
UNIT -4Syllabus:

Derived types – Structures – Basic Concepts, Nested structures, arrays of structures, structures

and functions ,Unions, bit fields, C Programming examples.

Pointers- Basic concepts, pointers and functions, pointers and strings, pointers and arrays,

pointers and structures, self-referential structures, example C programs.

1. Structures

 Arrays allow to define type of variables that can hold several data items of the same kind.

Similarly structure is another user defined data type available in C that allows to combine data

items of different kinds.

 Structures are used to represent a record. Suppose you want to keep track of your books

in a library. You might want to track the following attributes about each book −

 Title

 Author

 Subject

 Book ID

1.1.Defining a Structure

 To define a structure, you must use the struct statement. The struct statement defines a

new data type, with more than one member. The format of the struct statement is as follows –

structstructure_name{

data_type struct_member1;

data_type struct_member2;

data_typestruct_member n;

} [one or more structure variables separated by comma];

 The struct_name is optional and each struct_member is a normal variable definition,

such as int i; or float f; or any other valid variable definition. At the end of the structure's

definition, before the final semicolon, you can specify one or more structure variables but it is

optional.

Here is the way you would declare the Book structure –

struct Books

{

 char title[50];

 char author[50];

 char subject[100];

 intbook_id;

}book;

1.2 Accessing Structure Members

 To access any member of a structure, we use the member access operator (.). The

member access operator is coded as a period between the structure variable name and the

structure member that we wish to access. You would use the keyword struct to define variables

of structure type. The following example shows how to use a structure in a program −

#include <stdio.h>

#include <string.h>

struct Books {

char title[50];

char author[50];

char subject[100];

intbook_id;

};

int main() {

struct Books Book1; /* Declare Book1 of type Book */

struct Books Book2; /* Declare Book2 of type Book */

 /* book 1 specification */

strcpy(Book1.title, "C Programming");

strcpy(Book1.author, "Nuha Ali");

strcpy(Book1.subject, "C Programming Tutorial");

 Book1.book_id = 6495407;

 /* book 2 specification */

strcpy(Book2.title, "Telecom Billing");

strcpy(Book2.author, "Zara Ali");

strcpy(Book2.subject, "Telecom Billing Tutorial");

 Book2.book_id = 6495700;

 /* print Book1 info */

printf("Book 1 title : %s\n", Book1.title);

printf("Book 1 author : %s\n", Book1.author);

printf("Book 1 subject : %s\n", Book1.subject);

printf("Book 1 book_id : %d\n", Book1.book_id);

 /* print Book2 info */

printf("Book 2 title : %s\n", Book2.title);

printf("Book 2 author : %s\n", Book2.author);

printf("Book 2 subject : %s\n", Book2.subject);

printf("Book 2 book_id : %d\n", Book2.book_id);

return 0;

}

When the above code is compiled and executed, it produces the following result –

Book 1 title : C Programming

Book 1 author :Nuha Ali

Book 1 subject : C Programming Tutorial

Book 1 book_id : 6495407

Book 2 title : Telecom Billing

Book 2 author : Zara Ali

Book 2 subject : Telecom Billing Tutorial

Book 2 book_id : 6495700

2. Nested structures
 Structure written inside another structure is called as nesting of two structures.Nested

Structures are allowed in C Programming Language.We can write one Structure inside another

structure as member of another structure.

Example:

struct date

{

int date;

int month;

int year;

};

struct Employee

 {

charename[20];

intssn;

float salary;

struct date doj;

}emp1;

2.1Accessing the nested elements

 Structure members are accessed using dot operator.

 ‘date‘ structure is nested within Employee Structure.

