1.0 Under Graduate Degree Programme in Engineering & Technology (UGP in E&T)

J.B. Institute of Engineering and Technology (JBIET) offers a 4-year (8 semesters) Bachelor of Technology (B.Tech.) degree programme, under Choice Based Credit System (CBCS) with effect from the academic year 2018-19 in the following branches of Engineering:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>2</td>
<td>Electrical and Electronics Engineering</td>
</tr>
<tr>
<td>3</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>4</td>
<td>Electronics and Communication Engineering</td>
</tr>
<tr>
<td>5</td>
<td>Computer Science and Engineering</td>
</tr>
<tr>
<td>6</td>
<td>Information Technology</td>
</tr>
<tr>
<td>7</td>
<td>Electronics and Computer Engineering</td>
</tr>
<tr>
<td>8</td>
<td>Mining Engineering</td>
</tr>
</tbody>
</table>

2.0 Eligibility for admission

2.1 Admission to the under graduate (UG) programme is made either on the basis of the merit rank obtained by the qualified student in entrance test conducted by the Telangana State Government (EAMCET) or on the basis of any other order of merit approved by the University, subject to reservations as prescribed by the government from time to time.

2.2 The medium of instructions for the entire under graduate programme in Engineering & Technology will be English only.

3.0 B.Tech. Programme structure

3.1 A student after securing admission shall complete the B.Tech. programme in a minimum period of four academic years (8 semesters), and a maximum period of eight academic years (16 semesters) starting from the date of commencement of first year first semester. However, he/she is permitted to write the examinations for two more years after eight academic years of course work, failing which he/she shall forfeit his/her seat in B.Tech course.

Each student shall secure 160 credits (with CGPA ≥ 5) required for the completion of the under graduate programme and award of the B.Tech. degree.

3.2 UGC/AICTE specified definitions/descriptions are adopted appropriately for various terms and abbreviations used in these academic regulations/ norms, which are listed below.

3.2.1 Semester scheme
Each undergraduate programme is divided into 4 academic years (8 semesters) with each semester of 22 weeks of duration (16 weeks for instruction), each semester having Continuous Internal Evaluation (CIE)’ and ‘Semester End Examination (SEE)’. Choice Based Credit System (CBCS) and Credit Based Promotion System (CBPS) as indicated by UGC and curriculum / course structure as suggested by AICTE are followed.

3.2.2 Credit courses

All subjects/ courses are to be registered by the student in a semester to earn credits which is assigned to each subject/ course in an L: T: P: C (lecture periods: tutorial periods: practical periods: credits) structure based on the following general pattern.

- One credit for one hour/ week/ semester for theory/ lecture (L) courses or tutorials.
- One credit for two hours/ week/ semester for laboratory/ practical (P) courses.

Courses like Environmental Science, Constitution of India, Intellectual Property Rights, and Gender Sensitization lab are mandatory courses. These courses will not carry any credits.

3.2.3 Subject Course Classification

All subjects/ courses offered for the under graduate programme in E&T (B.Tech. degree programmes) are broadly classified as follows. The College has followed almost all the guidelines issued by AICTE/UGC.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Broad Course Classification</th>
<th>Course Group/ Category</th>
<th>Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Foundation Courses (FnC)</td>
<td>BS – Basic Sciences</td>
<td>Includes mathematics, physics and chemistry subjects</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>ES-Engg Sciences</td>
<td>Includes fundamental engineering subjects</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>HS – Humanities and Social sciences</td>
<td>Includes subjects related to humanities, social sciences and management</td>
</tr>
<tr>
<td>4</td>
<td>Core Courses (CoC)</td>
<td>PC – Professional Core</td>
<td>Includes core subjects related to the parent discipline/ department/ branch of Engineering</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Project Work</td>
<td>B.Tech. project or UG project or UG major project or Project Stage I & II</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Industrial training/ Mini-project</td>
<td>Industrial training/ Summer Internship/ Industrial Oriented Mini-project/ Mini-project</td>
</tr>
<tr>
<td>7</td>
<td>Elective Courses (EℓC)</td>
<td>PE – Professional Electives</td>
<td>Includes elective subjects related to the parent discipline/ department/ branch of Engineering.</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>OE – Open Electives</td>
<td>Elective subjects which include inter-disciplinary subjects or subjects in an area outside the parent discipline/ department/ branch of Engineering.</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Seminar</td>
<td>Seminar/ Colloquium based on core contents related to parent discipline/ department/ branch of Engineering.</td>
</tr>
<tr>
<td>10</td>
<td>Minor courses</td>
<td>-</td>
<td>1 or 2 Credit courses (subset of HS)</td>
</tr>
</tbody>
</table>
4.0 Course registration

4.1 A ‘faculty advisor or counselor’ is assigned to a group of 20 students, who will advise the students about the undergraduate programme, its course structure and curriculum, choice/option for subjects/courses, based on their competence, progress, pre-requisites and interest.

4.2 A student is allowed to register for 160 credits in completion of B.Tech programme. However, they can register for additional credits (above 160 credits). The additional credits scored shall not be considered for award of division and also not considered for calculation of Semester Grade Point Average (SGPA) and Cumulative Grade Point Average (CGPA). For such extra course(s) registered, a certificate will be issued with a letter grade indicated as a performance measure.

4.3 Open Electives: The students have to choose requisite number of open electives (as prescribed in the course structure) from the list of open electives given. However, the student cannot opt for an open elective subject offered by his own (parent) department, if it is already listed under any category of the subjects offered by parent department in any semester.

4.4 Professional Electives: The students have to choose requisite number of professional electives (as prescribed in the course structure) from the list of professional electives given.

5.0 Subjects/ courses to be offered

5.1 A typical section (or class) strength for each semester is 60.

5.2 A subject/course may be offered to the students, only if a minimum of 30 students (1/2 of the section strength) opt for it. The maximum strength of a section is limited to 80 (60 + 1/3 of the section strength).

5.3 More than one faculty member may offer the same subject (lab / practical may be included along with the corresponding theory subject in the same semester) in any semester. However, the selection of choice for students will be based on - ‘first come, first serve basis and CGPA criterion’ (i.e. first focus is on early on-line entry from the student for registration in that semester, and the second focus, if needed, will be on CGPA of the student).

5.4 If more entries for registration of a subject come into a picture, then the Head of the Department concerned shall decide, whether or not to offer such a subject/course (Professional Elective and Open Electives) for two (or multiple) sections.

6.0 Attendance requirements:

6.1 A student is eligible to appear for the semester end examinations, if the student acquires a minimum of 75% of attendance in aggregate of all the subjects/courses (excluding attendance in mandatory courses) for that semester.

The attendance of Mandatory Non-Credit courses should be maintained separately.

6.2 Shortage of attendance in aggregate up to 10% (65% and above, and below 75%) in each semester may be condoned on medical grounds by the committee comprising of HOD of
Concerned Department, Class incharge and 2 senior faculty members.

6.3 A stipulated condonation fee is payable for condoning of shortage of attendance. This fee will be informed time to time by the college administration.

6.4 Shortage of attendance below 65% in aggregate shall in no case be condoned.

6.5 A student detained in a semester due to shortage of attendance may be readmitted in the same semester in the next academic year for fulfillment of academic requirements. The academic regulations under which a student has been readmitted shall be applicable. However, no grade allotments or SGPA/CGPA calculations will be done for the entire semester in which the student has been detained.

6.6 A student fulfilling the attendance requirement in the present semester shall not be eligible for readmission into the same class.

7.0 Academic requirements

The following academic requirements have to be satisfied, in addition to the attendance requirements mentioned in item no.6.

7.1 A student is deemed to have fulfilled the minimum academic requirements and earned the credits allotted to each theory or practical or design or drawing course or project if he/she secures not less than 35% of marks (24 out of 70 marks) in the semester end examination and a minimum of 40% of marks in the sum total of the continuous internal evaluation (CIE) and semester end examination (SEE) taken together.

7.2 A student is deemed to have fulfilled the minimum academic requirements and earned the credits allotted to Industrial Oriented Mini Project/Summer Internship and seminar if the student secures not less than 40% marks in each of them.

