instance being solved, the space needed by 

referenced variables (to the extent that is depends on instance characteristics), and the 

recursion stack space. 

 

 The space requirement s(p) of any algorithm p may therefore be written as, 

 S(P) = c+ Sp(Instance characteristics) 

Where „c‟ is a constant. 

 

Example 2: 

 

 Algorithm sum(a,n) 

 { 

  s=0.0; 

  for I=1 to n do 

  s= s+a[I]; 

  return s; 

 } 

 

 The problem instances for this algorithm are characterized by n,the number of 

elements to be summed. The space needed d by „n‟ is one word, since it is of 

type integer. 

 The space needed by „a‟a is the space needed by variables of tyepe array of 

floating point numbers. 

 This is atleast „n‟ words, since „a‟ must be large enough to hold the „n‟ 

elements to be summed. 

 So,we obtain Ssum(n)>=(n+s) 

   [ n for a[],one each for n,I a& s] 

 

Time Complexity: 

 

 The time T(p) taken by a program P is  the sum of the compile time and the 

run time(execution time) 
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The compile time does not depend on the instance characteristics. Also we may 

assume that a compiled program will be run several times without recompilation .This 

rum time is denoted by tp(instance characteristics). 

 

 The number of steps any problem statemn t is assigned depends on the kind of 

statement. 

 

 For example, comments   0 steps. 

 Assignment statements  1 steps. 

[Which does not involve any calls to other algorithms] 

 

Interactive statement such as for, while & repeat-until Control part of the statement. 

 

1. We introduce a variable, count into the program statement to increment count   with 

initial value 0.Statement to increment count by the appropriate amount are introduced 

into the program. 

  This is done so that each time a statement in the original program is executes 

count is incremented by the step count of that statement.   

 

Algorithm: 

 

Algorithm sum(a,n) 

{ 

s= 0.0; 

count = count+1; 

for I=1 to n do 

{ 

 count =count+1; 

s=s+a[I]; 

count=count+1; 

} 

count=count+1; 

count=count+1; 

return s; 

} 

 

 If the count is zero to start with, then it will be 2n+3 on termination. So each   

invocation of sum execute a total of 2n+3 steps. 

 

            2. The second method to determine the step count of an algorithm is to build a  

table in which we list the total number of steps contributes by each statement. 

  

          First determine the number of steps per execution (s/e) of the statement and the  

           total number of times (ie., frequency) each statement is executed. 

         By combining these two quantities, the total contribution of all statements, the  
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             step count for the entire algorithm is obtained. 

 

 
Statement S/e Frequency Total 

1. Algorithm Sum(a,n) 

2.{ 

3.        S=0.0; 

4.        for I=1 to n do 

5.         s=s+a[I]; 

6.         return s; 

7.  } 

 

0 

0 

1 

1 

1 

1 

0 

- 

- 

1 

n+1 

n 

1 

- 

0 

0 

1 

n+1 

n 

1 

0 

Total   2n+3 

 

 

AVERAGE –CASE ANALYSIS 

 

 Most of the time, average-case analysis are performed under the more or less realistic 

assumption that all instances of any given size are equally likely. 

 For sorting problems, it is simple to assume also that all the elements to be sorted are 

distinct. 

 Suppose we have „n‟ distinct elements to sort by insertion and all n! permutation of 

these elements are equally likely. 

 To determine the time taken on a average by the algorithm ,we could add the times 

required to sort each of the possible permutations ,and then divide by n! the answer 

thus obtained. 

 An alternative approach, easier in this case is to analyze directly the time required by 

the algorithm, reasoning probabilistically as we proceed. 

 For any I,2  I n, consider the sub array, T[1….i]. 

 The partial rank of T[I] is defined as the position it would occupy if the sub array 

were sorted. 

 For Example, the partial rank of T[4] in [3,6,2,5,1,7,4] in 3 because T[1….4] once 

sorted is [2,3,5,6]. 

 Clearly the partial rank of T[I] does not depend on the order of the element in  

 Sub array T[1…I-1]. 

 

Analysis 

 

Best case: 

 This analysis constrains on the input, other than size. Resulting in the fasters possible run time 

 

Worst case: 

                    This analysis constrains on the input, other than size. Resulting in the fasters 

possible run time 
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Average case: 

                        This type of analysis results in average running time over every type of input. 