 Members of the ‘date‘ can be accessed using ’employee’

 emp1 &doj are two structure names (Variables)

2.2 Explanation of nested elements:

Accessing Month Field : emp1.doj.month

Accessing day Field : emp1.doj.day

Accessing year Field : emp1.doj.year

2.3 Example

#include <stdio.h>

struct Employee

{

charename[20];

intssn;

float salary;

struct date

 {

int date;

int month;

int year;

}doj;

}emp = {"Pritesh",1000,1000.50,{22,6,1990}};

int main(intargc, char *argv[])

{

printf("\nEmployee Name : %s",emp.ename);

printf("\nEmployee SSN : %d",emp.ssn);

printf("\nEmployee Salary : %f",emp.salary);

printf("\nEmployee DOJ : %d/%d/%d", \

emp.doj.date,emp.doj.month,emp.doj.year);

return 0;

}

Output:

Employee Name : Pritesh

Employee SSN : 1000

Employee Salary : 1000.500000

Employee DOJ : 22/6/1990

3. Arrays of Structures:

 We may declare the structure variable as an array by using index. Arrays of structures are

passed using the following syntax,

structstructure_name{

data_type struct_member1;

data_type struct_member2;

data_typestruct_member n;

} ;

structstructure_namestruct_variable[index_value];

Example:

#include<stdio.h>

#include<conio.h>

void main()

{

 struct student

 {

 intrno;

 char name[20];

 char course[20];

 float fees;

 };

 struct student s[20];

 clrscr();

 s[0].rno=10;

 gets(s[0].name);

 gets(s[0].course);

 s[0].fees=1000.50;

 printf("\n %d\t %s\t%s\t%f",s[0].rno,s[0].name,s[0].course,s[0].fees);

 getch();

}

4.Structures as Function Arguments

 You can pass a structure as a function argument in the same way as you pass any other

variable or pointer.

Program:

#include <stdio.h>
#include <string.h>
struct Books {
char title[50];
char author[50];
char subject[100];
intbook_id;
};
/* function declaration */
voidprintBook(struct Books book);
int main() {
struct Books Book1; /* Declare Book1 of type Book */
struct Books Book2; /* Declare Book2 of type Book */
 /* book 1 specification */
strcpy(Book1.title, "C Programming");
strcpy(Book1.author, "Nuha Ali");
strcpy(Book1.subject, "C Programming Tutorial");
 Book1.book_id = 6495407;
 /* book 2 specification */
strcpy(Book2.title, "Telecom Billing");
strcpy(Book2.author, "Zara Ali");
strcpy(Book2.subject, "Telecom Billing Tutorial");
 Book2.book_id = 6495700;

 /* print Book1 info */
printBook(Book1);
 /* Print Book2 info */
printBook(Book2);
return 0;
}
voidprintBook(struct Books book) {
printf("Book title : %s\n", book.title);
printf("Book author : %s\n", book.author);
printf("Book subject : %s\n", book.subject);
printf("Book book_id : %d\n", book.book_id);
}

When the above code is compiled and executed, it produces the following result –

Book title : C Programming

Book author :Nuha Ali

Book subject : C Programming Tutorial

Book book_id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial

Book book_id : 6495700

5. Pointers to Structures

 You can define pointers to structures in the same way as you define pointer to any other

variable –

 struct Books *struct_pointer;

 Now, you can store the address of a structure variable in the above defined pointer

variable. To find the address of a structure variable, place the '&'; operator before the structure's

name as follows –

 struct_pointer = &Book1;

 To access the members of a structure using a pointer to that structure, you must use the

→ operator as follows –

 struct_pointer->title;

Let us re-write the above example using structure pointer.

#include <stdio.h>

#include <string.h>

struct Books {

char title[50];

char author[50];

char subject[100];

intbook_id;

};

/* function declaration */

voidprintBook(struct Books *book);

int main() {

struct Books Book1; /* Declare Book1 of type Book */

struct Books Book2; /* Declare Book2 of type Book */

 /* book 1 specification */

strcpy(Book1.title, "C Programming");

strcpy(Book1.author, "Nuha Ali");

strcpy(Book1.subject, "C Programming Tutorial");

 Book1.book_id = 6495407;

 /* book 2 specification */

strcpy(Book2.title, "Telecom Billing");

strcpy(Book2.author, "Zara Ali");

strcpy(Book2.subject, "Telecom Billing Tutorial");