7.3 A student may reappear once for each of the above evaluations, when they are scheduled again.

7.4 Promotion Rules

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Promotion</th>
<th>Conditions to be fulfilled</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>First year first semester to first year second semester</td>
<td>Regular course of study of first year first semester.</td>
</tr>
<tr>
<td>2</td>
<td>First year second semester to second year first semester</td>
<td>(i) Regular course of study of first year second semester. (ii) Must have secured at least 19 credits out of 38 credits i.e., 50% credits up to first year second semester from all the relevant regular and supplementary examinations, whether the student takes those examinations or not.</td>
</tr>
<tr>
<td>3</td>
<td>Second year first semester to second year second semester</td>
<td>Regular course of study of second year first semester.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| 4 | Second year second semester to third year first semester | (i) Regular course of study of second year second semester.
(ii) Must have secured at least 40 credits out of 80 credits i.e., 50% credits up to second year second semester from all the relevant regular and supplementary examinations, whether the student takes those examinations or not. |
| 5 | Third year first semester to third year second semester | Regular course of study of third year first semester. |
| 6 | Third year second semester to fourth year first semester | (i) Regular course of study of third year second semester.
(ii) Must have secured at least 61 credits out of 122 credits i.e., 50% credits up to third year second semester from all the relevant regular and supplementary examinations, whether the student takes those examinations or not. |
| 7 | Fourth year first semester to fourth year second semester | Regular course of study of fourth year first semester. |

7.5 A student eligible to appear in the semester end examination for any subject/course, but absent from it or failed (thereby failing to secure ‘C’ grade or above) may reappear for that subject/course in the supplementary examination as and when conducted. In such cases, internal marks (CIE) assessed earlier for that subject/course will be carried over, and added to the marks to be obtained in the SEE supplementary examination for evaluating performance in that subject.

7.6 A student detained in a semester due to shortage of attendance may be re-admitted in the same semester in the next academic year for fulfillment of academic requirements. The academic regulation under which a student has been readmitted is applicable. However, no grade allotments or SGPA/CGPA calculations will be done for the entire semester in which the student has been detained.

7.7 A student detained due to lack of credits, is promoted to the next academic year only after acquiring the required academic credits. The academic regulation under which the student has been readmitted is applicable to him.

7.8 A student who fails to earn all the 160 credits as indicated in the program structure within eight academic years from the year of admission shall forfeit his seat in B.Tech Program, unless an extension is given by college Academic council to complete the program for a further period of two years.

8.0 Evaluation - Distribution and Weightage of marks

8.1 The performance of a student in every subject/course (including practical and Project Stage – I & II) will be evaluated for 100 marks each, with 30 marks allotted for CIE (Continuous Internal Evaluation) and 70 marks for SEE (Semester End-Examination).

8.2 For theory courses, during the semester there are 2 mid-term examinations (internal
exams of 20 marks each), 5 unit tests of 5 marks each and 2 assignments carrying 5 marks each.

8.3 Each mid-term examination will be of 1 hour 20 minutes consisting of Part-A (objective questions) for 10 marks and Part-B (long answer) for 10 marks. The objective paper is set with 20 bits of multiple choice, fill-in the blanks and matching type of questions. The Part-B consists of 2 questions each carrying 5 marks. For each question there will be "either" "or" choice.

8.4 Each Unit Test will be of 1 hour duration, consisting of 3 questions from that unit carrying 5 marks each and student should answer any two questions for 10 Marks. These 10 marks are scaled down to 5 for Unit Test marks calculation.

8.5 First mid-term examination is conducted for first 2 units of syllabus and second mid-term examination is conducted for remaining 3 units of syllabus.

8.6 The Continuous Internal Evaluation for theory course shall be made as average of marks obtained in CIE – I and CIE –II as detailed in the table below.

<table>
<thead>
<tr>
<th>CIE – I</th>
<th>Marks</th>
<th>CIE - II</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MID – I</td>
<td>20</td>
<td>MID - II</td>
<td>20</td>
</tr>
<tr>
<td>Best of Unit Test - I and Unit Test - II</td>
<td>5</td>
<td>Average of the best two of Unit Test – III, Unit Test – IV and Unit Test V</td>
<td>5</td>
</tr>
<tr>
<td>Assignment – I</td>
<td>5</td>
<td>Assignment - II</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>Total</td>
<td>30</td>
</tr>
</tbody>
</table>

8.7 If a student is absent for any mid term examination, may be permitted to apply for makeup examinations within a week after completion of mid-term examinations on medical grounds. A subcommittee with the following composition will look into such cases.

Subcommittee-composition:

<table>
<thead>
<tr>
<th>S.No</th>
<th>Faculty Member</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Concerned Head of the Department</td>
<td>Chairman</td>
</tr>
<tr>
<td>2</td>
<td>Faculty nominated by Principal</td>
<td>Member</td>
</tr>
<tr>
<td>3</td>
<td>Senior faculty member of the concerned Department</td>
<td>Member</td>
</tr>
<tr>
<td>4</td>
<td>Class Teacher of the class</td>
<td>Member</td>
</tr>
</tbody>
</table>

8.7.1 The semester end examinations (SEE) will be conducted for 70 marks consisting of two parts viz. i) **Part- A** for 20 marks, ii) **Part - B** for 50 marks.

- Part-A is a compulsory question consisting of ten sub-questions. The first five sub-questions are from each unit and carry 1 mark each. The next five sub-questions are one from each unit and carry 3 marks each.
- Part-B consists of five questions (numbered from 2 to 6) carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. For each question there will be an “either” “or” choice, which means that there will be two questions from each unit and the student should answer either of the two questions.
8.7.2 For subjects like Engineering Graphics/Engineering Drawing, the SEE shall consist of five questions. For each question there will be an “either” “or” choice, which means that there will be two questions from each unit and the student should answer either of the two questions. There is no Part – A, and Part – B system.

8.7.3 For subjects like Machine Drawing Practice/Machine Drawing, the SEE is conducted for 70 marks consisting of two parts viz. (i) Part – A for 30 marks. 3 out of 4 questions must be answered, (ii) Part – B for 40 marks. Part – B is compulsory with a single question.

8.7.4 For the Subject Estimation, Costing and Project Management, the SEE paper should consist of Part- A, Part-B and Part C. (i) Part – A – 1 out of 2 questions from Unit – I for 25 Marks, (ii) Part – B – 1 out of 2 questions from Unit – II for 15 Marks, (iii) Part – C – 3 out of 5 questions from Units – III, IV, V for 30 Marks.

8.7.5 For subjects Structural Engineering – I & II (RCC & STEEL), the SEE will be conducted for 70 marks consisting of 2 parts viz. (i) Part – A for 15 marks and, (i) Part – B for 55 marks. Part – A is a compulsory question consisting of ten sub-questions. The first five sub-questions are from each unit relating to design theory and codal provisions and carry 2 marks each. The next five sub-questions are from each unit and carry 1 mark each. Part – B consists of 5 questions (numbered 2 to 6) carrying 11 marks each. Each of these questions is from one unit and may contain sub-questions. For each question there is either or choice, which means that there will be two questions from each unit and the student should answer either of the two questions.

8.8 For practical subjects there is a continuous internal evaluation during the semester for 30 marks and 70 marks for semester end examination. Out of the 30 marks for internal evaluation, day-to-day work in the laboratory is evaluated for 20 marks and internal practical examination is evaluated for 10 marks conducted by the laboratory teacher concerned. The semester end examination is conducted with an external examiner and the laboratory teacher. The external examiner is selected and appointed by the Principal from the list submitted by Head of the Department.

8.9 For the subject having design and/or drawing, (such as engineering graphics, engineering drawing, machine drawing, machine drawing practice and estimation), the distribution is 30 marks for continuous internal evaluation (20 marks for day-to-day work and 10 marks for internal tests) and 70 marks for semester end examination.

8.10 There is Life Skills and Professional Skills course offered for 2 credits and will be evaluated in IV year I semester as a laboratory course.

8.11 There is summer internship, in collaboration with an industry of their specialization, to be taken up during the vacation after II year II Semester examination and it will be evaluated in III Year I semester. A report to be submitted in prescribed format on the internship carried out by the student. The report will evaluated for 100 marks by the committee consisting of head of the department, and internship coordinator and a senior faculty member of the department. There is no semester end examination for the seminar.

8.12 There is an Industry Oriented Mini Project, in collaboration with an industry of their specialization to be taken up during the vacation after III year II semester examinations. Industry Oriented Mini Project is submitted in a report form and presented before the committee in IV year I semester. It is evaluated for 100 marks by the committee consisting
of Head of the Department, supervisor of the Industrial Oriented mini project and a senior faculty member of the department.

8.13 There is a seminar in IV year II semester. For the seminar, the student shall collect the information on a specialized topic, prepare a technical report, and submit it to the department. It is evaluated by the departmental committee consisting of Head of the Department, seminar supervisor and a senior faculty member. The seminar report is evaluated for 100 internal marks. There is no semester end examination for the seminar.

8.14 UG project work shall be carried out in two stages: Project Stage – I during IV Year I Semester, Project Stage – II during IV Year II Semester. Each stage will be evaluated for 100 marks. Student has to submit project work report at the end of each semester. First report includes project work carried out in IV Year I semester and second report includes project work carried out in IV Year I & II Semesters. SEE for both project stages shall be completed before the commencement of SEE Theory examinations..