 

Complexity: 

                    Complexity refers to the rate at which the storage time grows as a function of the 

problem size 

 

Asymptotic analysis: 

       Expressing the complexity in term of its relationship to know function. 

This type analysis is called asymptotic analysis. 

 

Asymptotic notation: 

 

Big ‘oh’: the function f(n)=O(g(n)) iff there exist positive constants c and no such that 

f(n)≤c*g(n) for all n, n ≥ no. 

 

Omega: the function f(n)=Ω(g(n)) iff there exist positive constants c and no such that f(n) ≥ 

c*g(n) for all n, n ≥ no. 

 

Theta: the function f(n)=ө(g(n)) iff there exist positive constants c1,c2 and no such that c1 g(n) 

≤ f(n) ≤ c2 g(n) for all n, n ≥ no. 

 

Recursion: 

Recursion may have the following definitions:  

-The nested repetition of identical algorithm is recursion.  

-It is a technique of defining an object/process by itself.  

-Recursion is a process by which a function calls itself repeatedly until some specified condition 

has been satisfied.  

 

When to use recursion: 

 

Recursion can be used for repetitive computations in which each action is stated in terms 

of previous result. There are two conditions that must be satisfied by any recursive procedure.  

1. Each time a function calls itself it should get nearer to the solution.  

2. There must be a decision criterion for stopping the process.  

In making the decision about whether to write an algorithm in recursive or non-recursive form, it 

is always advisable to consider a tree structure for the problem. If the structure is simple then use 

non-recursive form. If the tree appears quite bushy, with little duplication of tasks, then recursion 

is suitable.  

 

The recursion algorithm for finding the factorial of a number is given below,  

 

Algorithm : factorial-recursion  
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Input : n, the number whose factorial is to be found.  

Output : f, the factorial of n  

Method : if(n=0)  

f=1  

else  

f=factorial(n-1) * n  

if end  

algorithm ends.  

 

The general procedure for any recursive algorithm is as follows,  

1. Save the parameters, local variables and return addresses.  

2. If the termination criterion is reached perform final computation and goto step 3 

otherwise perform final computations and goto step 1  

 

3. Restore the most recently saved parameters, local variable and return address and goto 

the latest return address.  

 

 Iteration v/s Recursion: 

 

Demerits of recursive algorithms: 

1. Many programming languages do not support recursion; hence, recursive mathematical 

function is implemented using iterative methods.  

2. Even though mathematical functions can be easily implemented using recursion it is 

always at the cost of execution time and memory space. For example, the recursion tree 

for generating 6 numbers in a Fibonacci series generation is given in fig 2.5. A Fibonacci 

series is of the form 0,1,1,2,3,5,8,13,…etc, where the third number is the sum of 

preceding two numbers and so on. It can be noticed from the fig 2.5 that, f(n-2) is 

computed twice, f(n-3) is computed thrice, f(n-4) is computed 5 times.  

3. A recursive procedure can be called from within or outside itself and to ensure its proper 

functioning it has to save in some order the return addresses so that, a return to the proper 

location will result when the return to a calling statement is made.  
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4. The recursive programs needs considerably more storage and will take more time.  

 

Demerits of iterative methods : 

 Mathematical functions such as factorial and Fibonacci series generation can be easily 

implemented using recursion than iteration.  

 In iterative techniques looping of statement is very much necessary.  

Recursion is a top down approach to problem solving. It divides the problem into pieces or 

selects out one key step, postponing the rest.  

Iteration is more of a bottom up approach. It begins with what is known and from this constructs 

the solution step by step. The iterative function obviously uses time that is O(n) where as 

recursive function has an exponential time complexity.  

It is always true that recursion can be replaced by iteration and stacks. It is also true that stack 

can be replaced by a recursive program with no stack.  

 

 
 

 

SOLVING RECURRENCES :-( Happen again (or) repeatedly)  

 

 The indispensable last step when analyzing an algorithm is often to solve a recurrence 

equation. 

 With a little experience and intention, most recurrence can be solved by intelligent 

guesswork. 

 However, there exists a powerful technique that can be used to solve certain classes of 

recurrence almost automatically. 