 Book2.book_id = 6495700;

 /* print Book1 info by passing address of Book1 */

printBook(&Book1);

 /* print Book2 info by passing address of Book2 */

printBook(&Book2);

return 0;

}

voidprintBook(struct Books *book) {

printf("Book title : %s\n", book->title);

printf("Book author : %s\n", book->author);

printf("Book subject : %s\n", book->subject);

printf("Book book_id : %d\n", book->book_id);

}

When the above code is compiled and executed, it produces the following result –

Book title : C Programming

Book author :Nuha Ali

Book subject : C Programming Tutorial

Book book_id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial

Book book_id : 6495700

6. Unions

 A union is a special data type available in C that allows to store different data types in

the same memory location. You can define a union with many members, but only one member

can contain a value at any given time. Unions provide an efficient way of using the same

memory location for multiple-purpose.

6.1 Defining a Union

 To define a union, you must use the union statement in the same way as you did while

defining a structure. The union statement defines a new data type with more than one member

for your program. The format of the union statement is as follows –

union [union tag] {

member definition;

member definition;

 ...

member definition;

} [one or more union variables];

 The union tag is optional and each member definition is a normal variable definition,

such as int i; or float f; or any other valid variable definition. At the end of the union's definition,

before the final semicolon, you can specify one or more union variables but it is optional. Here is

the way you would define a union type named Data having three members i, f, and str–

union Data {

int i;

float f;

charstr[20];

} data;

 Now, a variable of Data type can store an integer, a floating-point number, or a string of

characters. It means a single variable, i.e., same memory location, can be used to store multiple

types of data. You can use any built-in or user defined data types inside a union based on your

requirement.

 The memory occupied by a union will be large enough to hold the largest member of the

union. For example, in the above example, Data type will occupy 20 bytes of memory space

because this is the maximum space which can be occupied by a character string. The following

example displays the total memory size occupied by the above union –

#include <stdio.h>

#include <string.h>

union Data {

int i;

float f;

charstr[20];

};

int main() {

union Data data;

printf("Memory size occupied by data : %d\n", sizeof(data));

return 0;

}

When the above code is compiled and executed, it produces the following result –

Memory size occupied by data : 20

6.2 Accessing Union Members

 To access any member of a union, we use the member access operator (.). The member

access operator is coded as a period between the union variable name and the union member that

we wish to access. You would use the keyword union to define variables of union type. The

following example shows how to use unions in a program −

#include <stdio.h>

#include <string.h>

union Data {

int i;

float f;

charstr[20];

};

int main() {

union Data data;

data.i = 10;

data.f = 220.5;

strcpy(data.str, "C Programming");

printf("data.i : %d\n", data.i);

printf("data.f : %f\n", data.f);

printf("data.str : %s\n", data.str);

return 0;

}

When the above code is compiled and executed, it produces the following result –

data.i : 1917853763

data.f : 4122360580327794860452759994368.000000

data.str : C Programming

 Here, we can see that the values of i and f members of union got corrupted because the

final value assigned to the variable has occupied the memory location and this is the reason that

the value of str member is getting printed very well.

Now let's look into the same example once again where we will use one variable at a time which

is the main purpose of having unions –

#include <stdio.h>

#include <string.h>

union Data {

int i;

float f;

charstr[20];

};

int main() {

union Data data;

data.i = 10;

printf("data.i : %d\n", data.i);

data.f = 220.5;

printf("data.f : %f\n", data.f);

strcpy(data.str, "C Programming");

printf("data.str : %s\n", data.str);

return 0;

}

When the above code is compiled and executed, it produces the following result –

data.i : 10

data.f : 220.500000

data.str : C Programming

Here, all the members are getting printed very well because one member is being used at a time.