8.15 For Project Stage – I, the Project Review committee (PRC) consisting of Head of the Department, project coordinator and two senior faculty members shall evaluate(SEE) the project work for 70 marks and project supervisor (CIE) shall evaluate for 30 marks. The student is deemed to have failed, if he (i) does not submit a report on Project Stage - I or does not make a presentation of the same before the evaluation committee as per schedule, or (ii) secures less than 40% marks in the sum total of the CIE and SEE taken together. A student who has failed may reappear once for the above evaluation, when it is scheduled again; if he fails in such ‘one reappearance’ evaluation also, he has to reappear for the same in the next subsequent semester, as and when it is scheduled.

8.16 For Project Stage – II, the external examiner shall evaluate the project work for 70 marks and the project supervisor shall evaluate it for 30 marks. The student is deemed to have failed, if he (i) does not submit a report on Project Stage - II, or does not make a presentation of the same before the external examiner as per schedule, or (ii) secures less than 40% marks in the sum total of the CIE and SEE taken together. For conducting viva-voce of project stage – II, Principal selects an external examiner from the list of experts in the relevant branch submitted by the HODs of the College.

A student who has failed may reappear once for the above evaluation, when it is scheduled again; if student fails in such ‘one reappearance’ evaluation also, he has to reappear for the same in the next subsequent semester, as and when it is scheduled.

8.17 For mandatory courses of Environmental Science, Constitution of India, Intellectual Property Rights, and Gender Sensitization lab, a student has to secure 40 marks out of 100 marks (i.e. 40% of the marks allotted) in the continuous internal evaluation for passing the subject/course. These marks should also be submitted along with the internal marks of other subjects.

8.18 No marks or letter grades is printed in the Mark Statement for mandatory/non-credit courses. Only Pass/Fail is indicated in Grade Card.

9.0 Grading procedure

9.1 Grades will be awarded to indicate the performance of students in each theory subject, laboratory / practicals, seminar, Industry Oriented Mini Project, and project Stage - I & II. Based on the percentage of marks obtained (Continuous Internal Evaluation plus Semester
End Examination, both taken together) as specified in item 8 above, a corresponding letter grade is given.

9.2 As a measure of the performance of a student, a 10-point absolute grading system using the following letter grades (as per UGC/AICTE guidelines) and corresponding percentage of marks is followed:

<table>
<thead>
<tr>
<th>% of Marks Secured in a Subject/Course (Class Intervals)</th>
<th>Letter Grade (UGC Guidelines)</th>
<th>Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater than or equal to 90%</td>
<td>O (Outstanding)</td>
<td>10</td>
</tr>
<tr>
<td>80 and less than 90%</td>
<td>A+ (Excellent)</td>
<td>9</td>
</tr>
<tr>
<td>70 and less than 80%</td>
<td>A (Very Good)</td>
<td>8</td>
</tr>
<tr>
<td>60 and less than 70%</td>
<td>B+ (Good)</td>
<td>7</td>
</tr>
<tr>
<td>50 and less than 60%</td>
<td>B (Average)</td>
<td>6</td>
</tr>
<tr>
<td>40 and less than 50%</td>
<td>C (Pass)</td>
<td>5</td>
</tr>
<tr>
<td>Below 40%</td>
<td>F (FAIL)</td>
<td>0</td>
</tr>
<tr>
<td>Absent</td>
<td>Ab</td>
<td>0</td>
</tr>
</tbody>
</table>

9.3 A student who has obtained an ‘F’ grade in any subject is deemed to have ‘failed’ and is required to reappear as a ‘supplementary student’ in the semester end examination, as and when offered. In such cases, internal marks in those subjects will remain the same as those obtained earlier.

9.4 To a student who has not appeared for an examination in any subject, ‘Ab’ grade will be allocated in that subject, and he is deemed to have ‘failed’. A student will be required to reappear as a ‘supplementary student’ in the semester end examination, as and when offered next. In this case also, the internal marks in those subjects will remain the same as those obtained earlier.

9.5 A letter grade does not indicate any specific percentage of marks secured by the student, but it indicates only the range of percentage of marks.

9.6 A student earns grade point (GP) in each subject/course, on the basis of the letter grade secured in that subject/course. The corresponding ‘credit points’ (CP) are computed by multiplying the grade point with credits for that particular subject/course.

\[
\text{Credit points (CP)} = \text{grade point (GP)} \times \text{credits} \quad \text{For a course}
\]

9.7 A student passes the subject/course only when \(\text{GP} \geq 5 \) (‘C’ grade or above).

9.8 The Semester Grade Point Average (SGPA) is calculated by dividing the sum of credit points (\(\Sigma \text{CP} \)) secured from all subjects/courses registered in a semester, by the total number of credits registered during that semester. SGPA is rounded off to two decimal places. SGPA is thus computed as
SGPA = \{ \sum_{i=1}^{N} C_i G_i \} / \{ \sum_{i=1}^{N} C_i \} \ldots \text{For each semester},

where ‘i’ is the subject indicator index (takes into account all subjects in a semester), ‘N’ is the no. of subjects ‘registered’ for the semester (as specifically required and listed under the course structure of the parent department), \(C_i \) is the no. of credits allotted to the \(i^{th} \) subject, and \(G_i \) represents the grade points (GP) corresponding to the letter grade awarded for that \(i^{th} \) subject.

9.9 The Cumulative Grade Point Average (CGPA) is a measure of the overall cumulative performance of a student in all semesters considered for registration. The CGPA is the ratio of the total credit points secured by a student in all registered courses in all semesters, and the total number of credits registered in all the semesters. CGPA is rounded off to two decimal places. CGPA is thus computed from the I year II semester onwards at the end of each semester as per the formula

\[
\text{CGPA} = \{ \sum_{j=1}^{M} C_j G_j \} / \{ \sum_{j=1}^{M} C_j \} \ldots \text{for all S number of semesters registered}
\]

(i.e., up to and inclusive of S semesters, \(S \geq 2 \)),

where ‘M’ is the total no. of subjects (as specifically required and listed under the course structure of the parent department) the student has ‘registered’ i.e., from the 1st semester onwards up to and inclusive of the 8th semester, ‘j’ is the subject indicator index (takes into account all subjects from 1 to 8 semesters), \(C_j \) is the no. of credits allotted to the \(j^{th} \) subject, and \(G_j \) represents the grade points (GP) corresponding to the letter grade awarded for that \(j^{th} \) subject. After registration and completion of I year I semester, the SGPA of that semester itself may be taken as the CGPA, as there are no cumulative effects.

Illustration of calculation of SGPA:

<table>
<thead>
<tr>
<th>Course/Subject</th>
<th>Credits</th>
<th>Letter Grade</th>
<th>Grade Points</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course 1</td>
<td>4</td>
<td>A</td>
<td>8</td>
<td>4 x 8 = 32</td>
</tr>
<tr>
<td>Course 2</td>
<td>4</td>
<td>O</td>
<td>10</td>
<td>4 x 10 = 40</td>
</tr>
<tr>
<td>Course 3</td>
<td>4</td>
<td>C</td>
<td>5</td>
<td>4 x 5 = 20</td>
</tr>
<tr>
<td>Course 4</td>
<td>3</td>
<td>B</td>
<td>6</td>
<td>3 x 6 = 18</td>
</tr>
<tr>
<td>Course 5</td>
<td>3</td>
<td>A+</td>
<td>9</td>
<td>3 x 9 = 27</td>
</tr>
<tr>
<td>Course 6</td>
<td>3</td>
<td>C</td>
<td>5</td>
<td>3 x 5 = 15</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td>152</td>
</tr>
</tbody>
</table>

SGPA = 152/21 = 7.24
Illustration of calculation of CGPA up to 3rd semester:

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course/Subject Title</th>
<th>Credits Allocated</th>
<th>Letter Grade Secured</th>
<th>Corresponding Grade Point (GP)</th>
<th>Credit Points (CP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Course 1</td>
<td>3</td>
<td>A</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>I</td>
<td>Course 2</td>
<td>3</td>
<td>O</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>I</td>
<td>Course 3</td>
<td>3</td>
<td>B</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>I</td>
<td>Course 4</td>
<td>4</td>
<td>A</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>I</td>
<td>Course 5</td>
<td>3</td>
<td>A+</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td>I</td>
<td>Course 6</td>
<td>4</td>
<td>C</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>II</td>
<td>Course 7</td>
<td>4</td>
<td>B</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>II</td>
<td>Course 8</td>
<td>4</td>
<td>A</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>II</td>
<td>Course 9</td>
<td>3</td>
<td>C</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>II</td>
<td>Course 10</td>
<td>3</td>
<td>O</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>II</td>
<td>Course 11</td>
<td>3</td>
<td>B+</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>II</td>
<td>Course 12</td>
<td>4</td>
<td>B</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>II</td>
<td>Course 13</td>
<td>4</td>
<td>A</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>II</td>
<td>Course 14</td>
<td>3</td>
<td>O</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>III</td>
<td>Course 15</td>
<td>2</td>
<td>A</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>III</td>
<td>Course 16</td>
<td>1</td>
<td>C</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>III</td>
<td>Course 17</td>
<td>4</td>
<td>O</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>III</td>
<td>Course 18</td>
<td>3</td>
<td>B+</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>III</td>
<td>Course 19</td>
<td>4</td>
<td>B</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>III</td>
<td>Course 20</td>
<td>4</td>
<td>A</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>III</td>
<td>Course 21</td>
<td>3</td>
<td>B+</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>69</td>
<td></td>
<td>Total Credit Points</td>
<td>518</td>
</tr>
</tbody>
</table>

CGPA = \(\frac{518}{69} = 7.51 \)

The above illustrated calculation process of CGPA will be followed for each subsequent semester until 8th semester. The CGPA obtained at the end of 8th semester will become the final CGPA secured for entire B.Tech. Programme.