 This is a main topic of this section the technique of the characteristic equation. 

 

1. Intelligent guess work: 

    

This approach generally proceeds in 4 stages. 

 

1. Calculate the first few values of the recurrence 

2. Look for regularity. 

3. Guess a suitable general form. 

4. And finally prove by mathematical induction(perhaps constructive induction). 
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Then this form is correct. 

           Consider the following recurrence, 

 

 

                                         0                      if n=0       

          T(n) =                 3T(n ÷ 2)+n    otherwise  

 

 

 First step is to replace n ÷ 2 by n/2 

 It is tempting to restrict „n‟ to being ever since in that case n†2 = n/2, but recursively 

dividing an even no. by 2, may produce an odd no. larger than 1. 

 Therefore, it is a better idea to restrict „n‟ to being an exact power of 2. 

 First, we tabulate the value of the recurrence on the first few powers of 2. 

 

probabilistic analysis of algorithms : 
 

is an approach to estimate the computational complexity of algorithm or a computational 

problem. It starts from an assumption about a probabilistic distribution of the set of all possible 

inputs. This assumption is then used to design an efficient algorithm or to derive the complexity 

of a known algorithm. 

In probabilistic analysis of probabilistic (randomized) algorithms, the distributions or averaging 

for all possible choices in randomized steps are also taken into an account, in addition to the 

input distributions. 

amortized analysis : 

is a method of analyzing algorithms that considers the entire sequence of operations of the 

program. It allows for the establishment of a worst-case bound for the performance of an 

algorithm irrespective of the inputs by looking at all of the operations. This analysis is 

most commonly discussed using big O notation. 

At the heart of the method is the idea that while certain operations may be extremely 

costly in resources, they cannot occur at a high enough frequency to weigh down the 

entire program because the number of less costly operations will far outnumber the costly 

ones in the long run, "paying back" the program over a number of iterations.
[1]

 It is 

particularly useful because it guarantees worst-case performance rather than making 

assumptions about the state of the program. 

There are generally three methods for performing amortized analysis: the aggregate method, the 

accounting method, and the potential method. All of these give the same answers, and their usage 

difference is primarily circumstantial and due to individual preference.  

 Aggregate analysis determines the upper bound T(n) on the total cost of a sequence 

of n operations, then calculates the amortized cost to be T(n) / n. 

http://en.wikipedia.org/wiki/Computational_complexity
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Amortized_analysis#cite_note-fiebrink-1
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  The accounting method determines the individual cost of each operation, combining its 

immediate execution time and its influence on the running time of future operations. Usually, 

many short-running operations accumulate a "debt" of unfavorable state in small increments, 

while rare long-running operations decrease it drastically
.
 

  The potential method is like the accounting method, but overcharges operations early to 

compensate for undercharges later 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Accounting_method
http://en.wikipedia.org/wiki/Potential_method
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Disjoint Sets 

Disjoint-set data structure is a data structurethat keeps track of a set of elements partitioned into a 

number of disjoint (nonoverlapping) subsets.  

A union-find algorithmis an algorithm that performs two useful operations on such a data structure: 

 Find: Determine which subset a particular element is in. This can be used for determining if two 

elements are in the same subset. 

 Union: Join two subsets into a single subset. 

Because it supports these two operations, a disjoint-set data structure is sometimes called a union-find 

data structure or merge-find set. The other important operation, MakeSet, which makes a set containing 

only a given element (a singleton), is generally trivial. With these three operations, many 

practical partitioning problems can be solved  

Equivalence Relations 

A binary relation R over a set S is called an 

equivalence relation if it has following properties 

1. Reexivity: for all element x, xRx 

2. Symmetry: for all elements x and y, xRy if and only if yRx 

3. Transitivity: for all elements x, y and z,if xRy and yRz then zRz 

The relation \is related to" is an equivalence relation over the set of people 

 

S1= {0,1,2,3,4}; S2 = { 5,6,7,8} and SJ ={3, 4, 6}.  