7. Bit Fields

Suppose your C program contains a number of TRUE/FALSE variables grouped in a structure

called status, as follows –

struct {

unsignedintwidthValidated;

unsignedintheightValidated;

} status;

 This structure requires 8 bytes of memory space but in actual, we are going to store either

0 or 1 in each of the variables. The C programming language offers a better way to utilize the

memory space in such situations.

 If you are using such variables inside a structure then you can define the width of a

variable which tells the C compiler that you are going to use only those number of bytes. For

example, the above structure can be re-written as follows –

struct {

unsignedintwidthValidated : 1;

unsignedintheightValidated : 1;

} status;

 The above structure requires 4 bytes of memory space for status variable, but only 2 bits

will be used to store the values.

 If you will use up to 32 variables each one with a width of 1 bit, then also the status

structure will use 4 bytes. However as soon as you have 33 variables, it will allocate the next slot

of the memory and it will start using 8 bytes. Let us check the following example to understand

the concept –

#include <stdio.h>

#include <string.h>

/* define simple structure */

struct {

unsignedintwidthValidated;

unsignedintheightValidated;

} status1;

/* define a structure with bit fields */

struct {

unsignedintwidthValidated : 1;

unsignedintheightValidated : 1;

} status2;

int main() {

printf("Memory size occupied by status1 : %d\n", sizeof(status1));

printf("Memory size occupied by status2 : %d\n", sizeof(status2));

return 0;

}

When the above code is compiled and executed, it produces the following result –

Memory size occupied by status1 : 8

Memory size occupied by status2 : 4

7.1 Bit Field Declaration

The declaration of a bit-field has the following form inside a structure –

struct {

type [member_name] : width ;

};

The following table describes the variable elements of a bit field –

Elements Description

type An integer type that determines how a bit-field's value is interpreted.

The type may be int, signed int, or unsigned int.

member_name The name of the bit-field.

width The number of bits in the bit-field. The width must be less than or equal

to the bit width of the specified type.

 The variables defined with a predefined width are called bit fields. A bit field can hold

more than a single bit; for example, if you need a variable to store a value from 0 to 7, then you

can define a bit field with a width of 3 bits as follows –

struct {

unsignedint age : 3;

} Age;

 The above structure definition instructs the C compiler that the age variable is going to

use only 3 bits to store the value. If you try to use more than 3 bits, then it will not allow you to

do so. Let us try the following example −

#include <stdio.h>

#include <string.h>

struct {

unsignedint age : 3;

} Age;

int main() {

Age.age = 4;

printf("Sizeof(Age) : %d\n", sizeof(Age));

printf("Age.age : %d\n", Age.age);

Age.age = 7;

printf("Age.age : %d\n", Age.age);

Age.age = 8;

printf("Age.age : %d\n", Age.age);

return 0;

}

When the above code is compiled it will compile with a warning and when executed, it produces

the following result −

Sizeof(Age) : 4

Age.age : 4

Age.age : 7

Age.age : 0

8. Pointers

 Pointers in C are easy and fun to learn. Some C programming tasks are performed more

easily with pointers, and other tasks, such as dynamic memory allocation, cannot be performed

without using pointers. So it becomes necessary to learn pointers to become a perfect C

programmer. Let's start learning them in simple and easy steps.

 As you know, every variable is a memory location and every memory location has its

address defined which can be accessed using ampersand (&) operator, which denotes an address

in memory. Consider the following example, which prints the address of the variables defined –

#include <stdio.h>

int main () {

int var1;

char var2[10];

printf("Address of var1 variable: %x\n", &var1);

printf("Address of var2 variable: %x\n", &var2);

return 0;

}

When the above code is compiled and executed, it produces the following result –

Address of var1 variable: bff5a400

Address of var2 variable: bff5a3f6

8.1What are Pointers?