9.10 For merit ranking or comparison purposes or any other listing, only the ‘rounded off’ values of the CGPAs will be used.

9.11 SGPA and CGPA of a semester will be mentioned in the semester Memorandum of Grades if all subjects of that semester are passed in first attempt. Otherwise the SGPA and CGPA is mentioned only on the Memorandum of Grades in which sitting he passed his last exam in that semester. However, mandatory courses will not be taken into consideration.
10.0 Passing standards

10.1 A student is declared successful or ‘passed’ in a semester, if he secures a GP \(\geq 5 \) (‘C’ grade or above) in every subject/course in that semester (i.e. when the student gets an SGPA \(\geq 5.00 \) at the end of that particular semester); and he is declared successful or ‘passed’ in the entire undergraduate programme, only when gets a CGPA \(\geq 5.00 \) for the award of the degree as required.

10.2 After the completion of each semester, a grade card or grade sheet is issued to all the registered students of that semester, indicating the letter grades and credits earned. It will show the details of the courses registered (course code, title, no. of credits, grade earned, etc.), credits earned.

11.0 Declaration of results

11.1 Computation of SGPA and CGPA are done using the procedure listed in 9.6 to 9.9.

11.2 For final percentage of marks equivalent to the computed final CGPA, the following formula may be used.

\[
\text{\% of Marks} = (\text{final CGPA} - 0.5) \times 10
\]

12.0 Award of degree

12.1 A student who registers for all the specified subjects/courses as listed in the course structure and secures the required number of 160 credits (with CGPA \(\geq 5.0 \)), within 8 academic years from the date of commencement of the first academic year, is declared to have ‘qualified’ for the award of B.Tech. degree in the chosen branch of Engineering selected at the time of admission.

12.2 A student who qualifies for the award of the degree as listed in item 12.1 is placed in the following classes.

12.3 A student with final CGPA (at the end of the undergraduate programme) \(\geq 8.00 \), and fulfilling the following conditions - is placed in ‘first class with distinction’. However, he

(i) Should have passed all the subjects/courses in ‘first appearance’ within the first 4 academic years (or 8 sequential semesters) from the date of commencement of first year first semester.

(ii) Should have secured a CGPA \(\geq 8.00 \), at the end of each of the 8 sequential semesters, starting from I year I semester onwards.

(iii) Should not have been detained or prevented from writing the semester end examinations in any semester due to shortage of attendance or any other reason.

A student not fulfilling any of the above conditions with final CGPA > 8 is placed in ‘first class’.
12.4 Students with final CGPA (at the end of the under graduate programme) ≥ 6.50 but < 8.00 are placed in ‘first class’.

12.5 Students with final CGPA (at the end of the under graduate programme) ≥ 5.50 but < 6.50, are placed in ‘second class’.

12.6 All other students who qualify for the award of the degree (as per item 12.1), with final CGPA (at the end of the under graduate programme) ≥ 5.00 but < 5.50, are placed in ‘pass class’.

12.7 A student with final CGPA (at the end of the under graduate programme) < 5.00 will not be eligible for the award of the degree.

12.8 Students fulfilling the conditions listed under item 12.3 alone will be eligible for award of ‘Gold Medal’.

13.0 Withholding of results

13.1 If the student has not paid the fees to the College at any stage, or has dues pending due to any reason whatsoever, or if any case of indiscipline is pending, the result of the student may be withheld, and the student will not be allowed to go into the next higher semester. The award or issue of the degree may also be withheld in such cases.

14.0 Student transfers

Transfer of students from other colleges or universities are permitted subjected to the rules and regulations of Telanga State Council for Higher Education (Technical Education Department) and JNTUH in vogue.

15.0 Scope

15.1 The academic regulations should be read as a whole, for the purpose of any interpretation.

15.2 In case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Academic Council is final.

15.3 The College may change or amend the academic regulations, course structure or syllabi at any time, and the changes or amendments made is applicable to all students with effect from the dates notified by the College authorities.

15.4 Where the words “he”, “him”, “his”, occur in the regulations, they include “she”, “her”, “hers”.
ACADEMIC REGULATIONS FOR B.TECH. (LATERAL ENTRY SCHEME)
FROM THE AY 2019-2020

1. **Eligibility for award of B. Tech. Degree (LES)**
 The LES students after securing admission shall pursue a course of study for not less than three academic years and not more than six academic years.

2. **The student shall register for 122 credits and secure 122 credits with CGPA \(\geq 5 \) from II year to IV year B.Tech. programme (LES) for the award of B.Tech. degree.**

3. **The students, who fail to fulfill the requirement for the award of the degree in six academic years from the year of admission. However, he/she is permitted to write the examinations for two more years after six academic years of course work, failing which he/she shall forfeit his/her seat in B.Tech course.**

4. **The attendance requirement of B. Tech. (Regular) is applicable to B.Tech. (LES).**

5. **Promotion rule**

<table>
<thead>
<tr>
<th>S. No</th>
<th>Promotion</th>
<th>Conditions to be fulfilled</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Second year first semester to second year second semester</td>
<td>Regular course of study of second year first semester.</td>
</tr>
</tbody>
</table>
| 2 | Second year second semester to third year first semester | (i) Regular course of study of second year second semester.
(ii) Must have secured at least 21 credits out of 42 credits i.e., 50% credits up to second year second semester from all the relevant regular and supplementary examinations, whether the student takes those examinations or not. |
| 3 | Third year first semester to third year second semester | Regular course of study of third year first semester. |
| 4 | Third year second semester to fourth year first semester | (i) Regular course of study of third year second semester.
(ii) Must have secured at least 42 credits out of 84 credits i.e., 50% credits up to third year second semester from all the relevant regular and supplementary examinations, whether the student takes those examinations or not. |
| 5 | Fourth year first semester to fourth year second semester | Regular course of study of fourth year first semester. |
6. All the other regulations as applicable to B. Tech. 4-year degree course (Regular) will hold good for B. Tech. (Lateral Entry Scheme).

MALPRACTICES RULES

DISCIPLINARY ACTION FOR / IMPROPER CONDUCT IN EXAMINATIONS

<table>
<thead>
<tr>
<th>Nature of Malpractices/Improper conduct</th>
<th>Punishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the student:</td>
<td></td>
</tr>
<tr>
<td>1. (a) Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which student is appearing but has not made use of (material shall include any marks on the body of the student which can be used as an aid in the subject of the examination)</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only.</td>
</tr>
<tr>
<td>(b) Gives assistance or guidance or receives it from any other student orally or by any other body language methods or communicates through cell phones with any student or persons in or outside the exam hall in respect of any matter.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only of all the students involved. In case of an outsider, he will be handed over to the police and a case is registered against him.</td>
</tr>
<tr>
<td>2. Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the student is appearing.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the student has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3.</td>
<td>Impersonates any other student in connection with the examination.</td>
</tr>
<tr>
<td>4.</td>
<td>Smuggles in the answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.</td>
</tr>
<tr>
<td>5.</td>
<td>Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.</td>
</tr>
<tr>
<td>6.</td>
<td>Refuses to obey the orders of the chief superintendent/assistant – superintendent / any officer on duty or</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>7.</td>
<td>Leaves the exam hall taking away answer script or intentionally tears off the script or any part thereof inside or outside the examination hall. Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the student has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that Semester/year. The student is also debarred for two consecutive semesters from class work and all End examinations. The continuation of the course by the student is subject to the academic regulations in connection with forfeiture of seat.</td>
</tr>
<tr>
<td>8.</td>
<td>Possesses any lethal weapon or firearm in the examination hall. Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the student has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The student is also debarred and forfeits the seat.</td>
</tr>
<tr>
<td></td>
<td>If student of the college, who is not a student for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>9.</td>
<td>Comes in a drunken condition to the examination hall.</td>
</tr>
<tr>
<td>10.</td>
<td>Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.</td>
</tr>
<tr>
<td>11.</td>
<td>If any malpractice is detected which is not covered in the above clauses 1 to 11 is reported to the Examination Result Processing Committee (ERPC) for further action to award a suitable punishment.</td>
</tr>
</tbody>
</table>