The operations we wish to perform on these sets are:  

(a) Disjoint set union ... if S; and Sj are two disjoint sets, then their union S; U S j = { all 

elements x such that x is in S; or S j}. Thus, S 1 U S 2 = {0,1,2,3,4,5,6,7,8}. Since we have 

assumed that all sets are disjoint, following the union of S; and Sj we can assume that the sets S; 

and Sj no longer exist independently, i.e. they are replaced by S; U Sj in the collection of sets.  

(b) Find (i) ... find the set containing element i. Thus, 4 is in set S1 and 8 is in set S 2.  

 

 
S1 U S2 in the tree format 

http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/Partition_of_a_set
http://en.wikipedia.org/wiki/Disjoint_sets
http://en.wikipedia.org/wiki/Singleton_(mathematics)
http://en.wikipedia.org/wiki/Partitioning_problem
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Simple Union Method 

void SimpleUnion(int i, int j) 

{parent[i] = j;} 

The time complexity O(1) 

Simple Find Method 

int SimpleFind(int i) 

{ 

while (parent[i] >= 0) 

i = parent[i]; // move up the tree 

return i; 

} 

 

Time Complexity of SimpleFind() 

• Tree height may equal number of elements n in tree. 

Union(2,1), Union(3,2), Union(4,3), Union(5,4)… 

So complexity is O(n). 

 

Weighted Rule 

Make tree with fewer number of elements a subtree of the other tree. 
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• Root of each tree must record either its height or the number of elements in the tree. 

• When a union is done using the height rule, the height increases only when two trees of 

equal height are united. 

• When the weight rule is used, the weight of the new tree is the sum of the weights of the 

trees that are united. 

Algorithm WIGHTEDUNION(i j)  

//union sets with roots i andj, i ;it.  j, using the weighting rule./ /  

//PARENT(i) =  -COUNT(i) and PARENT(;) =  - COUNT(j)./ / 

integer i,j,x  

x <-- PARENT(i) + PARENT(j)  

if. PARENT(i) > PARENT(j)  

then PARENT(i) <-- j  //i has fewer nodes//  

PARENT(j) <-- x  

else PARENT(j) <-- i  // j  has fewer nodes/ /  

PARENT(i) - x  

endif  

end WIGHTEDUNION 

 

Collapsing Rule: If j  is  a node on the path from i to  its  root then set PARENT(j) - root (i). The 

new algorithm is procedure FIND  
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Algorithm COLLAPSINGFIND(i)  

//Find the root of the tree containing element i. Use the/ I  

//collapsing rule to collapse all nodes from i to the rootj//  

j <-- i  

while PARENT(j) > 0 do / /find root/ / 

j  <-- PARENT(j)  

repeat  

k <-- i  

while k ;it. j  do  //collapse nodes from i to rootj//  

t  <-- PARENT(k)  

PARENT(k)  j  

k - t  

repeat  

retum(j)  

end COLLAPSINGFIND 

Spanning Trees 
A tree is a connected undirected graph with no cycles. It is a spanning tree of a graph G if it 

spans G (that is, it includes every vertex of G) and is a sub-graph of G (every edge in the tree 

belongs to G). A spanning tree of a connected graph G can also be defined as a maximal set of 

edges of G that contains no cycle, or as a minimal set of edges that connect all vertices 

 
 

Breadth-First Search Algorithmis a strategy for searching in a graph when search is limited to 

essentially two operations: (a) visit and inspect a node of a graph; (b) gain access to visit the 

nodes that neighbor the currently visited node. The BFS begins at a root node and inspects all the 

neighboring nodes. Then for each of those neighbor nodes in turn, it inspects their neighbor 

nodes which were unvisited, and so on.  

Pseudocode 

1  procedure BFS(G,v) is 

2      create a queue Q 

3      create a set V 

4      enqueue v onto Q 

5      add v to V 

6      while Q is not empty loop 

http://en.wikipedia.org/wiki/Connected_graph
http://en.wikipedia.org/wiki/Undirected_graph
http://en.wikipedia.org/wiki/Cycle_(graph_theory)
http://en.wikipedia.org/wiki/Graph_search_algorithm
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7          t ← Q.dequeue() 

8          if t is what we are looking for then 

9              return t 

10         end if 

11         for all edges e in G.adjacentEdges(t) loop 

12             u ← G.adjacentVertex(t,e) 

13             if u is not in V then 

14                  add u to V 

15                  enqueue u onto Q 

16             end if 

17         end loop 

18     end loop 

19     return none 

20 end BFS 

 

Space complexity 

When the number of  vertices in the graph is known ahead of  time, and additional data structures 

are used to determine which vertices have already been added to the queue, the space complexity 

can be expressed as  where  is the cardinality of  the set of  vertices. If  the graph is 

represented by an Adjacency list it occupies  space in memory, while an Adjacency 

matrix representation occupies . 