 A pointer is a variable whose value is the address of another variable, i.e., direct address

of the memory location. Like any variable or constant, you must declare a pointer before using it

to store any variable address. The general form of a pointer variable declaration is –

 type *var-name;

 Here, type is the pointer's base type; it must be a valid C data type and var-

name is the name of the pointer variable. The asterisk * used to declare a pointer is the same

asterisk used for multiplication. However, in this statement the asterisk is being used to designate

a variable as a pointer. Take a look at some of the valid pointer declarations –

int *ip; /* pointer to an integer */

double *dp; /* pointer to a double */

float *fp; /* pointer to a float */

char *ch /* pointer to a character */

 The actual data type of the value of all pointers, whether integer, float, character, or

otherwise, is the same, a long hexadecimal number that represents a memory address. The only

difference between pointers of different data types is the data type of the variable or constant that

the pointer points to.

8.2 How to Use Pointers?

 There are a few important operations, which we will do with the help of pointers very

frequently. (a) We define a pointer variable, (b) assign the address of a variable to a pointer

and (c) finally access the value at the address available in the pointer variable. This is done by

using unary operator * that returns the value of the variable located at the address specified by its

operand. The following example makes use of these operations –

#include <stdio.h>

int main () {

intvar = 20; /* actual variable declaration */

int *ip; /* pointer variable declaration */

ip = &var; /* store address of var in pointer variable*/

printf("Address of var variable: %x\n", &var);

 /* address stored in pointer variable */

printf("Address stored in ip variable: %x\n", ip);

 /* access the value using the pointer */

printf("Value of *ip variable: %d\n", *ip);

return 0;

}

When the above code is compiled and executed, it produces the following result –

Address of var variable: bffd8b3c

Address stored in ip variable: bffd8b3c

Value of *ip variable: 20

8.3 NULL Pointers

 It is always a good practice to assign a NULL value to a pointer variable in case you do

not have an exact address to be assigned. This is done at the time of variable declaration. A

pointer that is assigned NULL is called a null pointer.

 The NULL pointer is a constant with a value of zero defined in several standard libraries.

Consider the following program –

#include <stdio.h>

int main () {

int *ptr = NULL;

printf("The value of ptr is : %x\n", ptr);

return 0;

}

When the above code is compiled and executed, it produces the following result –

 The value of ptr is 0

 In most of the operating systems, programs are not permitted to access memory at

address 0 because that memory is reserved by the operating system. However, the memory

address 0 has special significance; it signals that the pointer is not intended to point to an

accessible memory location. But by convention, if a pointer contains the null (zero) value, it is

assumed to point to nothing.

 To check for a null pointer, you can use an 'if' statement as follows –

if(ptr) /* succeeds if p is not null */

if(!ptr) /* succeeds if p is null */

8.4 Pointer arithmetic

 A pointer in c is an address, which is a numeric value. Therefore, you can perform

arithmetic operations on a pointer just as you can on a numeric value. There are four arithmetic

operators that can be used on pointers: ++, --, +, and -

 To understand pointer arithmetic, let us consider that ptr is an integer pointer which

points to the address 1000. Assuming 32-bit integers, let us perform the following arithmetic

operation on the pointer –

 ptr++

 After the above operation, the ptr will point to the location 1004 because each time ptr is

incremented, it will point to the next integer location which is 4 bytes next to the current

location. This operation will move the pointer to the next memory location without impacting

the actual value at the memory location. Ifptr points to a character whose address is 1000, then

the above operation will point to the location 1001 because the next character will be available

at 1001.

#include <stdio.h>

constint MAX = 3;

int main () {

intvar[] = {10, 100, 200};

int i, *ptr;

 /* let us have array address in pointer */

ptr = var;

for (i = 0; i < MAX; i++) {

printf("Address of var[%d] = %x\n", i, ptr);

printf("Value of var[%d] = %d\n", i, *ptr);

 /* move to the next location */

ptr++;

 }

return 0;

}

When the above code is compiled and executed, it produces the following result −

Address of var[0] = bf882b30

Value of var[0] = 10

Address of var[1] = bf882b34

Value of var[1] = 100

Address of var[2] = bf882b38

Value of var[2] = 200

9. Pointers and Functions

 C programming allows passing a pointer to a function. To do so, simply declare the

function parameter as a pointer type.