* * * * *
<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BS 101</td>
<td>Mathematics-I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>BS 102</td>
<td>Applied Physics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>ES 101</td>
<td>Basic Electrical Engineering</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>ES 104</td>
<td>Basic Electrical Engineering Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>BS 106</td>
<td>Applied Physics Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>6</td>
<td>ES 106</td>
<td>Workshop and Manufacturing Practices</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Induction Programme</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>10</td>
<td>3</td>
<td>9</td>
<td>17.5</td>
</tr>
</tbody>
</table>

IB.Tech – II Semester

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BS 201</td>
<td>Mathematics-II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>HS201</td>
<td>English</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>ES 203</td>
<td>Programming for Problem Solving</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>BS 203</td>
<td>Engineering Chemistry</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>ES 202</td>
<td>Engineering Drawing & Computer Graphics</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>HS 202</td>
<td>English Language and Communication Skills Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>ES 205</td>
<td>Programming for Problem Solving Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>BS 205</td>
<td>Chemistry Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>12</td>
<td>2</td>
<td>13</td>
<td>20.5</td>
</tr>
</tbody>
</table>
MATHEMATICS-I
(LINEAR ALGEBRA & DIFFERENTIAL EQUATIONS)
(COMMON TO CE, EEE, ME, ECE, CSE, IT, ECM & MIE)

Course Objectives:

- To study matrix algebra and its use in solving system of linear equations and in solving Eigen value problems.
- To provide an over view of Ordinary differential equations in First order & Higher order.
- To learn the concept of Sequence & nature of series.

Course outcomes: After the completing the course the students will able to

- Solve system of linear equations and eigen value problems.
- Identify whether the given differential equation of first order is exact or not
- Solve higher differential equation and apply the concept of differential equation to real world problems
- Find the nature of sequences & series.

UNIT – I: MATRICES : (10L)

Matrices: Types of Matrices, Symmetric; Hermitian; Skew-symmetric; Skew-Hermitian; orthogonal matrices; Unitary Matrices; rank of a matrix by Echelon form and Normal form, Inverse of Non-singular matrices by Gauss-Jordan method; System of linear equations; solving system of Homogeneous and Non-Homogeneous equations. Gauss elimination method; Gauss Seidel Iteration Method.
UNIT – II: EIGEN VALUES and EIGEN VECTORS : (10L)

Linear Transformation and Orthogonal Transformation: Eigen values and Eigenvectors and their properties: Diagonalization of a matrix; Cayley-Hamilton Theorem (without proof); finding inverse and power of a matrix by Cayley-Hamilton Theorem; Quadratic forms and Nature of the Quadratic Forms; Reduction of Quadratic form to canonical forms by Orthogonal Transformation

UNIT – III : SEQUENCES and SERIES : (10L)

Sequence: Definition of a Sequence, limit; Convergent, Divergent and Oscillatory sequences.

Series: Convergent, Divergent and Oscillatory Series; Series of positive terms; Comparison test, p-test, D-Alembert’s ratio test; Raabe’s test; Cauchy’s Integral test; Cauchy’s root test; logarithmic test. Alternating series: Leibnitz test; Alternating Convergent series: Absolute and Conditionally Convergence

UNIT – IV: FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS: (8L)

Exact, linear and Bernoulli’s equations; Applications: Newton’s law of cooling, Law of natural growth and decay; Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut’s type.

UNIT – V : ORDINARY DIFFERENTIAL EQUATIONS OF HIGHER ORDER : (10L)

Second order linear differential equations with constant coefficients: Non-Homogeneous terms of the type e^{ax}, $\sin ax$, $\cos ax$, polynomials in x, $e^{ax}V(x)$ and $x V(x)$; method of variation of parameters; Equations reducible to linear ODE with constant coefficients: Legendre’s equation, Cauchy-Euler equation.
TEXT BOOKS:

REFERENCES:

APPLIED PHYSICS
(COMMON TO CSE & IT)

Course Objectives: The student will

- demonstrate skills in scientific inquiry, problem solving and laboratory techniques.
- demonstrate competency and understanding of the concepts found in Quantum Mechanics, Semiconductor physics, Fiber optics and lasers and Electromagnetic theory and a broad base of knowledge in physics.
- Solve non-traditional problems that potentially draw on knowledge in multiple areas of physics.
- study applications in engineering like memory devices, transformer core and electromagnetic machinery.

Course Outcomes: The student will be able to

- learn the fundamental concepts on Quantum behaviour of matter in its micro state.
- get the knowledge of fundamentals of Semiconductor physics, Lasers and fibre optics enable the students to apply to various systems like communications, solar cell, photo cells and so on.
- design, characterization and study of properties of material help the students to prepare new materials for various engineering applications.
- be exposed to the phenomena of electromagnetism and also to have exposure on magnetic materials and dielectric materials.

UNIT-I: Quantum Mechanics:

Introduction to quantum physics, Black body radiation, Planck’s law,
Photoelectric effect, Compton effect, de-Broglie’s hypothesis, Wave-particle duality, Davisson and Germer experiment, Heisenberg’s Uncertainty principle, Born’s interpretation of the wave function, Schrödinger’s time independent wave equation, Particle in one dimensional box.

UNIT-II: Electronic Materials:
Classical Free electron theory, Quantum free electron theory, Fermi energy level, Occupation probability, Density of States, Bloch Theorem, Kronig-Penny model, E-K Diagram, Effective mass of Electron, Band Theory of solids, Classification of materials.

UNIT-III: Semiconductor Physics:
Intrinsic and Extrinsic semiconductors, Carrier Concentration in intrinsic and extrinsic Semiconductors, Dependence of Fermi level on carrier-concentration and temperature, Carrier generation and recombination, Carrier transport: diffusion and drift, p-n junction diode, V-I Characteristic, Diode equation(qualitative treatment), Zener diode, Hall effect, LED, Photo diode and Solar cell.

UNIT-IV: Lasers and Fibre Optics :

UNIT-V: Electromagnetism:
TEXT BOOKS:

2. Halliday and Resnick, Physics, Wiley.
3. Dr. M. N. Avadhanulu, Dr. P.G. Kshirsagar - Chand, A textbook of Engineering Physics, Chand

REFERENCES:

1. Richard Robinett, Quantum Mechanics
3. by Monica Katiyar and Deepak Gupta Online Course: “Optoelectronic Materials and Devices” on NPTEL.
Course objectives:

- To introduce the concepts of electrical circuits and its components.
- To understand magnetic circuits, DC circuits and AC single phase and three phase circuits.
- To study and understand the different types of DC/AC machines and transformers.
- To import the knowledge of various electrical installations.

Course Outcomes:

➢ To analyze and solve electrical circuits using network laws and theorems.
➢ To understand and analyze basic electric and magnetic circuits.
➢ To get an exposure of working principles of electrical machines.
➢ To introduce components of low voltage electrical installations.

UNIT –II: AC Circuits: Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase AC circuits consisting of R, L, C, RL, RC and RLC series combinations, resonance in series RLC circuit. Three phase balanced circuits, voltage and current relations in star and delta connections.

UNIT –V: Electrical Installations: Components of LT switchgear: Switch fuse unit (SFU), MCB, ELCB, MCCB, types of wires and cables, earthing. Types of batteries, important characteristics for batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

TEXT BOOKS:

REFERENCES:

B.Tech.: IT
I Year - I Semester

BASIC ELECTRICAL ENGINEERING LAB
(COMMON TO CE, ME, CSE, IT & MIE)

Course Objectives:

• To analyze a given network by applying various electrical laws and network theorems.
• To know the response of electrical circuits for different excitations.
• To calculate, measure and know the relation between basic electrical parameters.
• To analyze the performance characteristics of DC and AC electrical machines.

Course Outcomes: The student will be able to

➢ Get an exposure to basic electrical laws.
➢ Relate the response of different types of electrical circuits to different excitations.
➢ Understand the measurement, calculation and relation between the basic electrical parameters
➢ Inspect the basic characteristics of transformers and electrical machines.