Time complexity 

The time complexity can be expressed as   since every vertex and every edge will be 

explored in the worst case. Note:  may vary between  and , depending 

on how sparse the input graph is (assuming that the graph is connected). 

Depth First Search 

Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. 
One starts at the root (selecting some arbitrary node as the root in the case of  a graph) and explores 
as far as possible along each branch before backtracking.Key difference between BFS and DFS is the 
order discovered (adjacent) vertices are explored. 

BFS places discovered vertices in FIFO queue, exploring vertices in the order discovered. 
DFS places discovered vertices in LIFO stack, exploring vertices as discovered. 
For the following graph: 

http://en.wikipedia.org/wiki/Cardinality
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Tree_data_structure
http://en.wikipedia.org/wiki/Graph_(data_structure)
http://en.wikipedia.org/wiki/Tree_(data_structure)#Terminology
http://en.wikipedia.org/wiki/Backtracking
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a depth-first search starting at A, assuming that the left edges in the shown graph are chosen before 

right edges, and assuming the search remembers previously visited nodes and will not repeat them 

(since this is a small graph), will visit the nodes in the following order: A, B, D, F, E, C, G. The edges 

traversed in this search form a Trémaux tree, a structure with important applications in graph 

theory. 

Performing the same search without remembering previously visited nodes results in visiting nodes 

in the order A, B, D, F, E, A, B, D, F, E, etc. forever, caught in the A, B, D, F, E cycle and never 

reaching C or G. 

Iterative deepening is one technique to avoid this infinite loop and would reach all nodes. 

PSEUDOCODE  

1  procedure DFS(G,v): 

2      label v as discovered 

3      for all edges from v to w in G.adjacentEdges(v) do 

4          if vertex w is not labeled as discovered then 

5              recursively call DFS(G,w) 

Connected component 

In graph theory, a connected component (or just component) of an undirected graph is 

a subgraph in which any two vertices are connected to each other bypaths, and which is 

connected to no additional vertices in the super graph. For example, the graph shown in the 

illustration on the right has three connected components. A graph that is itself connected has 

exactly one connected component, consisting of the whole graph 

a graph is said to be strongly connected if every vertex is reachable from every other vertex. 

The strongly connected components of an arbitrary directed graph form a partition into 

subgraphs that are themselves strongly connected. It is possible to test the strong connectivity of 

a graph, or to find its strongly connected components, in linear time 

http://en.wikipedia.org/wiki/Tr%C3%A9maux_tree
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Iterative_deepening_depth-first_search
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Undirected_graph
http://en.wikipedia.org/wiki/Glossary_of_graph_theory#Subgraphs
http://en.wikipedia.org/wiki/Connected_graph
http://en.wikipedia.org/wiki/Path_(graph_theory)
http://en.wikipedia.org/wiki/Reachability
http://en.wikipedia.org/wiki/Linear_time
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Articulation Point 

An articulation point of a graph is a vertex v such that if v and its incident edges are removed, a  

connected component of the graph is broken into two or more pieces 

a connected component with no articulation points is said to be biconnected 

 the dfs can be used to help find the biconnected components of a graph (how?) 

 finding articulation points is one problem concerning the connectivity of graphs 

 Biconnected graph: A graph with no articulation point called biconnected. In other 

words, a graph is biconnected if and only if any vertex is deleted, the graph remains 

connected. 

 Biconnected component: A biconnected component of a graph is a maximal biconnected 

subgraph- a biconnected subgraph that is not properly contained in a larger biconnected 

subgraph. 

 A graph that is not biconnected can divide into biconnected components, sets of nodes 

mutually accessible via two distinct paths. 

 

 Articulation points: A, H, G, J 

 Biconnected components: {A, C, G, D, E, F}、{G, J, L, B}、B、H、I、K 

 

 