 Following is a simple example where we pass an unsigned long pointer to a function and

change the value inside the function which reflects back in the calling function –

#include <stdio.h>

#include <time.h>

voidgetSeconds(unsigned long *par);

int main () {

unsigned long sec;

getSeconds(&sec);

 /* print the actual value */

printf("Number of seconds: %ld\n", sec);

return 0;

}

voidgetSeconds(unsigned long *par) {

 /* get the current number of seconds */

 *par = time(NULL);

return;

}

 When the above code is compiled and executed, it produces the following result –

Number of seconds :1294450468

 The function, which can accept a pointer, can also accept an array as shown in the

following example –

#include <stdio.h>

/* function declaration */

doublegetAverage(int *arr, int size);

int main () {

 /* an int array with 5 elements */

int balance[5] = {1000, 2, 3, 17, 50};

doubleavg;

 /* pass pointer to the array as an argument */

avg = getAverage(balance, 5) ;

 /* output the returned value */

printf("Average value is: %f\n", avg);

return 0;

}

doublegetAverage(int *arr, int size) {

int i, sum = 0;

doubleavg;

for (i = 0; i < size; ++i) {

sum += arr[i];

 }

avg = (double)sum / size;

returnavg;

}

When the above code is compiled together and executed, it produces the following result –

Average value is: 214.40000

10. Pointers and Arrays

 Before we understand the concept of arrays of pointers, let us consider the following

example, which uses an array of 3 integers –

#include <stdio.h>

constint MAX = 3;

int main () {

intvar[] = {10, 100, 200};

int i;

for (i = 0; i < MAX; i++) {

printf("Value of var[%d] = %d\n", i, var[i]);

 }

return 0;

}

When the above code is compiled and executed, it produces the following result –

Value of var[0] = 10

Value of var[1] = 100

Value of var[2] = 200 There may be a situation when we want to maintain an array, which can

store pointers to an int or char or any other data type available. Following is the declaration of

an array of pointers to an integer −

 int *ptr[MAX];

 It declares ptr as an array of MAX integer pointers. Thus, each element in ptr, holds a

pointer to an int value. The following example uses three integers, which are stored in an array

of pointers, as follows −

#include <stdio.h>

constint MAX = 3;

int main () {

intvar[] = {10, 100, 200};

int i, *ptr[MAX];

for (i = 0; i < MAX; i++) {

ptr[i] = &var[i]; /* assign the address of integer. */

 }

for (i = 0; i < MAX; i++) {

printf("Value of var[%d] = %d\n", i, *ptr[i]);

 }

return 0;

}

When the above code is compiled and executed, it produces the following result –

Value of var[0] = 10

Value of var[1] = 100

Value of var[2] = 200

11. Pointers and Strings

You can also use an array of pointers to character to store a list of strings as follows –

#include <stdio.h>

constint MAX = 4;

int main () {

char *names[] = {

 "Zara Ali",

 "Hina Ali",

 "Nuha Ali",

 "Sara Ali",

 };

int i = 0;

for (i = 0; i < MAX; i++) {

printf("Value of names[%d] = %s\n", i, names[i]);

 }

return 0;

}

When the above code is compiled and executed, it produces the following result –

Value of names[0] = Zara Ali

Value of names[1] = Hina Ali

Value of names[2] = Nuha Ali

Value of names[3] = Sara Ali

12. Self – referential structures

 A self-referential structure is used to create data structures like linked lists, stacks, etc.

Following is an example of this kind of structure:

structstruct_name

{

datatypedatatypename;

struct_name * pointer_name;

};

 A self-referential structure is one of the data structures which refer to the pointer to

(points) to another structure of the same type. For example, a linked list is supposed to be a self-

referential data structure. The next node of a node is being pointed, which is of the same struct

type. For example,

typedefstructlistnode {

void *data;

structlistnode *next;

} linked_list;

 In the above example, the listnode is a self-referential structure – because the *next is of

the type structlistnode.