Choice of 10-12 experiments from the following

List of Experiments

1. Verification of Ohms Law.
2. Verification of KVL and KCL.
3. Transient response of series RL and RC circuits using DC excitation.
4. Transient response of RLC series circuit using DC excitation.
5. Resonance in series RLC circuit.
6. Calculations and verification of impedance and current of RL, RC and RLC series circuits.
9. Load test on single phase transformer (Calculate Efficiency and Regulation).
10. Three phase transformer: Verification of relationship between voltages and currents (Star-Delta, Delta-Delta, Delta-star, Star-Star).
11. Measurement of active and reactive power in a balanced three-phase circuit.
Course Objectives: The student will

- Demonstrate skills in scientific inquiry, problem solving and laboratory techniques.
- Demonstrate competency and understanding of the concepts found in LED, Electric and Electronic materials a broad base of knowledge in physics.
- Solve Experimental problems that potentially draw an experimental knowledge in multiple areas of physics.
- Study applications in engineering like Hall effect, Optical fibre, LASER, Photodiode and Solar cell.

Course Outcomes: The student will be able to

- Learn the experimental concepts on in LED, Electric and Electronic materials.
- Get the knowledge of fundamentals of Semiconductor physics, Lasers and fibre optics enable the students to apply to various systems like communications, solar cell, photo cells and so on.
- Design, characterization and study of properties of material help the students to prepare new materials for various engineering applications.
- Be exposed to the phenomena of electromagnetism and also to have exposure on magnetic materials and dielectric materials.
List of Experiments:

1. Energy gap of P-N junction diode:
 To determine the energy gap of a semiconductor diode.
2. Solar Cell:
 To study the V-I Characteristics of solar cell.
3. Light emitting diode:
 Plot V-I and P-I characteristics of light emitting diode.
4. Optical fiber:
 Determination of Numerical Aperture.
5. Hall effect:
 To determine Hall co-efficient of a given semiconductor.
6. Photoelectric effect:
 To determine work function of a given material.
7. LASER:
 To study the Wave length of LASER Source.
8. Dielectric constant:
 To determine the Dielectric constant of the given material.
9. LCR Circuit:
 To determine the Quality factor of LCR Circuit (Series& Parallel).
10. R-C Circuit:
 To determine the time constant of R-C circuit (Growth and Decay).

Text Books:

2. “Engineering Physics Lab Manual” By Department of Physics JBIET
B.Tech. : IT
I Year - I Semester

WORKSHOP AND MANUFACTURING PRACTICES
(COMMON TO EEE, CSE & IT)

Pre-requisites: None

Course objectives: The student will

- Learn fabricating small components using engineering tools and machines
- Understand the working principles of maintaining dimensional accuracies and dimensional tolerances in different manufacturing processes
- Understand assembly of various components.

Course Outcomes: After completing this course, the students will able to

- Fabricate components with their own hands.
- Get practical knowledge of the dimensional accuracies and dimensional tolerances possible with different manufacturing processes.
- Produce small components of their interest by assembly

(I) WORKSHOP AND MANUFACTURING PRACTICES – 10
Lecture hours

1. Brief introduction to Manufacturing processes : –
 a. machining on lathe, milling and drilling machines,
 b. basic process involved in the casting,
 c. brief process of forging , forming,
 d. metal joining , brief process of gas welding (3 hours)
2. Demo of working of CNC machine (2 hours)
3. Fitting operations & power tools (1 hour)
4. Electric house wiring (1 hour)
5. Carpentry (1 hour)
6. Metal casting (1 hour)
7. Welding (arc welding & gas welding), brazing (1 hour)

(II) WORKSHOP PRACTICE: 60 hours

1. Machine shop (12 hours) - on Lathe, Milling and drilling
2. Fitting shop (8 hours)
3. Carpentry (8 hours)
4. Electrical house wiring (8 hours)
5. Welding shop (8 hours (Arc welding 4 hrs + gas welding 4 hrs))
6. Foundry practices – mould preparation (8 hours)
7. Smithy – Black smithy and Tin smithy (8 hours)

TEXT BOOKS:

REFERENCES:

Course Objectives: To learn

- Geometrical approach to the mean value theorems and their application to the mathematical problems
- Evaluation of improper integrals using Beta and Gamma functions.
- Finding maxima and minima of function of two and three variables
- Evaluation of multiple integrals and their applications
- The physical quantities involved in engineering field related to vector valued functions
- The basic properties of vector valued functions and their applications to line, surface and volume integrals

Course outcomes: After the completing the course the students will able to

- Solve the applications on the mean value theorems.
- Evaluate the improper integrals using Beta and Gamma functions.
- Find the extreme values of functions of two variables with/without constraints.
- Evaluate the multiple integrals and apply the concept to find areas, volumes, centre of mass and Gravity for cubes, sphere and rectangular parallelepiped.
- Evaluate the line, surface and volume integrals and converting them from one to another
UNIT – I: CALCULUS : (10L)

Mean value theorems: Rolle’s theorem, Lagrange’s Mean value theorem with their Geometrical Interpretation and applications, Cauchy’s Mean value Theorem. Taylor’s Series.

Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves (Only in Cartesian coordinates), Definition of Improper Integral: Beta and Gamma functions and their applications.

UNIT – II: MULTIVARIABLE CALCULUS (PARTIAL DIFFERENTIATION AND APPLICATIONS) : (8L)

Definitions of Limit and continuity. Partial Differentiation; Euler’s Theorem; Total derivative; Jacobian; Functional dependence & independence, Maxima and minima of functions of two variables and three variables using method of Lagrange multipliers.

UNIT – III: MULTIVARIABLE CALCULUS (INTEGRATION): (10L)

Evaluation of Double Integrals (Cartesian and polar coordinates); change of order of integration (only Cartesian form); Evaluation of Triple Integrals: Change of variables (Cartesian to polar) for double and (Cartesian to Spherical and Cylindrical polar coordinates) for triple integrals.

Applications: Areas (by double integrals) and volumes (by double integrals and triple integrals), Centre of mass and Gravity (constant and variable densities) by double and triple integrals (applications involving cubes, sphere and rectangular parallelepiped).
UNIT – IV : VECTOR DIFFERENTIATION : (10L)

UNIT – V : VECTOR INTEGRATION : (10L)

Line, Surface and Volume Integrals. Theorems of Green, Gauss and Stokes (without proofs) and their applications.

TEXT BOOKS:

REFERENCES:

ENGLISH
(COMMON TO EEE, ME, ECE, CSE, IT & MIE)

Course Objectives:

- To improve the language proficiency of students in English with an emphasis on Vocabulary, Grammar, Reading and Writing skills.
- To equip students to study academic subjects more effectively and critically using the theoretical and practical components of English syllabus.
- To develop study skills and communication skills in formal and informal situations.

Course outcomes: Students should be able to

- To use English Language effectively in spoken and written forms.
- To comprehend the given texts and respond appropriately.
- To communicate confidently in various contexts and different cultures.
- To acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills.

UNIT –I:

‘The Raman Effect’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.

Vocabulary Building: The Concept of Word Formation --The Use of Prefixes and Suffixes.

Grammar: Identifying Common Errors in Writing with Reference to
Articles and Prepositions. **Reading:** Reading and Its Importance-Techniques for Effective Reading.

Basic Writing Skills: Sentence Structures -Use of Phrases and Clauses in Sentences- Importance of Proper Punctuation- Techniques for writing precisely – **Paragraph writing** – Types, Structures and Features of a Paragraph - Creating Coherence-Organizing Principles of Paragraphs in Documents.

UNIT – II:

‘Ancient Architecture in India’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.

Vocabulary: Synonyms and Antonyms, Homophones, Homonyms, and Homographs.

Grammar: Identifying Common Errors in Writing with Reference to Noun-pronoun Agreement and Subject-verb Agreement.

Reading: Improving Comprehension Skills – Techniques for Good Comprehension

Writing: Format of a Formal Letter-**Writing Formal Letters** E.g., Letter of Complaint, Letter of Requisition, and Job Application with Resume.

UNIT – III :

‘Blue Jeans’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.

Vocabulary: Acquaintance with Prefixes and Suffixes from Foreign Languages in English to form Derivatives-Words from Foreign Languages and their Use in English.

Grammar: Identifying Common Errors in Writing with Reference to Misplaced Modifiers and Tenses.

Reading: Sub-skills of Reading- Skimming and Scanning

Writing: Nature and Style of Sensible Writing- **Defining- Describing**
Objects, Places and Events – **Classifying**- Providing Examples or Evidence and Essay Writing

UNIT – IV:

‘What Should You Be Eating’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.

Vocabulary: Standard Abbreviations in English

Grammar: Redundancies and Clichés in Oral and Written Communication.

Reading: Comprehension- Intensive Reading and Extensive Reading

Writing: **Writing Practices**--Writing Introduction and Conclusion - Précis Writing.

UNIT – V :

‘How a Chinese Billionaire Built Her Fortune’ from the prescribed textbook ‘English for Engineers’ published by Cambridge University Press.

Vocabulary: Technical Vocabulary and their usage

Grammar: Common Errors in English

Reading: Reading Comprehension-Exercises for Practice

Writing: **Technical Reports**- Introduction – Characteristics of a Report – Categories of Reports

TEXT BOOKS:

REFERENCES:

B.Tech. : IT
I Year -II Semester

L T-P-D C
3 0-0-0 3

PROGRAMMING FOR PROBLEM SOLVING
(COMMON TO CE, ME, CSE, IT & MIE)

Course Objectives:

- To learn the fundamentals of computers.
- To understand the various steps in program development.
- To learn the syntax and semantics of C programming language.
- To learn the usage of structured programming approach in solving problems.

Course outcomes: After the completing the course the students will able to

 To write algorithms and to draw flowcharts for solving problems.
 ➢ To convert the algorithms/flowcharts to C programs.
 ➢ To code and test a given logic in C programming language.
 ➢ To decompose a problem into functions and to develop modular reusable code.
 ➢ To use arrays, pointers, strings and structures to write C programs.
 ➢ Searching and sorting problems.

UNIT – I: INTRODUCTION TO PROGRAMMING:

Introduction to components of a computer system: disks, primary and secondary memory, processor, operating system, compilers, creating, compiling and executing a program etc., Number systems.

Introduction to Algorithms: steps to solve logical and numerical
problems. Representation of Algorithm, Flowchart/Pseudo code with examples, Program design and structured programming.

Introduction to C Programming Language: variables (with data types and space requirements), Syntax and Logical Errors in compilation, object and executable code , Operators, expressions and precedence, Expression evaluation, Storage classes (auto, extern, static and register), type conversion, The main method and command line arguments

Bitwise operations: Bitwise AND, OR, XOR and NOT operators
Conditional Branching and Loops: Writing and evaluation of conditionals and consequent branching with if, if-else, switch-case, ternary operator, goto, Iteration with for, while, do-while loops.
I/O: Simple input and output with scanf and printf, formatted I/O, Introduction to stdin, stdout and stderr.

UNIT – II: ARRAYS, STRINGS, STRUCTURES AND PREPROCESSOR:

Arrays: one and two dimensional arrays, creating, accessing and manipulating elements of arrays.

Strings: Introduction to strings, handling strings as array of characters, basic string functions available in C (strlen, strcat, strcpy, strstr etc.), arrays of strings

Structures: Defining structures, initializing structures, unions, Array of structures Preprocessor: Commonly used Preprocessor commands like include, define, undef, if, ifdef, ifndef.

UNIT – III: POINTERS AND FILE HANDLING IN C:

Files: Text and Binary files, Creating and Reading and writing text and
binary files, Appending data to existing files, Writing and reading
structures using binary files, Random access using fseek, ftell and
rewind functions.

UNIT – IV : FUNCTION AND DYNAMIC MEMORY
ALLOCATION:

Functions: Designing structured programs, Declaring a function,
Signature of a function, Parameters and return type of a function,
passing parameters to functions, call by value, Passing arrays to
functions, passing pointers to functions, idea of call by reference, Some
C standard functions and libraries.

Recursion: Simple programs, such as Finding Factorial, Fibonacci
series etc., Limitations of Recursive functions.

Dynamic memory allocation: Allocating and freeing memory,
Allocating memory for arrays of different data types.

UNIT – V : INTRODUCTION TO ALGORITHMS:
Basic searching algorithms (linear and binary search techniques), Basic
sorting algorithms (Bubble, Insertion, Quick, Merge and Selection sort
algorithms) Basic concept of order of complexity through the example
programs

TEXT BOOKS:

2. B.A. Forouzan and R.F. Gilberg, C Programming and Data
 Structures, Cengage Learning, (3rd Edition)

REFERENCES:

1. Brian W. Kernighan and Dennis M. Ritchie, The C
 Programming Language, Prentice Hall of India
2. R.G. Dromey, How to solve it by Computer, Pearson
 (16th Impression)
Pearson Education.

Course Objectives:

- To bring adaptability to new developments in Engineering Chemistry and to acquire the skills required to become a perfect engineer.
- To include the importance of spectroscopic techniques and molecular energy levels.
- To acquire knowledge of chemical reactions those are used in the synthesis of molecules.

Course outcomes:

The concepts developed in this course will aid in quantification of several concepts in chemistry that have been introduced at the 10+2 levels in schools. Technology is being increasingly based on the electronic, atomic and molecular level modifications. Quantum theory is more than 100 years old and to understand phenomena at nanometer levels; one has to base the description of all chemical processes at molecular levels. The course will enable the student to:

- Students can analyze microscopic chemistry in terms of atomic and molecular orbitals and intermolecular forces.
- Students can rationalize bulk properties and processes using thermodynamic considerations.
- Students can distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques.
- Students can predict potential applications of chemistry and practical utility in order to become good engineers and entrepreneurs.
UNIT – I: ATOMIC STRUCTURE AND THEORIES OF BONDING:
Atomic and Molecular orbitals. Linear Combination of Atomic Orbitals (LCAO), molecular orbitals of diatomic molecules, molecular orbital energy level diagrams of N₂, O₂, F₂, CO and NO. Crystal Field Theory (CFT): Salient Features of CFT – Crystal Field Splitting of transition metal ion d- orbitals in Tetrahedral, Octahedral and square planar geometries. Band structure of solids and effect of doping on conductance.

UNIT – II: WATER AND ITS TREATMENT:

UNIT – III : ELECTROCHEMISTRY AND CORROSION:

UNIT – IV: SPECTROSCOPIC TECHNIQUES AND APPLICATIONS:
UNIT – V: REACTION MECHANISM AND SYNTHESIS OF DRUG MOLECULES:

TEXT BOOKS:

2. Fundamentals of Molecular Spectroscopy, by C.N. Banwell
5. Physical Chemistry, by P.W. Atkins

REFERENCES:

1. Engineering Chemistry(NPTEL web book) by B. L. Tembe, Kamaluddin and M.S.Krishnan
2. Stereochemistry of organic compounds by D.Narsipuri published by New age international publishers
B.Tech. : IT

I Year -II Semester

L T-P-D C

1 0-0-4 3

ENGINEERING DRAWING & COMPUTER GRAPHICS
(Theory and Lab)
(COMMON TO CE, EEE, CSE, IT & ECM)

Pre-requisites: None

Course objectives: The student will

- Learn a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- Prepare to communicate effectively.
- Learn to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Course Outcomes: After completing this course, the students will be

- Able to understand engineering drawing and its place in society
- Exposed to the visual aspects of engineering drawing and graphics
- Exposed to engineering graphics standards
- Exposed to solid modeling
- Exposed to computer-aided geometric design
- Exposed to creating working drawings
- Exposed to engineering communication

UNIT – I: INTRODUCTION TO ENGINEERING DRAWING (2 Lecture classes and 8 Practical’s): Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloids, Hypocycloid and In volute.
UNIT – II: ORTHOGRAPHIC PROJECTIONS AND PROJECTIONS OF POINTS, LINES AND PLANES (2 Lecture classes and 12 Practical’s): Principles of Orthographic Projections- Conventions - Projections of Points and lines inclined to both planes; Projections of planes inclined to both the Planes- Draw simple annotation, dimensioning and scale.

UNIT – III: PROJECTIONS OF REGULAR SOLIDS AND SECTIONAL VIEWS OF RIGHT REGULAR SOLIDS (2 Lecture Classes And 12 Practical’s): Projections of regular solids - Prism, Cylinder, Pyramid, Cone – Auxiliary Views; , Draw the sectional views of geometrical solids.

Note: CAD Lab facility is required for this unit.

(Only theory Question to be set from this Unit for Examinations)

TEXT BOOKS :

3. CAD Software Theory and User Manuals

REFERENCES:

ENGLISH LANGUAGE AND COMMUNICATION SKILLS LAB
(COMMON TO EEE, ME, ECE, CSE, IT & MIE)

Course Objectives:

To facilitate computer-assisted multi-media instruction enabling individualized and independent language learning

- To sensitize students to the nuances of English speech sounds, word accent, intonation and rhythm
- To bring about a consistent accent and intelligibility in students’ pronunciation of English by providing an opportunity for practice in speaking
- To improve the fluency of students in spoken English and neutralize their mother tongue influence
- To train students to use language appropriately for public speaking and interviews

Course outcomes: The students will be able to attain

- Better understanding of nuances of English language through audio-visual experience and group activities
- Neutralization of accent for intelligibility
- Speaking skills with clarity and confidence which in turn enhances their employability skills

The following course content is prescribed for the English for the English Language and Communication Skills Lab based on Unit - 6 of AICTE Model Curriculum 2018 for B.Tech First English. As the syllabus is very limited, it is required to prepare teaching/learning materials by the teachers collectively in the form of handouts based on the needs of the students in their respective colleges for effective teaching/learning and timesaving in the lab.

SYLABUS:
English Language and Communication Sills Lab (ELCS) will have two parts:
 a) Computer Assisted Language Learning (CALL) Lab:
 b) Interactive Communication Skills (ICS) Lab:

Exercise – I:

CALL Lab:

Exercise – II:

CALL Lab:

Practice: Basic Rules of Word Accent - Stress Shift - Weak Forms and Strong Forms in Context.

ICS Lab:

Understand: Features of Good Conversation – Non-verbal Communication.

Practice: Situational Dialogues – Role-Play- Expressions in Various Situations –Making Requests and Seeking Permissions - Telephone Etiquette

Exercise – III:

CALL Lab:

Understand: Intonation-Errors in Pronunciation-the Influence of Mother Tongue (MTI).
Practice: Common Indian Variants in Pronunciation – Differences in British and American Pronunciation.

ICS Lab:
Understand: How to make Formal Presentations.
Practice: Formal Presentations.

Exercise – IV:
CALL Lab:
Understand: Listening for General Details.
Practice: Listening Comprehension Tests.
ICS Lab:
Understand: Public Speaking – Exposure to Structured Talks.
Practice: Making a Short Speech – Extempore.

Exercise – V:
CALL Lab:
Understand: Listening for Specific Details.
Practice: Listening Comprehension Tests.
ICS Lab:
Understand: Interview Skills.
Practice: Mock Interviews.

Computer Assisted Language Learning (CALL) Lab:

The Computer Assisted Language Learning Lab has to accommodate 40 students with 40 systems, with one Master Console, LAN facility and English language learning software for self- study by students. System Requirement (Hardware component): Computer network with LAN facility (minimum 40 systems with multimedia) with the following specifications:
i) Computers with Suitable Configuration
ii) High Fidelity Headphones
Interactive Communication Skills (ICS) Lab:

1. **The Interactive Communication Skills Lab**: A Spacious room with movable chairs and audio-visual aids with a Public-Address System, a LCD and a projector etc.
Course Objectives: The students will learn the following:

- To work with an IDE to create, edit, compile, run and debug programs
- To analyze the various steps in program development.
- To develop programs to solve basic problems by understanding basic concepts in C like operators, control statements etc.
- To develop modular, reusable and readable C Programs using the concepts like functions, arrays etc.
- To write programs using the Dynamic Memory Allocation concept.
- To create, read from and write to text and binary files.

Course outcomes: After the completing the course the students will able to

- formulate the algorithms for simple problems
- translate given algorithms to a working and correct program
- correct syntax errors as reported by the compilers
- identify and correct logical errors encountered during execution
- represent and manipulate data with arrays, strings and structures
- use pointers of different types
- create, read and write to and from simple text and binary files
- Modularize the code with functions so that they can be reused.
1. SIMPLE NUMERIC PROBLEMS:
 a) Write a program for find the max and min from the three numbers.
 b) Write the program for the simple, compound interest.
 c) Write program that declares Class awarded for a given percentage of marks, where mark<40%= Failed, 40% to <60% = Second class, 60% to <70%=First class, >=70% = Distinction. Read percentage from standard input.

2. EXPRESSION EVALUATION:
 a) Write a C program, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +,-,* , /, % and use Switch Statement)
 b) Write a program that finds if a given number is a prime number
 c) A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of these sequences.
 d) Write a C program to find the roots of a Quadratic equation.

3. ARRAYS AND POINTERS AND FUNCTIONS:
 a) Write a C program to find the minimum, maximum and average in an array of integers.
 b) Write a C program to find Addition of Two Matrices
 c) Write a C program to find Multiplication of Two Matrices
 d) Write C programs that use both recursive and non-recursive functions
 e) Write a program for reading elements using pointer into array and display the values using array.

4. Files:
 a) Write a C program to display the contents of a file to standard output device.
 b) Write a C program which copies one file to another, replacing all lowercase characters with their upper case equivalents.
 c) Write a C program to count the number of times a character occurs in a text file. The file name and the character are supplied as command line arguments.
5. Strings:
 a) Write a C program to determine if the given string is a palindrome or not (Spelled same in both directions with or without a meaning like madam, civic, noon, abcba, etc.)
 b) Write a C program to count the lines, words and characters in a given text.

6. Sorting and Searching:
 a) Write a C program for using binary search method.
 b) Write a C program for linear search.
 c) Write a C program that implements the Bubble sort method.
 d) Write a C program that implements the Insertion sort method.
 e) Write a C program that implements the Quick sort method.
 f) Write a C program that implements the Merge sort method.

ADDITIONAL PROGRAMS (Given to Students as Assignment):

1) Write a program that prints a multiplication table for a given number and the number of rows in the table. For example, for a number 5 and rows = 3, the output should be:
 a. 5 x 1 = 5
 b. 5 x 2 = 10
 c. 5 x 3 = 15

2) Write a program that shows the binary equivalent of a given positive number between 0 to 255.

3) Write a C program to find the sum of individual digits of a positive integer and test given Number is palindrome.

4) Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user.

5) Write a C program to calculate the following, where x is a fractional value. 1-x/2+x^2/4-x^3/6.

6) Write a C program to read in two numbers, x and n, and then compute the sum of this geometric progression: 1+x+x^2+x^3+x^n. For example: if n is 3 and x is 5, then the program computes 1+5+25+125.

7) Write a C program to find the minimum, maximum and average in an array of integers.

8) Write a functions to compute mean, variance, Standard Deviation, sorting of n elements in single dimension array.

9) Write a C program that uses functions to perform the following:
(a) Transpose of a matrix with memory dynamically allocated for the new matrix as row and column counts may not be same.

(b) To find the factorial of a given integer.

(c) To find the GCD (greatest common divisor) of two given integers.

10) Write a C program that does the following:
 (a) It should first create a binary file and store 10 integers, where the file name and 10 values are given in the command line. (hint: convert the strings using atoi function) Now the program asks for an index and a value from the user and the value at that index should be changed to the new value in the file. (hint: use seek function). The program should then read all 10 values and print them back.

(b) Write a C program to merge two files into a third file (i.e., the contents of the first file followed by those of the second are put in the third file).

11) Write a C program to convert a Roman numeral ranging from I to L to its decimal equivalent.

12) Write a C program that converts a number ranging from 1 to 50 to Roman equivalent

13) Write a C program that uses functions to perform the following operations:
 (a) To insert a sub-string in to a given main string from a given position.
 (b) To delete n Characters from a given position in a given string.

14) Write a C program to construct a pyramid of numbers as follows:

```
1       *       1       1       *
1 2     **     2 3     2 2     **
1 2 3   ***    4 5 6   3 3 3    * *
        4 4 4 4  *  *
             **
             *
```

15) Write a C program that sorts a given array of names.

Suggested Reference Books for solving the problems:
1. B.A. Forouzan and R.F. Gilberg C Programming
2. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India
3. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression)
Course Objectives: The course consists of experiments related to the principles of chemistry required for engineering student. The student will learn:

- Estimation of hardness and chloride content in water to check its suitability for drinking purpose.
- To determine the rate constant of reactions from concentrations as a function of time.
- The measurement of physical properties like adsorption and viscosity.
- To synthesize the drug molecules and check the purity of organic molecules by thin layer chromatographic (TLC) technique.

Course outcomes: The experiments will make the student gain skills on:

- Determination of parameters like hardness and chloride content in water.
- Estimation of rate constant of a reaction from concentration – time relationships.
- Determination of physical properties like adsorption and viscosity.
- Calculation of R_f values of some organic molecules by TLC technique.

1. Determination of total hardness of water by complexometric method using EDTA
2. Determination of chloride content of water by Argentometry
3. Estimation of an HCl by Conductometric titrations
4. Estimation of Acetic acid by Conductometric titrations
5. Estimation of HCl by Potentiometric titrations
6. Estimation of Fe$^{2+}$ by Potentiometry using KMnO4
7. Estimation of amount of Cu$^{+2}$ by Colorimetry
8. Estimation of amount of KMnO$_4$ by Colorimetry
9. Synthesis of Aspirin and Paracetamol
10. Determination of acid value of coconut oil
11. Thin layer chromatography calculation of R_f values. eg ortho and para nitro phenols
12. Determination of viscosity of castor oil and ground nut oil by using Ostwald’s viscometer.
13. Determination of partition coefficient of acetic acid between n-butanol and water.

REFERENCES:

1. B.D. Khosla, A. Gulati and V. Garg ,Senior practical physical chemistry, B (R. Chand & Co., Delhi)
2. K.K. Sharma and D. S. Sharma , An introduction to practical chemistry, (Vikas publishing, N. Delhi)